
Introduction to Algorithms

Jon Kleinberg Éva Tardos

Cornell University
Spring 2003

c©Jon Kleinberg and Éva Tardos

2

Contents

1 Introduction 7
1.1 Introduction: The Stable Matching Problem 7
1.2 Computational Tractability . 16
1.3 Interlude: Two Definitions . 19
1.4 Five Representative Problems . 22
1.5 Exercises . 28

2 Algorithmic Primitives for Graphs 35
2.1 Representing Graphs . 35
2.2 Paths, Cycles, and Trees . 37
2.3 Graph Connectivity and Graph Traversal . 39
2.4 Two Applications of Graph Traversal . 45
2.5 Extensions to Directed Graphs . 50
2.6 Directed Acyclic Graphs and Topological Ordering 51
2.7 Exercises . 54

3 Greedy Algorithms 57
3.1 The Greedy Algorithm Stays Ahead . 58
3.2 Exchange Arguments . 64
3.3 Shortest Paths in a Graph . 73
3.4 The Minimum Spanning Tree Problem . 76
3.5 Minimum-Cost Arborescences: A Multi-Phase Greedy Algorithm 84
3.6 Exercises . 89

4 Divide and Conquer 105
4.1 A Useful Recurrence Relation . 105
4.2 Counting Inversions . 107
4.3 Finding the Closest Pair of Points . 109
4.4 Exercises . 115

5 Dynamic Programming 117
5.1 Weighted Interval Scheduling: The Basic Set-up 117
5.2 Segmented Least Squares: Multi-way Choices 123
5.3 Subset Sums and Knapsacks: Adding a Variable 128
5.4 RNA Secondary Structure: Dynamic Programming Over Intervals 133

3

4 CONTENTS

5.5 Sequence Alignment . 138

5.6 Sequence Alignment in Linear Space . 144

5.7 Shortest Paths in a Graph . 148

5.8 Negative Cycles in a Graph . 156

5.9 Exercises . 161

6 Network Flow 179

6.1 The Maximum Flow Problem . 180

6.2 Computing Maximum Flows . 182

6.3 Cuts in a Flow Network . 187

6.4 Max-Flow Equals Min-Cut . 189

6.5 Choosing Good Augmenting Paths . 192

6.6 The Preflow-Push Maximum Flow Algorithm 196

6.7 Applications: Disjoint Paths and Bipartite Matchings 204

6.8 Extensions to the Maximum Flow Problem 210

6.9 Applications of Maximum Flows and Minimum Cuts 214

6.10 Minimum Cost Perfect Matchings . 226

6.11 Exercises . 230

7 NP and Computational Intractability 253

7.1 Computationally Hard Problems . 254

7.2 Polynomial-time Reductions . 259

7.3 Efficient Certification and the Definition of NP 266

7.4 NP-complete Problems . 269

7.5 Sequencing and Partitioning Problems . 271

7.6 The Hardness of Numerical Problems . 280

7.7 co-NP and the Asymmetry of NP. 283

7.8 Exercises . 285

8 PSPACE 301

8.1 PSPACE . 301

8.2 Some Hard Problems in PSPACE . 302

8.3 Solving Problems in Polynomial Space . 305

8.4 Proving Problems PSPACE-complete . 311

8.5 Exercises . 317

9 Extending the Limits of Tractability 319

9.1 Finding Small Vertex Covers . 320

9.2 Solving NP-hard Problem on Trees . 323

9.3 Tree Decompositions of Graphs . 327

9.4 Exercises . 343

CONTENTS 5

10 Approximation Algorithms 347
10.1 Load Balancing Problems: Bounding the Optimum 347
10.2 The Center Selection Problem . 351
10.3 Set Cover: A General Greedy Heuristic . 354
10.4 Vertex Cover: An Application of Linear Programming 358
10.5 Arbitrarily Good Approximations for the Knapsack Problem 364
10.6 Exercises . 369

11 Local Search 377
11.1 The Landscape of an Optimization Problem 377
11.2 The Metropolis Algorithm and Simulated Annealing 383
11.3 Application: Hopfield Neural Networks . 386
11.4 Choosing a Neighbor Relation . 390
11.5 Exercises . 394

12 Randomized Algorithms 397
12.1 A First Application: Contention Resolution 398
12.2 Finding the global minimum cut . 403
12.3 Random Variables and their Expectations 407
12.4 A Randomized Approximation Algorithm for MAX-3-SAT 410
12.5 Computing the Median: Randomized Divide-and-Conquer 413
12.6 Randomized Caching . 416
12.7 Chernoff Bounds . 420
12.8 Load Balancing . 421
12.9 Packet Routing . 423
12.10Constructing an Expander Graph . 429
12.11Appendix: Some Probability Definitions . 434
12.12Exercises . 440

13 Epilogue: Algorithms that Run Forever 451

6 CONTENTS

Chapter 1

Introduction

1.1 Introduction: The Stable Matching Problem

As a beginning for the course, we look at an algorithmic problem that nicely illustrates many

of the themes we will be emphasizing. It it motivated by some very natural and practical

concerns, and from these we formulate a clean and simple statement of a problem. The

algorithm to solve the problem is very clean as well, and most of our work will be spent in

proving that it is correct and giving an acceptable bound on the amount of time it takes to

terminate with an answer. The problem itself — the Stable Matching Problem — has several

origins.

One of its origins is in 1962, when David Gale and Lloyd Shapley, two mathematical

economists, asked the question: “Could one design a college admissions process, or a job

recruiting process, that was self-enforcing?” What did they mean by this?

To set up the question, let’s first think informally about the kind of situation that might

arise as a group of your friends, all juniors in college majoring in computer science, begin

applying to companies for summer internships. The crux of the application process is the

interplay between two different types of parties: companies (the employers) and students (the

applicants). Each applicant has a preference ordering on companies and each company —

once the applications come in — forms a preference ordering on its applicants. Based on these

preferences, companies extend extend offers to some of their applicants, applicants choose

which of their offers to accept, and people begin heading off to their summer internships.

Gale and Shapley considered the sorts of things that could start going wrong with this

process, in the absence of any mechanism to enforce the status quo. Suppose, for example,

that your friend Raj has just accepted a summer job at the large telecommunications com-

pany CluNet. A few days later, the small start-up company WebExodus, which had been

dragging its feet on making a few final decisions, calls up Raj and offers him a summer job

as well. Now, Raj actually prefers WebExodus to CluNet — won over perhaps by the laid-

back, anything-can-happen atmosphere — and so this new development may well cause him

7

8 CHAPTER 1. INTRODUCTION

to retract his acceptance of the CluNet offer, and go to WebExodus instead. Suddenly down

one summer intern, CluNet offers a job to one of its wait-listed applicants, who promptly re-

tracts his previous acceptance of an offer from the software giant Babelsoft, and the situation

begins to spiral out of control.

Things look just as bad, if not worse, from the other direction. Suppose your friend

Chelsea, destined to go Babelsoft but having just heard Raj’s story, calls up the people at

WebExodus and says, “You know, I’d really rather spend the summer with you guys than

at Babelsoft.” They find this very easy to believe; and furthermore, on looking at Chelsea’s

application, they realize that they would have rather hired her than some other student who

actually is scheduled to spend the summer at WebExodus. In this case, if WebExodus were

a slightly less scrupulous start-up company, it might well find some way to retract its offer

to this other student and hire Chelsea instead.

Situations like this can rapidly generate a lot of chaos, and many people — both appli-

cants and employers — can end up unhappy with both the process and the outcome. What

has gone wrong? One basic problem is that the process is not self-enforcing — if people are

allowed to act in their self-interest, then it risks breaking down.

We might well prefer the following, more stable, situation, in which self-interest itself

prevents offers from being retracted and re-directed. Consider another one of your friends,

who has arranged to spend the summer at CluNet but calls up WebExodus and reveals that

he, too, would rather work for them. But in this case, based on the offers already accepted,

they are able to reply, “No, it turns out that we prefer each of the students we’ve accepted to

you, so we’re afraid there’s nothing we can do.” Or consider an employer, earnestly following

up with its top applicants who went elsewhere, being told by each of them, “No, I’m happy

where I am.” In such a case, all the outcomes are stable — there are no further outside deals

that can be made.

So this is the question Gale and Shapley asked: Given a set of preferences among em-

ployers and applicants, can we assign applicants to employers so that for every employer E,

and every applicant A who is not scheduled to work for E, one of the following two things

is the case? —

(i) E prefers every one of its accepted applicants to A; or

(ii) A prefers her current situation to the situation in which she is working for employer

E.

If this holds, the outcome is stable: individual self-interest will prevent any applicant/employer

deal from being made behind the scenes.

Gale and Shapley proceeded to develop a striking algorithmic solution to this problem,

which we will discuss presently. Before doing this, let’s comment that this is not the only

origin of the Stable Matching Problem. It turns out that for a decade before the work of Gale

1.1. INTRODUCTION: THE STABLE MATCHING PROBLEM 9

and Shapley — unbeknownst to them — the National Resident Matching Program had been

using a very similar procedure, with the same underlying motivation, to match residents to

hospitals. Indeed, this system is still in use today.

This is one testament to the problem’s fundamental appeal. And from the point of view

of this course, it provides us with a nice first domain in which to reason about some basic

combinatorial definitions, and the algorithms that build on them.

Defining the Problem

To try best understanding this concept, it helps to make the problem as clean as possible. The

world of companies and applicants contains some distracting asymmetries. Each applicant

is looking for a single company, but each company is looking for many applicants; moreover,

there may be more (or, as is sometimes the case, fewer) applicants than there are available

slots for summer jobs. Finally, each applicant does not typically apply to every company.

Following Gale and Shapley, we can eliminate these complications and arrive at a more

“bare-bones” version of the problem: each of n applicants applies to each of n companies,

and each company wants to accept a single applicant. We will see that doing this preserves

the fundamental issue inherent in the problem; in particular, our solution to this simplified

version will extend to the more general case as well.

Let’s make one more modification, and this is purely to provide a change of scenery. In-

stead of pairing off applicants and companies, we consider the equivalent problem of devising

a system by which each of n men and n women can end up happily married.

So consider a set M = {m1, . . . , mn} of n men, and a set W = {w1, . . . , wn} of n women.

Let M ×W denote the set of all possible ordered pairs of the form (m, w), where m ∈ M

and w ∈ W . A matching S is a set of ordered pairs, each from M ×W , with the property

that each member of M and each member of W appears in at most one pair in S. A perfect

matching S ′ is a matching with the property that each member of M and each member of

W appears in exactly one pair in S ′.

Matchings and perfect matchings are objects that will recur frequently during the course;

they arise naturally in modeling a wide range of algorithmic problems. In the present sit-

uation, a perfect matching corresponds simply to a way of pairing off each man with each

woman, in such a way that everyone ends up married to somebody, and nobody is married

to more than one person — there is neither singlehood nor polygamy.

Now we can add the notion of preferences to this setting. Each man m ∈ M ranks all

the women; we will say that m prefers w to w′ if m ranks w higher than w′. We will refer to

the ordered ranking of m as his preference list. We will not allow ties in the ranking. Each

woman, analogously, ranks all the men.

Given a perfect matching S, what can go wrong? Guided by our initial motivation in

terms of employers and applicants, we should be worried about the following situation: There

10 CHAPTER 1. INTRODUCTION

are two pairs (m, w) and (m′, w′) in S with the property that m prefers w′ to w, and w′

prefers m to m′. In this case, there’s nothing to stop m and w′ from abandoning their current

partners and heading off into the sunset together; the set of marriages is not self-enforcing.

We’ll say that such a pair (m, w′) is an instability with respect to S: (m, w′) does not belong

to S, but each of m and w′ prefers the other to their partner in S.

Our goal, then, is a set of marriages with no instabilities. We’ll say that a matching S

is stable if (i) it is perfect, and (ii) there is no instability with respect to S. Two questions

spring immediately to mind:

(†) Does there exist a stable matching for every set of preference lists?

(†) Given a set of preference lists, can we efficiently construct a stable matching

if there is one?

Constructing a Stable Matching

We now show that there exists a stable matching for every set of preference lists among the

men and women. Moreover, our means of showing this will answer the second question as

well: we will give an efficient algorithm that takes the preference lists and constructs a stable

matching.

Let us consider some of the basic ideas that motivate the algorithm.

• Initially, everyone is unmarried. Suppose an unmarried man m chooses the woman w

who ranks highest on his preference list and proposes to her. Can we declare immedi-

ately that (m, w) will be one of the pairs in our final stable matching? Not necessarily

— at some point in the future, a man m′ whom w prefers may propose to her. On the

other hand, it would be dangerous for w to reject m right away; she may never receive

a proposal from someone she ranks as highly as m. So a natural idea would be to have

the pair (m, w) enter an intermediate state — engagement.

• Suppose we are now at a state in which some men and women are free — not engaged

— and some are engaged. The next step could look like this. An arbitrary free man

m chooses the highest-ranked woman w to whom he has not yet proposed, and he

proposes to her. If w is also free, then m and w become engaged. Otherwise, w is

already engaged to some other man m′. In this case, she determines which of m or

m′ ranks higher on her preference list; this man becomes engaged to w and the other

becomes free.

• Finally, the algorithm will terminate when no one is free; at this moment, all engage-

ments are declared final, and the resulting perfect matching is returned.

1.1. INTRODUCTION: THE STABLE MATCHING PROBLEM 11

Here is a concrete description of the Gale-Shapley algorithm. (We will refer to it more

briefly as the G-S algorithm.)

Initially all m ∈M and w ∈ W are free

While there is a man m who is free and hasn’t proposed to every woman

Choose such a man m
Let w be the highest-ranked woman in m’s preference list

to which m has not yet proposed

If w is free then

(m, w) become engaged

Else w is currently engaged to m′

If w prefers m′ to m then

m remains free

Else w prefers m to m′

(m, w) become engaged

m′ becomes free

Endif

Endif

Endwhile

Return the set S of engaged pairs

An intriguing thing is that, although the G-S algorithm is quite simple to state, it is

not immediately obvious that it returns a stable matching, or even a perfect matching. We

proceed to prove this now, through a sequence of intermediate facts.

First consider the view of a woman w during the execution of the algorithm. For a while,

no one has proposed to her, and she is free. Then a man m may propose to her, and she

becomes engaged. As time goes on, she may receive additional proposals, accepting those

that increase the rank of her partner. So we discover the following.

(1.1) w remains engaged from the point at which she receives her first proposal; and the

sequence of partners to which she is engaged gets better and better (in terms of her preference

list).

The view of a man m during the execution of the algorithm is rather different. He is free

until he proposes to the highest-ranked woman on his list; at this point he may or may not

become engaged. As time goes on, he may alternate between being free and being engaged;

however, the following property does hold.

(1.2) The sequence of women to whom m proposes gets worse and worse (in terms of

his preference list).

Now we show that the algorithm terminates, and give a bound on the maximum number

of iterations needed for termination.

12 CHAPTER 1. INTRODUCTION

(1.3) The G-S algorithm terminates after at most n2 iterations of the While loop.

Proof. A useful strategy for upper-bounding the running time of an algorithm, as we are

trying to do here, is to find a measure of progress. Namely, we seek some precise way of

saying that each step taken by the algorithm brings it closer to termination.

In the case of the present algorithm, each iteration consists of some man proposing (for

the only time) to a woman he has never proposed to before. So if we let P(t) denote the set

of pairs (m, w) such that m has proposed to w by the end of iteration t, we see that for all

t, the size of P(t + 1) is strictly greater than the size of P(t). But there are only n2 possible

pairs of men and women in total, so the value of P(·) can increase at most n2 times over the

course of the algorithm. It follows that there can be at most n2 iterations.

Two points are worth noting about the previous fact and its proof. First, there are exe-

cutions of the algorithm (with certain preference lists) that can involve close to n2 iterations,

so this analysis is not far from the best possible. Second, there are many quantities that

would not have worked well as a progress measure for the algorithm, since they need not

strictly increase in each iteration. For example, the number of free individuals could remain

constant from one iteration to the next, as could the number of engaged pairs. Thus, these

quantities could not be used directly in giving an upper bound on the maximum possible

number of iterations, in the style of the previous paragraph.

Let us now establish that the set S returned at the termination of the algorithm is in

fact a perfect matching. Why is this not immediately obvious? Essentially, we have to show

that no man can “fall off” the end of his preference list; the only way for the While loop to

exit is for there to be no free man. In this case, the set of engaged couples would indeed be

a perfect matching.

So the main thing we need to show is the following.

(1.4) If m is free at some point in the execution of the algorithm, then there is a woman

to whom he has not yet proposed.

Proof. Suppose there comes a point when m is free but has already proposed to every woman.

Then by (1.1), each of the n women is engaged at this point in time. Since the set of engaged

pairs forms a matching, there must also be n engaged men at this point in time. But there

are only n men total, and m is not engaged, so this is a contradiction.

(1.5) The set S returned at termination is a perfect matching.

Proof. At no time is anyone engaged to more than one person, and so the set of engaged

pairs always forms a matching. Let us suppose that the algorithm terminates with a free

man m. At termination, it must be the case that m had already proposed to every woman,

1.1. INTRODUCTION: THE STABLE MATCHING PROBLEM 13

for otherwise the While loop would not have exited. But this contradicts (1.4) , which says

that there cannot be a free man who has proposed to every woman.

Finally, we prove the main property of the algorithm — namely, that it results in a stable

matching.

(1.6) Consider an execution of the G-S algorithm that returns a set of pairs S. The set

S is a stable matching.

Proof. We have already seen, in (1.5) , that S is a perfect matching. Thus, to prove S is

a stable matching, we will assume that there is an instability with respect to S and obtain

a contradiction. As defined above, such an instability would involve two pairs (m, w) and

(m′, w′) in S with the properties that

• m prefers w′ to w, and

• w′ prefers m to m′.

In the execution of the algorithm that produced S, m’s last proposal was, by definition, to

w. Now we ask: did m propose to w′ at some earlier point in this execution? If he didn’t,

then w must occur higher on m’s preference list than w′, contradicting our assumption that

m prefers w′ to w. If he did, then he was rejected by w′ in favor of some other man m′′,

whom w′ prefers to m. m′ is the final partner of w′, so either m′′ = m′ or, by (1.1) , w′

prefers her final partner m′ to m′′; either way this contradicts our assumption that w′ prefers

m to m′.

It follows that S is a stable matching.

All Executions Yield the Man-Optimal Matching

If we think about it, the G-S algorithm is actually under-specified: as long as there is a free

man, we are allowed to choose any free man to make the next proposal. Different choices

specify different executions of the algorithm; this is why, to be careful, we stated (1.6)

as “Consider an execution of the G-S algorithm that returns a set of pairs S,” instead of

“Consider the set S returned by the G-S algorithm.”

Thus, we encounter another very natural question:

(†) Do all executions of the G-S algorithm yield the same matching?

This is a genre of question that arises in many settings in computer science: we have an algo-

rithm that runs asynchronously, with different independent components performing actions

that can be inter-leaved in complex ways, and we want to know how much variability this

asynchrony causes in the final outcome. If the independent components are, for example,

14 CHAPTER 1. INTRODUCTION

engines on different wings of an airplane, the effect of asynchrony on their behavior can be

a big deal.

In the present context, we will see that the answer to our question is surprisingly clean:

all executions yield the same matching.

There are a number of possible ways to prove a statement such as this, many of which

would result in quite complicated arguments. It turns out that the easiest and most infor-

mative approach for us will be to uniquely characterize the matching that is obtained, and

then show that all executions result in the matching with this characterization.

What is the characterization? First, we will say that a woman w is a valid partner of a

man m if there is a stable matching that contains the pair (m, w). We will say that w is the

best valid partner of m if w is a valid partner of m, and no woman whom m ranks higher

than w is a valid partner of his. We will use b(m) to denote the best valid partner of m.

Now, let S∗ denote the set of pairs {(m, b(m)) : m ∈ M}. We will prove the following

fact.

(1.7) Every execution of the G-S algorithm results in the set S∗.

This statement is surprising at a number of levels. First of all, as defined, there is no reason

to believe that S∗ is matching at all, let alone a stable matching. After all, why couldn’t

it happen that two men have the same best valid partner? Secondly, the result shows that

the G-S algorithm gives the best possible outcome for every man simultaneously; there is

no stable matching in which any of the men could have hoped to do better. And finally, it

answers our question above by showing that the order of proposals in the G-S algorithm has

absolutely no effect on the final outcome.

Despite all this, the proof is not so difficult.

Proof of (1.7) . Let us suppose, by way of contradiction, that some execution E of the G-S

algorithm results in a matching S in which some man is paired with a woman who is not

his best valid partner. Since men propose in decreasing order of preference, this means that

some man is rejected by a valid partner during the execution E of the algorithm. So consider

the first moment during the execution E in which some man, say m, is rejected by a valid

partner w. Again, since men propose in decreasing order of preference, and since this is the

first time such a rejection has occurred, it must be that w is m’s best valid partner b(m).

The rejection of m by w may have happened either because m proposed and was turned

down in favor of w’s existing engagement, or because w broke her engagement to m in favor

of a better proposal. But either way, at this moment w forms an engagement with a man

m′ whom she prefers to m.

Since w is a valid partner of m, there exists a stable matching S ′ containing the pair

(m, w). Now we ask: who is m′ paired with in this matching? Suppose it is a woman

w′ 6= w.

1.1. INTRODUCTION: THE STABLE MATCHING PROBLEM 15

Since the rejection of m by w was the first rejection of a man by a valid partner in the

execution E , it must be that m′ had not been rejected by any valid partner at the point in

E when he became engaged to w. Since he proposed in decreasing order of preference, and

since w′ is clearly a valid partner of m′, it must be that m′ prefers w to w′. But we have

already seen that w prefers m′ to m, for in execution E she rejected m in favor of m′. Since

(m′, w) 6∈ S ′, (m′, w) is an instability in S ′.

This contradicts our claim that S ′ is stable, and hence contradicts our initial assumption.

So for the men, the G-S algorithm is ideal. Unfortunately, the same cannot be said for

the women. For a women w, we say that m is a valid partner if there is a stable matching

that contains the pair (m, w). We say that m is the worst valid partner of w if m is a valid

partner of w, and no man whom w ranks lower than m is a valid partner of hers.

(1.8) In the stable matching S∗, each woman is paired with her worst valid partner.

Proof. Suppose there were a pair (m, w) in S∗ so that m is not the worst valid partner of w.

Then there is a stable matching S ′ in which w is paired with a man m′ whom she likes less

than m. In S ′, m is paired with a woman w′ 6= w; since w is the best valid partner of m,

and w′ is a valid partner of m, we see that m prefers w to w′.

But from this it follows that (m, w) is an instability in S ′, contradicting the claim that

S ′ is stable, and hence contradicting our initial assumption.

Example: Multiple Stable Matchings

We began by defining the notion of a stable matching; we have now proven that the G-S

algorithm actually constructs one, and that it constructs the same one, S∗, in all executions.

Here’s an important point to notice, however. This matching S∗ is not necessarily the only

stable matching for a set of preference lists; we now discuss a simple example in which there

are multiple stable matchings.

Suppose we have a set of two men, {m, m′}, and a set of two women {w, w′}. The

preference lists are as follows:

m prefers w to w′.

m′ prefers w′ to w.

w prefers m′ to m.

w′ prefers m to m′.

In any execution of the Gale-Shapley algorithm, m will become engaged to w, m′ will become

engaged to w′ (perhaps in the other order), and things will stop there. Indeed, this matching

16 CHAPTER 1. INTRODUCTION

is as good as possible for the men, and — as we see by inspecting the preference lists — as

bad as possible for the women.

But there is another stable matching, consisting of the pairs (m′, w) and (m, w′). We

can check that there is no instability, and the set of pairs is now as good as possible for

the women (and as bad as possible for the men). This second stable matching could never

be reached in an execution of the Gale-Shapley algorithm in which the men propose, but it

would be reached if we ran a version of the algorithm in which the women propose.

So this simple set of preference lists compactly summarizes a world in which someone is

destined to end up unhappy: the men’s preferences mesh perfectly; but they clash completely

with the women’s preferences. And in larger examples, with more than two people on each

side, we can have an even larger collection of possible stable matchings, many of them not

achievable by any natural algorithm.

1.2 Computational Tractability

The big focus of this course will be on finding efficient algorithms for computational problems.

At this level of generality, our topic seems to encompass the whole of computer science; so

what is specific to our approach here?

First, we will be trying to identify broad themes and design principles in the development

of algorithms. We will look for paradigmatic problems and approaches that illustrate, with

a minimum of irrelevant detail, the basic approaches to designing efficient algorithms. At

the same time, it would be pointless to pursue these design principles in a vacuum —

the problems and approaches we consider are drawn from fundamental issues that arise

throughout computer science, and a general study of algorithms turns out to serve as a nice

survey of computational ideas that arise in many areas.

Finally, many of the problems we study will fundamentally have a discrete nature. That

is, like the Stable Matching Problem, they will involve an implicit search over a large set

of combinatorial possibilities; and the goal will be to efficiently find a solution that satisfies

certain clearly delineated conditions.

The first major question we need to answer is the following: How should we turn the

fuzzy notion of an “efficient” algorithm into something more concrete?

One way would be to use the following working definition:

An algorithm is efficient if, when implemented, it runs quickly on real input

instances.

Let’s spend a little time considering this definition. At a certain level, it’s hard to argue

with; one of the goals at the bedrock of our study of algorithms is that of solving real

1.2. COMPUTATIONAL TRACTABILITY 17

problems quickly. And indeed, there is a significant area of research devoted to the careful

implementation and profiling of different algorithms for discrete computational problems.

But there are some crucial things missing from the definition above, even if our main goal

is to solve real problem instances quickly on real computers. The first is that it is not really

a complete definition. It depends on where, and how well, we implement the algorithm.

Even bad algorithms can run quickly when applied to small test cases on extremely fast

processors; even good algorithms can run slowly when they are coded sloppily. Certain

“real” input instances are much harder than others, and it’s very hard to model the full

range of problem instances that may arise in practice. And the definition above does not

consider how well, or badly, an algorithm may scale as problem sizes grow to unexpected

levels. A common situation is that two very different algorithms will perform comparably

on inputs of size 100; multiply the input size tenfold, and one will still run quickly while the

other consumes a huge amount of time.

So what we could ask for is a concrete definition of efficiency that is platform-independent,

instance-independent, and of predictive value with respect to increasing input sizes. Before

focusing on any specific consequences of this claim, we can at least explore its implicit,

high-level suggestion: that we need to take a more mathematical view of the situation.

Let’s use the Stable Matching Problem as an example to guide us. The input has a

natural “size” parameter N ; we could take this to be the total size of the representation of

all preference lists, since this is what any algorithm for the problem will receive as input.

N is closely related to the other natural parameter in this problem: n, the number of men

and the number of women. Since there are 2n preference lists, each of length n, we can

view N = 2n2, suppressing more fine-grained details of how the data is represented. In

considering the problem, we seek to describe an algorithm at a high level, and then analyze

its running time mathematically as a function of the input size.

Now, even when the input size to the Stable Matching Problem is relatively small, the

search space it defines is enormous: there are n! possible perfect matchings between n men

and n women, and we need to find one that is stable. The natural “brute-force” algorithm for

this problem would plow through all perfect matching by enumeration, checking each to see

if it is stable. The surprising punch-line, in a sense, to our solution of the Stable Matching

Problem is that we needed to spend time proportional only to N in finding a stable matching

from among this stupendously large space of possibilities. This was a conclusion we reached

at an analytical level. We did not implement the algorithm and try it out on sample preference

lists; we reasoned about it mathematically. Yet, at the same time, our analysis indicated

how the algorithm could be implemented in practice, and gave fairly conclusive evidence

that it would be a big improvement over exhaustive enumeration.

This will be a common theme in most of the problems we study: a compact representation,

implicitly specifying a giant search space. For most of these problems, there will be an

18 CHAPTER 1. INTRODUCTION

obvious “brute-force” solution: try all possibilities, and see if any of them works. Not only

is this approach almost always too slow to be useful, it is an intellectual cop-out; it provides

us with absolutely no insight into the structure of the problem we are studying. And so if

there is a common thread in the algorithms we emphasize in this course, it would be the

following:

An algorithm is efficient if it achieves qualitatively better performance, at an

analytical level, than brute-force search.

This will turn out to be a very useful working definition of “efficiency” for us. Algorithms

that improve substantially on brute-force search nearly always contain a valuable heuristic

idea that makes them work; and they tell us something about the intrinsic computational

tractability of the underlying problem itself.

If there is a problem with our second working definition, it is vagueness. What do

we mean by “qualitatively better performance?” When people first began analyzing discrete

algorithms mathematically — a thread of research that began gathering momentum through

the 1960’s — a consensus began to emerge on how to quantify this notion. Search spaces for

natural combinatorial problems tend to grow exponentially in the size N of the input; if the

input size increases by one, the number of possibilities increases multiplicatively. We’d like

a good algorithm for such a problem to have a better scaling property: when the input size

increases by a constant factor — say a factor 2 — the algorithm should only slow down by

some constant factor C.

Arithmetically, we can formulate this scaling behavior as follows. Suppose an algorithm

has the following property: There are absolute constants c > 0 and k > 0 so that on every

input instance of size N , its running time is bounded by cN k primitive computational steps.

(In other words, its running time is at most proportional to N k.) For now, we will remain

deliberately vague on what we mean by the notion of a “primitive computational step” —

but everything we say can be easily formalized in a model where each step corresponds to

a single assembly-language instruction on a standard processor, or one line of a standard

programming language such as C or Java. In any case, if this running time bound holds, for

some c and k, then we say that the algorithm has a polynomial running time, or that it is a

polynomial-time algorithm. Note that any polynomial-time bound has the scaling property

we’re looking for. If the input size increases from N to 2N , the bound on the running time

increases from cNk to c(2N)k = c · 2kNk, which is a slow-down by a factor of 2k. Since k is

a constant, so is 2k; of course, as one might expect, lower-degree polynomials exhibit better

scaling behavior than higher-degree polynomials.

From this notion, and the intuition expressed above, emerges our third attempt at a

working definition of “efficiency.”

An algorithm is efficient if it has a polynomial running time.

1.3. INTERLUDE: TWO DEFINITIONS 19

Where our previous definition seemed overly vague, this one seems much too prescriptive.

Wouldn’t an algorithm with running time proportional to n100 — and hence polynomial —

be hopelessly inefficient? Wouldn’t we be relatively pleased with a non-polynomial running

time of n1+.02(log n)? The answers are, of course, “yes” and “yes.” And indeed, however much

one may try to abstractly motivate the definition of efficiency in terms of polynomial time,

a primary justification for it is this: It really works. Problems for which polynomial-time

algorithms exist almost always turn out to have algorithms with running times proportional

to very moderately growing polynomials like n, n log n, n2, or n3. Conversely, problems for

which no polynomial-time algorithm is known tend to be very difficult in practice. There are

certainly a few exceptions to this principle — cases, for example, in which an algorithm with

exponential worst-case behavior generally runs well on the kinds of instances that arise in

practice — and this serves to reinforce the point that our emphasis on worst-case polynomial

time bounds is only an abstraction of practical situations. But overwhelmingly, our concrete

mathematical definition of polynomial time has turned out to correspond empirically to what

we observe about the efficiency of algorithms, and the tractability of problems, in real life.

There is another fundamental benefit to making our definition of efficiency so specific:

It becomes negatable. It becomes possible to express the notion that there is no efficient

algorithm for a particular problem. In a sense, being able to do this is a pre-requisite for

turning our study of algorithms into good science, for it allows us to ask about the existence

or non-existence of efficient algorithms as a well-defined question. In contrast, both of our

previous definitions were completely subjective, and hence limited the extent to which we

could discuss certain issues in concrete terms.

In particular, the first of our definitions, which was tied to the specific implementation

of an algorithm, turned efficiency into a moving target — as processor speeds increase,

more and more algorithms fall under this notion of efficiency. Our definition in terms of

polynomial-time is much more an absolute notion; it is closely connected with the idea that

each problem has an intrinsic level of computational tractability — some admit efficient

solutions, and others do not.

With this in mind, we survey five representative problems that vary widely in their

computational difficulty. Before doing this, however, we briefly digress to introduce two

fundamental definitions that will be used throughout the course.

1.3 Interlude: Two Definitions

Order of Growth Notation

In our definition of polynomial time, we used the notion of an algorithm’s running time

being at most proportional to N k. Asymptotic order of growth notation is a simple but

useful notational device for expressing this.

20 CHAPTER 1. INTRODUCTION

Given a function T (N) (say, the maximum running time of a certain algorithm on any

input of size N), and another function f(n), we say that T (N) is O(f(N)) (read, somewhat

awkwardly, as “T (N) is order f(N)”) if there exist constants c > 0 and N0 ≥ 0 so that for

all N ≥ N0, we have T (N) ≤ c · f(N). In other words, for sufficiently large N , the function

T (N) is bounded above by a constant multiple of f(N).

Note that O(·) expresses only an upper bound. There are cases where an algorithm has

been proved to have running time O(N log N); some years pass, people analyze the same

algorithm more carefully, and they show that in fact its running time is O(N). There was

nothing wrong with the first result; it was a correct upper bound. It’s simply that it wasn’t

the “tightest” possible running time.

There is a complementary notation for lower bounds. Often when we analyze an algorithm

— say we have just proven that its running time T (N) is O(N log N) — we want to show

that this upper bound is the best one possible. To do this, we want to express the notion that

for arbitrarily large input sizes N , T (N) is at least a constant multiple of N log N . Thus, we

say that T (N) is Ω(N log N) (read as “T (N) is omega N log N”) if there exists an absolute

constant ε so that for infinitely many N , we have T (N) ≥ εN log N . (More generally, we

can say that T (N) is Ω(f(N)) for arbitrary functions.)

Finally, if a function T (N) is both O(f(N)) and Ω(f(N)), we say that T (N) is Θ(f(N)).

Graphs

As we discussed earlier, our focus in this course will be on problems with a discrete fla-

vor. Just as continuous mathematics is concerned with certain basic structures such as real

numbers, vectors, matrices, and polynomials, discrete mathematics has developed basic com-

binatorial structures that lie at the heart of the subject. One of the most fundamental and

expressive of these is the graph.

A graph G is simply a way of encoding pairwise relationships among a set of objects.

Thus, G consists of a pair of sets (V, E) — a collection V of abstract nodes; and a collection

E of edges, each of which “joins” two of the nodes. We thus represent an edge e ∈ E as a

two-element subset of V : e = {u, v} for some u, v ∈ V , where we call u and v the ends of e.

We typically draw graphs as in Figure 1.1, with each node as a small circle, and each

edge as a line segment joining its two ends.

Edges in a graph indicate a symmetric relationship between their ends. Often we want to

encode asymmetric relationships, and for this we use the closely related notion of a directed

graph. A directed graph G′ consists of a set of nodes V and a set of directed edges E ′. Each

e′ ∈ E ′ is an ordered pair (u, v); in other words, the roles of u and v are not interchangeable,

and we call u the tail of the edge and v the head. We will also say that edge e′ leaves node u

and enters node v. The notion of leaving and entering extends naturally to sets of vertices:

we say that edge e′ leaves a set S ⊆ V if u ∈ S and v /∈ S, and e′ enters S if v ∈ S and

1.3. INTERLUDE: TWO DEFINITIONS 21

Figure 1.1: Two graphs, each on four nodes.

u /∈ S.

The more one thinks about graphs, the more one tends to see them everywhere. Here

are some examples of graphs:

The collection of all computers on the Internet, with an edge joining any two

that have a direct network connection.

The collection of all cities in the world, with an edge joining any two that are

within a hundred miles of each other.

The collection of all students at Cornell, with an edge joining any two that know

each other.

The collection of all atoms in a cholesterol molecule, with an edge joining any

two that have a covalent bond.

The collection of all natural numbers up to 1, 000, 000, with an edge joining any

two that are relatively prime.

Here are some examples of directed graphs:

The collection of all World Wide Web pages, with an edge (u, v) if u has a

hyperlink to v.

The collection of all cities in the world, with an edge (u, v) if there is a non-stop

airline flight from u to v.

The collection of all college football teams, with an edge (u, v) if u defeated v in

the 1999 season.

The collection of all genes in a human cell, with an edge (u, v) if gene u produces

a protein that regulates the action of gene v.

The collection of all courses at Cornell, with an edge (u, v) if course u is an official

pre-requisite of course v.

The collection of all natural numbers up to 1, 000, 000, with an edge (u, v) if u is

a divisor of v.

22 CHAPTER 1. INTRODUCTION

We pause to mention two warnings in our use of graph terminology. First, although an

edge e in an undirected graph should properly be written as a set of vertices {u, v}, one

will more often see it written (even in this course) in the notation used for ordered pairs:

e = (u, v). Second, nodes in a graph are also frequently called vertices; in this context, the

two words have exactly the same meaning. For both of these things, we apologize in advance.

Bipartite Graphs. We now mention a specific type of (undirected) graph that will be

particularly useful in our study of algorithms. We say that a graph G = (V, E) is bipartite if

its node set V can be partitioned into sets X and Y in such a way that every edge has one

end in X and the other end in Y . A bipartite graph is pictured in Figure 1.2; often, when

we want to emphasize a graph’s “bipartiteness,” we will draw it this way, with the nodes in

X and Y in two parallel columns. But notice, for example, that the two graphs in Figure 1.1

are also bipartite.

Bipartite graphs are very useful for expressing relationships that arise between two dis-

tinct sets of objects. For example, here are some bipartite graphs:

The set X of all people who have used amazon.com, the set Y of all books in

Amazon’s catalog, and an edge from each person to all the books that he or she

has purchased through Amazon.

The set X of all houses in New York State, the set Y of all fire stations, and an

edge from each house to all the fire stations that are at most a twenty minute

drive away.

The set X of all Cornell CS professors, the set Y of all CS courses offered at

Cornell, and an edge from each professor to all the courses he or she might be

assigned to teach.

The set X of all molecules that Merck Pharmaceuticals knows how to make, the

set Y of all enzymes in a human cell, and an edge from each molecule to all the

enzymes that it has been observed to inhibit.

1.4 Five Representative Problems

We now discuss five problems that are representative of different themes that will come up

in our study of algorithms. We will encounter them in order as the course progresses, since

they are associated with a wide range of levels of computational complexity.

Interval Scheduling. Consider the following very simple scheduling problem. You have a

resource — it may be a lecture room, or a supercomputer, or an electron microscope — and

many people request to use the resource for periods of time. A request takes the form: “Can

1.4. FIVE REPRESENTATIVE PROBLEMS 23

x

x

x

x

y

y

y

y

1

2

3

4

1

2

3

4

Figure 1.2: A bipartite graph.

I reserve the resource starting at time s, until time f?” We will assume that the resource

can be used by at most one person at a time. A scheduler wants to accept a subset of these

requests, rejecting all others, so that the accepted requests do not overlap in time. The goal

is to maximize the number of requests accepted.

More formally, there will be n requests labeled 1, . . . , n, with each request i specifying a

start time si and a finish time fi. Naturally, we have si < fi for all i. Two requests i and

j are compatible if the requested intervals do not overlap: that is, either request i is for an

earlier time interval than request j (fi ≤ sj), or request i is for a later time than request j

(fj ≤ si). We’ll say more generally that a subset A of requests is compatible if all pairs of

requests i, j ∈ A, i 6= j are compatible. The goal is to select a compatible subset of requests

of maximum possible size.

We illustrate an instance of this Interval Scheduling Problem in Figure 1.3. Note that

there is a single compatible set of size four, and this is the largest compatible set.

Figure 1.3: An instance of the interval scheduling problem.

We will see shortly that this problem can be solved by a very natural algorithm that orders

the set of requests according to a certain heuristic, and then “greedily” processes them in

one pass, selecting as large a compatible subset as it can. This will be typical of a class of

24 CHAPTER 1. INTRODUCTION

greedy algorithms that we will consider for various problems — myopic rules that process the

input one piece at a time with no apparent look-ahead. When a greedy algorithm can be

shown to find an optimal solution for all instances of a problem, it’s often fairly surprising.

We typically learn something about the structure of the underlying problem from the fact

that such a simple approach can be optimal.

Weighted Interval Scheduling. In the Interval Scheduling Problem, we sought to max-

imize the number of requests that could be accommodated simultaneously. Now, suppose

more generally that each request interval i has an associated value, or weight, wi > 0; we

could picture this as the amount of money we will make from the ith individual if we schedule

his or her request. Our goal will be to find a compatible subset of intervals of maximum

total weight.

The case in which wi = 1 for each i is simply the basic Interval Scheduling Problem; but

the appearance of arbitrary weights changes the nature of the maximization problem quite

a bit. Consider, for example, that if w1 exceeds the sum of all other wi, then the optimal

solution must include interval 1 regardless of the configuration of the full set of intervals. So

any algorithm for this problem must be very sensitive to the values of the weights, and yet

degenerate to a method for solving (unweighted) interval scheduling when all the weights

are equal to 1.

There appears to be no simple “greedy” rule that walks through the intervals one at a

time, making the correct decision in the presence of arbitrary weights. Instead we employ a

technique, dynamic programming, that builds up the optimal value over all possible solutions

in a compact, tabular way that requires only polynomial time.

Bipartite Matching. When we considered stable marriages, we defined a matching to be

a set of ordered pairs of men and women with the property that each man and each woman

belong to at most one of the ordered pairs. We then defined a perfect matching to be a

matching in which every man and every woman belong to some pair.

We can express these concepts more generally in terms of bipartite graphs, and it leads

to a very rich class of problems. In the case of bipartite graphs, the edges are pairs of nodes,

so we say that a matching in a graph G = (V, E) is a set of edges M ⊆ E with the property

that each node appears in at most one edge of M . M is a perfect matching if every node

appears in exactly one edge of M .

To see that this does capture the same notion we encountered in the stable matching

problem, consider a bipartite graph G′ with a set X of n men, a set Y of n women, and an

edge from every node in X to every node in Y . Then the matchings and perfect matchings

in G′ are precisely the matching and perfect matchings among the set of men and women.

In the stable matching problem, we added preferences to this picture. Here, we do not

1.4. FIVE REPRESENTATIVE PROBLEMS 25

consider preferences; but the nature of the problem in arbitrary bipartite graphs adds a

different source of complexity: there is not necessarily an edge from every x ∈ X to every

y ∈ Y , so the set of possible matchings has quite a complicated structure. Consider, for

example the bipartite graph G in Figure 1.2; there are many matchings in G, but there is

only one perfect matching. (Do you see it?)

Matchings in bipartite graphs can model situations in which objects are being assigned

to other objects. Thus, the nodes in X can represent jobs, the nodes in Y can represent

machines, and an edge (xi, yj) can indicate that machine yj is capable of processing job xi. A

perfect matching is then a way of assigning each job to a machine that can process it, with

the property that each machine is assigned exactly one job. In the spring, the computer

science faculty are often seen pondering one of the bipartite graphs discussed earlier, in

which X is the set of professors and Y is the set of courses; a perfect matching in this graph

consists of an assignment of each professor to a course that he or she can teach, in such a

way that every course is covered.

Thus, the Bipartite Matching Problem is the following: given an arbitrary bipartite graph

G, find a matching of maximum size. If |X| = |Y | = n, then there is a perfect matching if

and only if the maximum matching has size n. We will find that the algorithmic techniques

discussed above do not seem adequate for providing an efficient algorithm for this problem.

There is, however, a very elegant polynomial-time algorithm to find the maximum matching;

it inductively builds up larger and larger matchings, selectively backtracking along the way.

This process is called augmentation, and it forms the central component in a large class of

efficiently solvable problems called network flow problems.

Independent Set. Now let’s talk about an extremely general problem, which includes

most of these earlier problems as special cases. Given a graph G = (V, E), we say a set of

nodes S ⊆ V is independent if no two nodes in S are joined by an edge. The Independent Set

Problem is then the following: given G, find an independent set that is as large as possible.

The Independent Set Problem encodes any situation in which you are trying to choose

from among a collection of objects, and there are pairwise conflicts among some of the

objects. Say you have n friends, and some pairs of them don’t get along. How large a group

of your friends can you invite to dinner, if you don’t want there to be any inter-personal

tensions? This is simply the largest independent set in the graph whose nodes are your

friends, with an edge between each conflicting pair.

Interval Scheduling and Bipartite Matching can both be encoded as special cases of the

Independent Set Problem. For Interval Scheduling, define a graph G = (V, E) in which the

nodes are the intervals, and there is an edge between each pair of them that overlap; the

independent sets in G are then just the compatible subsets of intervals. Encoding Bipartite

Matching as a special case of Independent Set is a little trickier to see. Given a bipartite

26 CHAPTER 1. INTRODUCTION

graph G′ = (V ′, E ′), the objects being chosen are edges, and the conflicts arise between two

edges that share an end. (These, indeed, are the pairs of edges that cannot belong to a

common matching.) So we define a graph G = (V, E) in which the node set V is equal to

the edge set E ′ of G′. We define an edge between each pair of elements in V that correspond

to edges of G′ with a common end. We can now check that the independent sets of G are

precisely the matchings of G′. While it is not complicated to check this, it takes a little

concentration to deal with this type of “edges-to-nodes, nodes-to-edges” transformation.1

Given the generality of the Independent Set Problem, an efficient algorithm to solve

it would be quite impressive. It would have to implicitly contain algorithms for Interval

Scheduling, Bipartite Matching, and a host of other natural optimization problems.

The current status of Independent Set is this: no polynomial-time algorithm is known for

the problem, and it is conjectured that no such algorithm exists. The obvious brute-force

algorithm would try all subsets of the nodes, checking each to see if it is independent, and

then recording the largest one encountered. It is possible that this is close to the best we

can do on this problem. We will see later in the course that Independent Set is one of a large

class of problems that are termed NP-complete. No polynomial-time algorithm is known for

any of them; but they are all equivalent in the sense that a polynomial-time algorithm for

one of them would imply a polynomial-time algorithm for all of them.

Here’s a natural question: Is there anything good we can say about the complexity of

the Independent Set Problem? One positive thing is the following: If we have a graph G

on 1000 nodes, and we want to convince you that it contains an independent set S of size

100, then it’s quite easy. We simply show you the graph G, circle the nodes of S in red,

and let you check that no two of them are joined by an edge. So there really seems to be a

great difference in difficulty between checking that something is a large independent set and

actually finding a large independent set. This may look like a very basic observation — and

it is — but it turns out to be crucial in understanding this class of problems. Furthermore,

as we’ll see next, it’s possible for a problem to so hard that there isn’t even an easy way to

“check” solutions in this sense.

Competitive Facility Location. Finally, we come to our fifth problem, which is based

on the following two-player game. Consider McDonald’s and Burger King (our two players),

competing for market share in a geographic area. First McDonald’s open a franchise; then

Burger King opens a franchise; then McDonald’s; then Burger King; and so on . . . Suppose

they must deal with zoning regulations that require no two franchises to be located too close

1For those who are curious, we note that not every instance of the Independent Set Problem can arise
in this way from Interval Scheduling or from Bipartite Matching; the full Independent Set Problem really is
more general. The first graph in Figure 1.1 cannot arise as the “conflict graph” in an instance of Interval
Scheduling, and the second graph in Figure 1.1 cannot arise as the “conflict graph” in an instance of Bipartite
Matching.

1.4. FIVE REPRESENTATIVE PROBLEMS 27

together, and each is trying to make its locations as convenient as possible. Who will win?

Let’s make the rules of this “game” more concrete. The geographic region in question

is divided into n zones, labeled 1, 2, . . . , n. Each zone has a value bi, which is the revenue

obtained by either of the companies if it opens a franchise there. Finally, certain pairs of

zones (i, j) are adjacent, and local zoning laws prevent two adjacent zones from each having

a fast-food franchise in them, regardless of which company owns them. (They also prevent

two franchises from being opened in the same zone.) We model these conflicts via a graph

G = (V, E), where V is the set of zones, and (i, j) is an edge of E if the zones i and j are

adjacent. The zoning requirement then says that the full set of franchises opened must form

an independent set in G.

Thus our game consists of two players, P1 and P2, alternately selecting nodes in G, with

P1 moving first. At all times, the set of all selected nodes must form an independent set in

G. Suppose that player P2 has a target bound B, and we want to know: is there a strategy

for P2 so that no matter how P1 plays, P2 will be able to select a set of nodes of total value

at least B? We will call this an instance of the Competitive Facility Location Problem.

Consider, for example, the instance pictured below, and suppose that P2’s target bound

is B = 20. Then P2 does have a winning strategy. On the other hand, if B = 25, then P2

does not.

10 1 5 15 5 1 5 1 1015

Figure 1.4: An instance of the competitive facility location problem.

One can work this out by looking at the figure for a while; but it requires some amount

of case-checking of the form, “If P1 goes here, then P2 will go there; but if P1 goes over there,

then P2 will go here . . . ” And this appears to be intrinsic to the problem: not only is it

computationally difficult to determine whether P2 has a winning strategy; on a reasonably-

sized graph, it would even be hard for us to convince you that P2 has a winning strategy.

There does not seem to be a short proof we could present; rather, we’d have to lead you on

a lengthy case-by-case analysis of the set of possible moves.

This is in contrast to the Independent Set Problem, where we believe that finding a

large solution is hard but checking a proposed large solution is easy. This contrast can

be formalized in the class of PSPACE-complete problems, of which Competitive Facility

Location is an example. PSPACE-complete problems are believed to be strictly harder than

NP-complete problems, and this conjectured lack of short “proofs” for their solutions is

one indication of this greater hardness. The notion of PSPACE-completeness turns out to

capture a large collection of problems involving game-playing and planning; many of these

28 CHAPTER 1. INTRODUCTION

are fundamental issues in the area of artificial intelligence.

1.5 Exercises

Note: Exercises denoted with an asterisk (∗) tend to be more difficult, or to rely on some of

the more advanced material.

1. Gale and Shapley published their paper on the stable marriage problem in 1962; but a

version of their algorithm had already been in use for ten years by the National Resident

Matching Program, for the problem of assigning medical residents to hospitals.

Basically, the situation was the following. There were m hospitals, each with a certain

number of available positions for hiring residents. There were n medical students

graduating in a given year, each interested in joining one of the hospitals. Each hospital

had a ranking of the students in order of preference, and each student had a ranking

of the hospitals in order of preference. We will assume that there were more students

graduating than there were slots available in the m hospitals.

The interest, naturally, was in finding a way of assigning each student to at most one

hospital, in such a way that all available positions in all hospitals were filled. (Since

we are assuming a surplus of students, there would be some students who do not get

assigned to any hospital.)

We say that an assignment of students to hospitals is stable if neither of the following

situations arises.

• First type of instability: There are students s and s′, and a hospital h, so that

– s is assigned to h, and

– s′ is assigned to no hospital, and

– h prefers s′ to s.

• Second type of instability: There are students s and s′, and hospitals h and h′,

so that

– s is assigned to h, and

– s′ is assigned to h′, and

– h prefers s′ to s, and

– s′ prefers h to h′.

So we basically have the stable marriage problem from class, except that (i) hospitals

generally want more than one resident, and (ii) there is a surplus of medical students.

1.5. EXERCISES 29

Show that there is always a stable assignment of students to hospitals, and give an

efficient algorithm to find one. The input size is Θ(mn); ideally, you would like to find

an algorithm with this running time.

2. We can think about a different generalization of the stable matching problem, in which

certain man-woman pairs are explicitly forbidden. In the case of employers and ap-

plicants, picture that certain applicants simply lack the necessary qualifications or

degree; and so they cannot be employed at certain companies, however desirable they

may seem. Concretely, we have a set M of n men, a set W of n women, and a set

F ⊆ M ×W of pairs who are simply not allowed to get married. Each man m ranks

all the women w for which (m, w) 6∈ F , and each woman w′ ranks all the men m′ for

which (m′, w′) 6∈ F .

In this more general setting, we say that a matching S is stable if it does not exhibit

any of the following types of instability.

(i) There are two pairs (m, w) and (m′, w′) in S with the property that m prefers w′

to w, and w′ prefers m to m′. (The usual kind of instability.)

(ii) There is a pair (m, w) ∈ S, and a man m′, so that m′ is not part of any pair in the

matching, (m′, w) 6∈ F , and w prefers m′ to m. (A single man is more desirable

and not forbidden.)

(ii′) There is a pair (m, w) ∈ S, and a woman w′, so that w′ is not part of any pair

in the matching, (m, w′) 6∈ F , and m prefers w′ to w. (A single woman is more

desirable and not forbidden.)

(iii) There is a man m and a woman w, neither of which is part of any pair in the

matching, so that (m, w) 6∈ F . (There are two single people with nothing prevent-

ing them from getting married to each other.)

Note that under these more general definitions, a stable matching need not be a perfect

matching.

Now we can ask: for every set of preference lists and every set of forbidden pairs, is

there always a stable matching? Resolve this question by doing one of the following

two things: (a) Giving an algorithm that, for any set of preference lists and forbidden

pairs, produces a stable matching; or (b) Giving an example of a set of preference lists

and forbidden pairs for which there is no stable matching.

3. Consider a town with n men and n women seeking to get married to one another. Each

man has a preference list that ranks all the women, and each woman has a preference

list that ranks all the men.

30 CHAPTER 1. INTRODUCTION

The set of all 2n people is divided into two categories: good people and bad people.

Suppose that for some number k, 1 ≤ k ≤ n − 1, there are k good men and k good

women; thus there are n− k bad men and n− k bad women.

Everyone would rather marry any good person than any bad person. Formally, each

preference list has the property that it ranks each good person of the opposite gender

higher than each bad person of the opposite gender: its first k entries are the good

people (of the opposite gender) in some order, and its next n − k are the bad people

(of the opposite gender) in some order.

(a) Show that there exists a stable matching in which every good man is married to

a good woman.

(b) Show that in every stable matching, every good man is married to a good woman.

4. (∗) For this problem, we will explore the issue of truthfulness in the stable matching

problem, and specifically in the Gale-Shapley algorithm. The basic question is: Can

a man or a woman end up better off by lying about his or her preferences? More

concretely, we suppose each participant has a true preference order. Now consider a

woman w. Suppose w prefers man m to m′, but both m and m′ are low on her list

of preferences. Can it be the case that by switching the order of m and m′ on her

list of preferences (i.e., by falsely claiming that she prefers m′ to m) and running the

algorithm with this false preference list, w will end up with a man m′′ that she truly

prefers to both m and m′? (We can ask the same question for men, but will focus on

the case of women for purposes of this question.)

Resolve this questions by doing one of the following two things:

(a) Giving a proof that, for any set of preference lists, switching the order of a pair on

the list cannot improve a woman’s partner in the Gale-Shapley algorithm; or

(b) Giving an example of a set of preference lists for which there is a switch that would

improve the partner of a woman who switched preferences.

5. There are many other settings in which we can ask questions related to some type of

“stability” principle. Here’s one, involving competition between two enterprises.

Suppose we have two television networks; let’s call them AOL-Time-Warner-CNN and

Disney-ABC-ESPN, or A and D for short. There are n prime-time programming slots,

and each network has n TV shows. Each network wants to devise a schedule — an

assignment of each show to a distinct slot — so as to attract as much market share as

possible.

Here is the way we determine how well the two networks perform relative to each

other, given their schedules. Each show has a fixed Nielsen rating, which is based on

1.5. EXERCISES 31

the number of people who watched it last year; we’ll assume that no two shows have

exactly the same rating. A network wins a given time slot if the show that it schedules

for the time slot has a larger rating than the show the other network schedules for that

time slot. The goal of each network is to win as many time slots as possible.

Suppose in the opening week of the fall season, Network A reveals a schedule S and

Network D reveals a schedule T . On the basis of this pair of schedules, each network

wins certain of the time slots, according to the rule above. We’ll say that the pair of

schedules (S, T) is stable if neither network can unilaterally change its own schedule

and win more time slots. That is, there is no schedule S ′ so that Network A wins more

slots with the pair (S ′, T) than it did with the pair (S, T); and symmetrically, there

is no schedule T ′ so that Network D wins more slots with the pair (S, T ′) than it did

with the pair (S, T).

The analogue of Gale and Shapley’s question for this kind of stability is: For every

set of TV shows and ratings, is there always a stable pair of schedules? Resolve this

question by doing one of the following two things: (a) Giving an algorithm that, for

any set of TV shows and associated ratings, produces a stable pair of schedules; or (b)

Giving an example of a set of TV shows and associated ratings for which there is no

stable pair of schedules.

6. Peripatetic Shipping Lines, Inc., is a shipping company that owns n ships, and provides

service to n ports. Each of its ships has a schedule which says, for each day of the

month, which of the ports it’s currently visiting, or whether it’s out at sea. (You can

assume the “month” here has m days, for some m > n.) Each ship visits each port

for exactly one day during the month. For safety reasons, PSL Inc. has the following

strict requirement:

(†) No two ships can be in the same port on the same day.

The company wants to perform maintenance on all the ships this month, via the

following scheme. They want to truncate each ship’s schedule: for each ship Si, there

will be some day when it arrives in its scheduled port and simply remains there for rest

of the month (for maintenance). This means that Si will not visit the remaining ports

on its schedule (if any) that month, but this is okay. So the truncation of Si’s schedule

will simply consist of its original schedule up to a certain specified day on which it is

in a port P ; the remainder of the truncated schedule simply has it remain in port P .

Now the company’s question to you is the following: Given the schedule for each ship,

find a truncation of each so that condition (†) continues to hold: no two ships are ever

in the same port on the same day.

32 CHAPTER 1. INTRODUCTION

Show that such a set of truncations can always be found, and give an efficient algorithm

to find them.

Example: Suppose we have two ships and two ports, and the “month” has four days.

Suppose the first ship’s schedule is

port P1; at sea; port P2; at sea

and the second ship’s schedule is

at sea; port P1; at sea; port P2

Then the (only) way to choose truncations would be to have the first ship remain in

port P2 starting on day 3, and have the second ship remain in port P1 starting on day

2.

7. Some of your friends are working for CluNet, a builder of large communication net-

works, and they are looking at algorithms for switching in a particular type of in-

put/output crossbar.

Here is the set-up. There are n input wires and n output wires, each directed from a

source to a terminus. Each input wire meets each output wire in exactly one distinct

point, at a special piece of hardware called a junction box. Points on the wire are

naturally ordered in the direction from source to terminus; for two distinct points x

and y on the same wire, we say that x is upstream from y if x is closer to the source

than y, and otherwise we say x is downstream from y. The order in which one input

wire meets the output wires is not necessarily the same as the order in which another

input wire meets the output wires. (And similarly for the orders in which output wires

meet input wires.)

Now, here’s the switching component of this situation. Each input wire is carrying a

distinct data stream, and this data stream must be switched onto one of the output

wires. If the stream of Input i is switched onto Output j, at junction box B, then this

stream passes through all junction boxes upstream from B on Input i, then through B,

then through all junction boxes downstream from B on Output j. It does not matter

which input data stream gets switched onto which output wire, but each input data

stream must be switched onto a different output wire. Furthermore — and this is

the tricky constraint — no two data streams can pass through the same junction box

following the switching operation.

Finally, here’s the question. Show that for any specified pattern in which the input

wires and output wires meet each other (each pair meeting exactly once), a valid

switching of the data streams can always be found — one in which each input data

1.5. EXERCISES 33

stream is switched onto a different output, and no two of the resulting streams pass

through the same junction box. Additionally, give an efficient algorithm to find such

a valid switching. (The accompanying figure gives an example with its solution.)

Input 1 Input 2

Output 1

Output 2

junction

junction

junction junction

Figure 1.5: An example with two input wires and two output wires. Input 1 has its junction
with Output 2 upstream from its junction with Output 1; Input 2 has its junction with
Output 1 upstream from its junction with Output 2. A valid solution is to switch the data
stream of Input 1 onto Output 2, and the data stream of Input 2 onto Output 1. On the
other hand, if the stream of Input 1 were switched onto Output 1, and the stream of Input
2 were switched onto Output 2, then both streams would pass through the junction box at
the meeting of Input 1 and Output 2 — and this is not allowed.

34 CHAPTER 1. INTRODUCTION

Chapter 2

Algorithmic Primitives for Graphs

Much of the course is concerned with techniques for designing algorithms, and graphs will

be a ubiquitous modeling tool in this process. As such, it is important to lay the foundation

by developing some algorithmic primitives for graphs.

We begin by considering algorithms that operate on undirected graphs, and then move

on to the case of directed graphs. Many of the basic concepts for undirected graphs carry

over to directed graphs in a more complex form; and new issues arise with directed graphs

that would not have made sense in the undirected context. In keeping with our view of

undirected graphs as the more basic object, we’ll use the word “graph” (with no modifier)

to mean an undirected graph by default.

2.1 Representing Graphs

In order to consider algorithms that operate on graphs, we need to understand how a graph

G = (V, E) will be presented as input; such a representation should allow us quick access

to the nodes and edges of G, and also allow the algorithm to modify the structure of G as

necessary.

There are two standard approaches to this representation problem. In describing both,

we will assume that the G has n nodes, and that they are labeled {1, 2, . . . , n}.

Adjancency matrices. An adjacency matrix is simply a two-dimensional array A, with

n rows and n columns, where n = |V |. The entry A[i, j] is equal to 1 if there is an edge

joining i and j, and it is equal to 0 otherwise. Thus, row i of A “corresponds” to the node

i, in that the sequence of 0’s and 1’s in row i indicate precisely the nodes to which i has

edges. Column i of A performs the same function; notice that since G is undirected, A is

symmetric: A[i, j] = A[j, i].

Adjacency matrices have nice properties. We can determine whether i and j are joined

by an edge in constant time, by simply querying the array entry A[i, j]. We can modify G

35

36 CHAPTER 2. ALGORITHMIC PRIMITIVES FOR GRAPHS

by inserting or deleting the edge (i, j), also in constant time, simply by switching the value

of A[i, j].

Given this, why would we want any other representation for G? There are two reasons.

First, the adjacency matrix of G is an enormous object; it has size Θ(n2), even when G has

many fewer than n2 edges. As a thought experiment, consider the graph G that has one node

for each person in the world, and an edge (i, j) whenever i and j know each other on a first

name basis. If we assume there are about six billion people in the world; and each person

knows about 1000 other people (this turns out to be a reasonable estimate); and each person

is represented by a 5-byte unique identifer (with room to spare); then it would be possible

to write down a complete description of G in about 30 trillion bytes by simply listing, for

each person, all the other people they know. (Here we’re just considering the space required

to store G, not the effort involved in collecting the data for constructing G.) Thirty trillion

bytes is very large, to be sure, but it’s something manageable — it’s comparable to the size

of a large crawl of the Web, and much less than the amount of customer transaction data

stored in Wal-Mart’s databases. On the other hand, the adjacency matrix of G would be

something utterly beyond our power to store: it would require more than 1019 entries, an

amount of space significantly greater than the capacity of all the hard disks sold world-wide

last year.

Here’s a second, related, problem with the adjacency matrix. Think of G as an object

we’d like to be able to “explore” — we get dropped down on a node i, we look around, and

we see which edges lead away from i. We’d like to be able to scan for these edges in an

amount of time proportional to the number of edges that are actually incident to i. This will

turn out to be crucial in many of the algorithms we consider. Using the adjacency matrix,

however, our only option for determining the edges incident to i would be to read all of row

i, keeping track of which entries were equal to 1. This takes time Θ(n), even when very

few edges actually have ends equal to i. So in the case of the acquaintance-ship graph G of

the U.S. that we’ve just been considering, for example, we’d like a representation of G that

would let us scan the friends of a person i in roughly 1000 steps (proportional to the number

of i’s friends) rather than six billion steps (proportional to the full population).

Let’s move on to a representation that has these features: its size is only proportional

to the number of nodes and edges in G, and it lets us scan the “neighborhood” of a node

quickly.

Adjacency lists. An adjacency list structure consists of an n-element array V, where V[i]

represents node i. V[i] simply points to a doubly linked list Li that contains an entry for

each edge e = (i, j) incident to i; this entry for e records the other end of the edge as well.

Thus, if we want to enumerate all the edges incident to node i, we first locate entry V[i], in

constant time, and then walk through the doubly linked list Li of edges that it points to. If

2.2. PATHS, CYCLES, AND TREES 37

there are d incident edges, this takes time O(d), independent of n.

Notice that each edge e = (i, j) appears twice in the adjacency list representation; once

as e = (i, j) in the list Li, and once as e = (j, i) in the list Lj. We will require that these

two entries have pointers from one to the other; this way, for example, if we have our hands

on the copy of e in Li and we’d like to delete it, we can quickly delete the copy in Lj as well

by following the pointer to it.

It’s important to note that there are some respects in which an adjacency matrix is better

than an adjacency list. Using an adjacency list, we can’t be told a pair of nodes i and j, and

decide in constant time whether G contains the edge (i, j). To do this with the adjacency

list, we’d need to walk through the list Li of all edges incident to i, seeing if any had j as

their other end; and this would take time proportional to the length of Li.

It is easy to create hybrid versions of these two representations, which combine advantages

of each. Suppose, for example, that we concurrently maintained a copy of the adjacency

matrix of G as well as the adjacency list of G. The entries in the two structures would be

“cross-linked” — the edge e = (i, j) in the list Li would have an extra pointer to the entry

A[i, j], and the entry A[i, j] in the adjacency matrix would now have an extra pointer to the

entry for e = (i, j) in the list Li. In this way, we get the ability to quickly scan the edges

incident to i, as with adjacency lists, as well as the ability to determine in constant time

whether i and j are joined by an edge. At the same time, this hybrid structure is not a pure

improvement over the simple adjacency list, for it has inherited the enormous size (Θ(n2))

of the adjacency matrix, even when G has relatively few edges.

2.2 Paths, Cycles, and Trees

Since graphs so often model transportation or communication networks, a fundamental oper-

ation in graphs is that of traversing a sequence of nodes that are connected by edges. (Think

of traveling from Ithaca to San Francisco on a sequence of airline flights, or tracing the route

of a packet on the Internet through a sequence of intermediate routers.)

With this notion in mind, we define a path in a graph G = (V, E) to be a sequence P of

nodes v1, v2, . . . , vk−1, vk with the property that each consecutive pair vi, vi+1 is joined by an

edge in G. P is often called a path from v1 to vk, or a v1-vk path. We call such a sequence of

nodes a cycle if v1 = vk — in other words, the sequence “cycles back” to where it began. A

path is called simple if all its vertices are distinct; it is called a simple cycle if v1, v2, . . . , vk1

are all distinct, and v1 = vk.

We say that a graph is connected if for every pair of nodes u and v, there is a path from

u to v. In thinking about what it means, structurally, for a graph to be connected, it turns

out to be very helpful to think about the “simplest” possible connected graphs — those

containing the minimal number of edges necessary for connectivity. In particular, consider a

38 CHAPTER 2. ALGORITHMIC PRIMITIVES FOR GRAPHS

1

2

3

4

5
6

7

8

9

1

2 5

3 6 8 94

7

Figure 2.1: Two drawings of the same tree.

connected graph G with a simple cycle C. If e = (u, v) is an edge on C, then G will remain

connected even after we delete e — indeed, any path that previously used e can now be

re-routed “the long way” around C, and so there is still a path joining each pair of nodes.

So whenever we find a cycle in a graph G, we can delete an edge while keeping the graph

connected; continuing in this way, we would end up with a graph that is still connected but

has no more cycles. We will call such graphs trees: A tree is a connected graph with no

cycles.

The two graphs pictured in Figure 2.1 are trees. In a strong sense, trees are indeed the

“simplest” kind of connected graph: deleting any edge from a tree will disconnect it.

For thinking about the structure of a tree T , it is useful to root it at a particular node r.

Physically, this is the operation of grabbing T at the node r, and letting the rest of it hang

downward under the force of gravity, like a mobile. More precisely, we “orient” each edge

of T away from r; for each other node v, we declare the parent of v to be the node u that

directly precedes v on its path from r; we declare w to be a child of v if v is the parent of w.

More generally, we say that w is a descendent of v (or v is an ancestor of w) if v lies on the

path from the root to w; and we say that a node x is a leaf if it has no descendents. Thus,

for example, the two pictures in Figure 2.1 correspond to the same tree T — the same pairs

of nodes are joined by edges — but the drawing on the right represents the result of rooting

T at node 1.

Rooted trees are fundamental objects in computer science, because they encode the notion

of a hierarchy. For example, we can imagine the rooted tree in Figure 2.1 as corresponding

to the organizational structure of a tiny 9-person company; employees 3 and 4 report to

employee 2; employees 2, 5, and 6 report to employee 1; and so on. Many Web sites are

organized according to a tree-like structure, to facilitate navigation. A typical computer

science department’s Web site will have an entry page as the root; the People page is a child

of this entry page (as is the Courses page); pages entitled Faculty and Students are children

2.3. GRAPH CONNECTIVITY AND GRAPH TRAVERSAL 39

of the People page; individual professors’ home pages are children of the Faculty page; and

so on.

For our purposes here, rooting a tree T can make certain questions about T conceptually

easy to answer. For example, given a tree T on n nodes, how many edges does it have? Each

node other than the root has a single edge leading “upward” to its parent; and conversely,

each edge leads upward from precisely one non-root node. Thus we have very easily proved

the following fact.

(2.1) Every n-node tree has exactly n− 1 edges.

In fact, the following stronger statement is true, although we do not prove it here.

(2.2) Let G be a graph on n nodes. Any two of the following statements implies the

third.

(i) G is connected.

(ii) G does not contain a cycle.

(iii) G has n− 1 edges.

We now turn to the role of trees in the fundamental algorithmic idea of graph traversal.

2.3 Graph Connectivity and Graph Traversal

Having built up some fundamental notions regarding graphs, we turn to a very basic al-

gorithmic question: node-to-node connectivity. Suppose we are given a graph G = (V, E),

and two particular nodes s and t. We’d like to find an efficient algorithm that answers the

question: is there a path from s to t in G? We will call this the problem of determining s-t

connectivity.

For very small graphs, this question can often be answered easily by visual inspection.

But for large graphs, it can take some work to search for a path — the challenge in solving

mazes, for example, boils down to this question. How efficient an algorithm can we design

for this task?

The basic idea in searching for a path is to “explore” the graph G starting from s,

maintaining a set R consisting of all nodes that s can reach. Initially, we set R = {s}. If at

any point in time, there is an edge (u, v) where u ∈ R and v 6∈ R, then we claim it is safe

to add v to R. Indeed, if there is a path P from s to u, then there is a path from s to v

obtained by first following P and then following the edge (u, v). Suppose we continue this

of growing the set R until there are no more edges leading out of R; in other words, we run

the following algorithm.

40 CHAPTER 2. ALGORITHMIC PRIMITIVES FOR GRAPHS

1

2
3

54

6

7

8

9

10

Figure 2.2:

R will consist of nodes to which s has a path.

Initially R = {s}.
While there is an edge (u, v) where u ∈ R and v 6∈ R
Add v to R.

Endwhile

Here is the key property of this algorithm.

(2.3) The set R produced at the end of the algorithm consists of precisely the nodes to

which s has a path.

Proof. We have already argued that for any node v ∈ R, there is a path from s to v. In

reality, our argument above hides a proof by induction on the number of iterations of the

While loop: assuming that the set R produced after k steps of the loop contain only nodes

reachable from R, then the node added in the (k + 1)st step must also be reachable from s.

Now, consider a node w 6∈ R, and suppose by way of contradiction that there is an s-w

path in G. Since s ∈ R but w 6∈ R, there must be a first node v on P that does not belong

to R; and this node v is not equal to s. Thus, there is a node u immediately preceding v

on P , so (u, v) is an edge. Moreover, since v is the first node on P that does not belong

to R, we must have u ∈ R. It follows that (u, v) is an edge where u ∈ R and v 6∈ R; this

contradicts the stopping rule for the algorithm.

We call this set R the connected component of G containing s. In view of (2.3) , our

algorithm for determining s-t connectivity can simply produce the connected component

R of G containing s, and determine whether t ∈ R. (Clearly, if we don’t want the whole

component, just the answer to the s-t connectivity question, then we can stop the growing

of R as soon as t is discovered.) Observe that it is easy to recover the actual path from s to

t, along the lines of the inductive argument in (2.3) : we simply record, for each node v, the

2.3. GRAPH CONNECTIVITY AND GRAPH TRAVERSAL 41

edge (u, v) that was considered in the iteration in which v was added to S. Then, by tracing

these edges backward from t, we proceed through a sequence of nodes that were added in

earlier and earlier iterations, eventually reaching s; this defines an s-t path.

The algorithm that grows R is under-specified — how do we decide which edge to consider

next? We will show two ways of specifying the answer to this question; they both lead to

efficient connectivity algorithms, but with qualitatively different properties.

In both cases, “efficient” will mean the following. If G has n nodes and m edges, then in

the worst case we may have to spend time proportional to m + n just to look at the input.

We will produce algorithms running in linear time; i.e. requiring time O(m + n), which is

the best possible.

Breadth-First Search

Perhaps the simplest way to grow the component R is in layers. We start with the node s,

and add all nodes that are joined by an edge to s — this is the first layer. We then add

all the nodes that are joined by an edge to any node in the first layer — this is the second

layer. We continue in this way until we have a set of nodes with no edges leaving it; this is

the component R. We call this algorithm Breadth-First Search (BFS), since it explores G by

considering all nearby nodes first, rather than exploring deeply in any particular direction.

Indeed, BFS is simply a particular implementation of our previous algorithm, defined by

a particular way of choosing edges to explore. We summarize it as follows.

BFS(s):

Mark s as "Visited".

Initialize R = {s}.
Define layer L0 = {s}.
While Li is not empty

For each node u ∈ Li

Consider each edge (u, v) incident to v
If v is not marked "Visited" then

Mark v "Visited"

Add v to the set R and to layer Li+1

Endif

Endfor

Endwhile

If we store each layer Li as a queue, then inserting nodes into layers and subsequently

accessing them takes constant time per node. Furthermore, if we represent G using an

adjacency list, then we spend constant time per edge over the course of the whole algorithm,

since we consider each edge e at most once from each end. Thus, the overall time spent by

the algorithm is O(m + n).

42 CHAPTER 2. ALGORITHMIC PRIMITIVES FOR GRAPHS

1

2
3

4 5

6

7 8

Figure 2.3: A breadth-first search tree T for the graph in Figure 2.2. The solid edges are
the edges of T ; the dotted edges are edges of G that do not belong to T .

The BFS algorithm has several useful properties. First, suppose we define the distance

between two nodes u and v to be the minimum number of edges in a u-v path. (We can

designate some symbol like∞ to denote the distance between nodes that are not connected by

a path.) The term “distance” here comes from imagining G as representing a communication

or transportation network; if we wanted to get from u to v, we may well want a route with

as few “hops” as possible. Now it is easy to see that breadth-first search, in addition to

determining connectivity, is also computing distances; the nodes in layer Li are precisely the

nodes at distance i from s.

A further property of breadth-first search is that it produces, in a very natural way, a

tree T on the set R, rooted at s. Specifically, consider a point in the BFS algorithm when

the edges incident to a node u ∈ Li are being examined; we come to an edge (u, v) where

v is not yet visited, and we add v to layer Li+1. At this moment, we add the edge (u, v)

to the tree T — u becomes the parent of v, representing the fact that u is “responsible”

for bringing v into the component R. We call the tree T that is produced in this way a

breadth-first search tree of R.

Figure 2.3 depicts a BFS tree rooted at node 1 for the graph from Figure 2.2. The solid

edges are the edges of T ; the dotted edges are edges of G that do not belong to T . In fact,

the arrangement of these non-tree edges is very constrained relative to the tree T ; as we now

prove, they can only connect nodes in the same or adjacent layers.

(2.4) Let T be a breadth-first search tree, let x and y be nodes in T belonging to layers

Li and Lj respectively, and let (x, y) be an edge of G that is not an edge of T . Then i and j

differ by at most 1.

Proof. Suppose by way of contradiction that i and j differed by more than 1; in particular,

suppose i < j − 1. Now consider the point in the BFS algorithm when the edges incident to

2.3. GRAPH CONNECTIVITY AND GRAPH TRAVERSAL 43

x were being examined. At this point, the only nodes marked “Visited” belonged to layers

Li+1 and below; hence, y could not have been marked “Visited” at this point, and so it

should have added to layer Li+1 during the examination of the edges incident to x.

Depth-First Search

Another natural method to find the nodes reachable from s is the approach you might take if

the graph G were truly a maze of interconnected rooms, and you were walking around in it.

You’d start from s and try the first edge leading out of it, to a node v. You’d then follow the

first edge leading out of v, and continue in this way until you reached a “dead end” — a node

for which you had already visited all its neighbors. You’d then back-track till you got to a

node with an unvisited neighbor, and resume from there. We call this algorithm Depth-First

Search (DFS), since it explores G by going as deeply as possible, and only retreating when

necessary.

DFS is also a particular implementation of the generic component-growing algorithm that

we introduced initially. It is most easily described in recursive form: we can invoke “DFS”

from any starting point, but maintain global knowledge of which nodes have already been

visited.

DFS(u):
Mark u as "Visited" and add u to R.

For each edge (u, v) incident to u
If v is not marked "Visited" then

Add v to R.

Recursively invoke DFS(v).
Endif

Endfor

To apply this to s-t connectivity, we simply declare all nodes initially to be not visited, and

invoke DFS(s).

With G represented using an adjacency list, we spend constant time per edge since we

consider it at most once from each end; we also spend constant additional time per node since

DFS(u) is invoked at most once for each node u. Thus the total running time is O(m + n).

The DFS algorithm yields a natural rooted tree T in much the same way that BFS did:

we make s the root, and make u the parent of v when u is responsible for the discovery of v.

That is, whenenver v is marked “Visited” during the invocation of DFS(u), we add the the

edge (u, v) to T . The resulting tree is called a depth-first search tree of the component R.

Figure 2.4 depicts a DFS tree rooted at node 1 for the graph from Figure 2.2. The solid

edges are the edges of T ; the dotted edges are edges of G that do not belong to T . DFS

trees look quite different from BFS trees; rather than having root-to-leaf paths that are as

short as possible, they tend to be quite narrow and deep. However, as in the case of BFS,

44 CHAPTER 2. ALGORITHMIC PRIMITIVES FOR GRAPHS

1

2

4

5

6

3

8

7

Figure 2.4: A depth-first search tree T for the graph in Figure 2.2. The solid edges are the
edges of T ; the dotted edges are edges of G that do not belong to T .

we can say something quite strong about the way in which non-tree edges of G must be

arranged relative to the edges of a DFS tree T : as in the figure, non-tree edges can only

connect ancestors of T to descendents.

To establish this, we first observe the following property of the DFS algorithm and the

tree that it produces.

(2.5) For a given recursive call DFS(u), all nodes that are marked “Visited” between

the invocation and end of this recursive call are descendents of u in T .

Using (2.5) , we prove

(2.6) Let T be a depth-first search tree, let x and y be nodes in T , and let (x, y) be an

edge of G that is not an edge of T . Then one of x or y is an ancestor of the other.

Proof. Suppose that (x, y) is an edge of G that is not an edge of T , and suppose without loss

of generality that x is reached first by the DFS algorithm. When the edge (x, y) is examined

during the execution of DFS(x), it is not added to T because y is marked “Visited.” Since y

was not marked “Visited” when DFS(x) was first invoked, it is a node that was discovered

between the invocation and end of the recursive call DFS(x). It follows from (2.5) that y

is a descendent of x.

Finding all Connected Components

Suppose we don’t want to determine a path between a specific pair of nodes, but in fact

want to produce all the connected components of G. One application would be to determine

2.4. TWO APPLICATIONS OF GRAPH TRAVERSAL 45

whether G is a connected graph; this is the case if and only if it has a single connected

component, rather than several.

We can easily use BFS or DFS to do this in time O(m+n). Suppose the nodes are labeled

1, 2, . . . , n, and there is an array B that stores the “Visited/Unvisited” status of each node.

We first grow the component R1 containing 1, in time proportional to the number of nodes

and edges in R1. We then walk through the entries of the array B in sequence. Either we

reach the end and discover that all nodes have been visited, or we come to the first node i

that is not yet visited. The node i must belong to a different connected component, so we

proceed to grow the component Ri containing it in time proportional to the number of nodes

and edges in Ri. We then return to scanning the array B for unvisited nodes, starting from

the node i, and continue in this way.

We thus eventually construct all the connected components of G. The time spent on the

component-growing procedures is proportional to the sum of the sizes of all components,

which is just the number of nodes and edges of G. The additional time spent identifying a

new component to grow — by finding a node not yet visited — corresponds to just a single

scan of the array B over the course of the algorithm, since we always pick up scanning where

we left off. Thus, after O(m + n) time, we have produced all the connected components of

G.

2.4 Two Applications of Graph Traversal

We now discuss two applications that make direct use of the special structures of BFS and

DFS trees. We first describe how to tell if a graph is bipartite; we then give an algorithm

for identifying nodes whose deletion disconnects a graph.

Testing Whether a Graph is Bipartite

Recall the definition of a bipartite graph: it is one where the node set V can be partitioned

into sets X and Y in such a way that every edge has one end in X and the other end in

Y . To make the discussion a little smoother, we can imagine that the nodes in the set X

are colored red, and the nodes in the set Y are colored blue; with this imagery, we can say a

graph is bipartite if it is possible to color its nodes red and blue so that every edge has one

red end and one blue end.

In the previous chapter, we saw examples of bipartite graphs. Here start here by asking:

what is an example of a non-bipartite graph, one where no such partition of V is possible?

Clearly a triangle is not bipartite, since we can color one node red, another one blue, and

then we can’t do anything with the third node. More generally, consider a cycle C of odd

length, with nodes number 1, 2, 3, . . . , 2k, 2k + 1. If we color node 1 red, then we must color

node 2 blue, and then we must color node 3 red, and so on — coloring odd-numbered nodes

46 CHAPTER 2. ALGORITHMIC PRIMITIVES FOR GRAPHS

red and even-numbered nodes blue. But then we must color node 2k + 1 red, and it has an

edge to node 1, which is also red. This demonstrates that there’s no way to partition C into

red and blue nodes as required. More generally, if a graph G simply contains an odd cycle,

then we can apply the same argument; thus we have established that

(2.7) If a graph G is bipartite, then it cannot contain an odd cycle.

It is easy to recognize that a graph is bipartite when appropriate sets X and Y (i.e. red

and blue nodes) have actually been identified for us; and in many setting where bipartite

graph arise, this is natural. But suppose we encounter a graph G with no annotation provided

for us, and we’d like to determine for ourselves whether it is bipartite — i.e. whether there

exists a partition into red and blue nodes as required. How difficult is this?

In fact, there is a very simple procedure to test for bipartiteness. First, we assume the

graph G is connected, since otherwise we can first compute its connected components and

analyze each of them separately. Now, we pick any node s ∈ V and color it red — there is

no loss in doing this, since s must receive some color. It follows that all the neighbors of s

must be colored blue, so we do this. It then follows that all the neighbors of these nodes

must be colored red, their neighbors must be colored blue, and so on, until the whole graph

is colored. At this point, either we have a valid red/blue coloring of G, in which every edge

has ends of opposite colors, or there is some edge with ends of the same color. In this latter

case, it seems clear that there’s nothing we could have done: G simply is not bipartite. We

now want to argue this point precisely, and also work out an efficient way to perform the

coloring.

In fact, our description of the coloring procedure is almost identical to our description

of BFS. Indeed, what we are doing is to color s red, then all of layer L1 blue, then all of

layer L2 red, and so on. So in fact, by implementing the coloring on top of BFS, we can

easily perform it in O(m + n) time. The fact that we are correctly determining whether G

is bipartite is now a consequence of the following claim.

(2.8) Let G be a connected graph, and let L0, L1, L2, . . . be the layers produced by a BFS

starting at node s. Then exactly one of the following two things must hold.

(i) There is no edge of G joining two nodes of the same layer. In this case G is a

bipartite graph in which the nodes in even-numbered layers can be colored red, and the nodes

in odd-numbered layers can be colored blue.

(ii) There is an edge of G joining two nodes of the same layer. In this case, G must

contain on odd-length cycle, and so it cannot be bipartite.

Proof. In case (i), why does the specified coloring result in every edge having ends of opposite

colors? By (2.4) , every edge of G joins nodes either in the same layer, or in adjacent layers.

Edges that join nodes of adjacenct layers have ends of opposite colors; and our assumption

2.4. TWO APPLICATIONS OF GRAPH TRAVERSAL 47

s

z

x y

layer L

layer L

i

j

Figure 2.5: Discovering that a graph is not bipartite.

in (i) is that there are no edges joining nodes in the same layer. Thus, the specified coloring

establishes that G is bipartite.

In case (ii), why must G contain an odd cycle? We are told that G contains an edge

joining two nodes of the same layer; suppose this is the edge x = (x, y), with x, y ∈ Lj.

Consider the BFS tree T produced by our algorithm, and let z be the node that is in as low

a layer as possible, subject to the condition that z is an ancestor of both x and y in T — for

obvious reasons, we can call z the least common ancestor of x and y. Suppose z ∈ Li, where

i < j. We now have the situation pictured in Figure 2.5. We consider the cycle C defined

by following the z-x path in T , then the edge e, and then the y-z path in T . The length of

this cycle is (j− i) + 1 + (j− i), adding the length of its three parts separately; this is equal

to 2(j − i) + 1, which is an odd number.

Finding Cut-Points in a Graph

The previous application illustrated how the properties of a BFS tree can be useful in rea-

soning about the structure of a graph. We now describe a problem for which the properties

of a DFS tree — particularly the fact that non-tree edges only join ancestors to descendents

— become very useful.

Given a connected graph G = (V, E), we say that u ∈ V is a cut-point if deleting u

disconnects G — in other words, if G−{u} is not connected. We can think of the cut-points

as the “weak points” of G; the destruction of a single cut-point separates the graph into

multiple pieces. For example, look at the connected graph G obtained by considering just

the nodes 1-8 in Figure 2.2. This graph has two cut-points: the nodes 3 and 5.

How can we find cut-points efficiently? The DFS tree of G, as depicted in Figure 2.4,

holds the key to this. Consider, for example, the sub-tree rooted at node 3 — node 3, acting

48 CHAPTER 2. ALGORITHMIC PRIMITIVES FOR GRAPHS

r

x

u

v

wy

Figure 2.6: Traveling from the root to a node w while avoiding the node u.

as the “entry point” to this sub-tree, separates the nodes below it from the rest of the graph.

In particular, since non-tree edges only connect ancestors and descendents, it is enough to

observe that there is no edge that “jumps over” node 3, connecting one of its descendents

to one of its ancestors, and so there is no way for the nodes below 3 to reach the rest of

the graph except through 3. Node 4, on the other hand, lacks this property — both its

descendents can reach the rest of the graph through edges that jump over 4.

We now make this kind of reasoning more concrete. We first say that a node u is earlier

than a node v, relative to the execution of the DFS algorithm, if node u is marked as

“Visited” before node v is. We write u � v to denote this. We define earliest(u) to be the

earliest node x such that some node in the sub-tree rooted at u is joined by a non-tree edge

to x. So in the example of Figure 2.4, we have earliest(4) = 1, since node 3 has a non-tree

edge to 1; on the other hand, earliest(7) = 3 since node 8 itself has a non-tree edge to 3.

This latter fact — that earliest(7) = 3 — suggests why node 3 is a cut-point: the sub-tree

rooted at 7 cannot jump over 3 to get to the rest of the graph.

By looking at these earliest reachable nodes, we can identify in general whether any non-

tree edges jump over a given node u to one of its ancestors, and hence whether or not u is a

cut-point. Here is the fact that makes this precise.

(2.9) Let T be a DFS tree of G, with root r.

(i) A node u 6= r is a cut-point if and only if there is a child v of u for which u �
earliest(v).

(ii) The root r is cut-point if and only if it has more than one child.

Proof. Statement (ii) is easier. If r has only one child in T , then even after deleting r there

2.4. TWO APPLICATIONS OF GRAPH TRAVERSAL 49

are still paths in T connecting all other nodes. Conversely, if r has more than one child,

then by (2.6), there are no non-tree edges connecting the sub-trees rooted at these children.

Hence, deleting r will disconnect the nodes in these sub-trees from one another.

We now prove statement (i). For the first direction, suppose there is a child v of u for

which u � earliest(v). Let X denote the set of nodes in sub-tree rooted at v; we claim that

there is no edge from a node in X to any node in G−X other than u. Indeed, by (2.6), such

an edge would have to go to an ancestor of u; but all such ancestors are earlier than u in the

order of the DFS. So it is not possible for such an edge to exist, since u � earliest(v).

Conversely, suppose that all children v of u have the property that u 6� earliest(v). Then

we claim that for every node w 6= u, there is a path from r to w that does not use u; it

will follow that G−{u} is still connected. Clearly, r can reach any node that is not in the

sub-tree rooted at u, just using the path in T . Now, consider a node w that is in the sub-tree

rooted at u; it is also in the sub-tree rooted at v, for some particular child v of u. To get

from r to w, we can proceed as follows. Let x = earliest(v), and let y be a node in the

sub-tree rooted at v for which (x, y) is an edge. Using edges in T , we can walk from r to x;

we can then follow the edge (x, y); we can then use edges in T again to walk from y to v,

and on to w. In this way, we have constructed an r-w path that avoids u. The construction

is depicted schematically in Figure 2.6.

Given (2.9) , we can determine the cut-points of G in linear time provided that we can

compute the values of earliest(u) for each node u in linear time. The simplest way to do this

is straight from the definition of earliest(·), processing a DFS tree from the leaves upward.

To compute earliest(u) for all u:
First compute a DFS tree T of G rooted at r.
Now process the nodes in T from the leaves upward,

so that a node u is only processed after all its children:

To process node u:
If u is a leaf, then earliest(u) is just the earliest node

to which u is joined by a non-tree edge.

We define earliest(u) = u if u has no incident non-tree edges.

Else (u is not a leaf)

Consider the set

S = {u} ∪
{w : (u, w) is a non-tree edge} ∪
{earliest(v) : v is a child of u}

Define earliest(u) to be the earliest node in S
Endif

The computation of the DFS tree takes O(m + n) time. After this, we spend constant time

per edge to compute all the values earliest(u), since we examine each edge at most once

50 CHAPTER 2. ALGORITHMIC PRIMITIVES FOR GRAPHS

from each end. Finally, we can implement the test in (2.9) in O(m + n) time as well, so as

to determine all the cut-points. Thus, the overall time is O(m + n).

It is possible to combine the computation of the values earliest(u) with the recursive

procedure that actually performs the DFS; this eliminates the need for an explicitly “two-

phase” algorithm that first builds the tree and then computes these values.

2.5 Extensions to Directed Graphs

Thus far, we have been looking at problems on undirected graphs; we now consider the extent

to which these ideas carry over the case of directed graphs. Recall that in a directed graph,

the edge (u, v) has a direction: it goes from u to v. In this way, the relationship between u

and v is asymmetric, and this has qualitative effects on the structure of the resulting graph.

For example, consider how different one’s browsing experience would be on the World Wide

Web if it were possible to follow a hyperlink in either direction.

At the same time, many of our basic definitions, representations, and algorithms have

immediate analogues in the directed case. The notion of a path still makes sense in a directed

graph, but the direction of edges is incorporated into the definition: a path is a sequence of

nodes v1, v2, . . . , vk−1, vk with the property that for each i = 1, 2, . . . , k − 1, there is an edge

(vi, vi+1). Thus, it can easily happen that there is a path from u to v, but no path from v to

u. The notion of a cycle carries over to the directed case analogously: all edges on the cycle

must be oriented in the same direction.

The two basic representations — adjacency matrices and adjacency lists — also carry

over to the directed case. The adjacency matrix is no longer symmetric, since we will have

A[i, j] 6= A[j, i] whenever one of (i, j) or (j, i) is an edge but the other isn’t. In the adjacency

list structure, it is often useful to have the entry V[i] point to two lists: the edges for which

i is the tail, and (separately) the edges for which i the head. By analogy with the undirected

case, we can have pointers cross-linking the appearance of the edge (i, j) in the tail list of i

with the appearance of (i, j) in the head list of j.

Finally, the two basic traversal algorithms — breadth-first search and depth-first search

— also carry over to the directed case. Each algorithm contains an inner loop in which, for

a given node u, we look at all edges incident to u and determine which neighboring nodes

have been visited. In a directed graph, we modify these algorithms so that they perform

this scan over the edges for which u is the tail; otherwise, the algorithms remain exactly the

same. The result of these algorithms is the set of nodes R to which u has a path, which

may be quite different from the set of nodes R′ that have a path to u. If we were interested

in computing this latter set R′, we could simply run DFS or BFS with the directions of all

edges reversed.

We now consider an algorithmic problem that is specific to directed graphs, and has no

2.6. DIRECTED ACYCLIC GRAPHS AND TOPOLOGICAL ORDERING 51

obvious analogue in the undirected case.

2.6 Directed Acyclic Graphs and Topological Ordering

If an undirected graph has no cycles, then it has an extremely simple structure — each of its

connected components is a tree. But it is possible for a directed graph to have no (directed)

cycles and still have a very rich structure. For example, such graphs can have a large number

of edges: if we start with the node set {1, 2, . . . , n} and include an edge (i, j) whenever i < j,

then the resulting directed graph has
(

n
2

)

edges but no cycles. If a directed graph has no

cycles, we call it — naturally enough — a directed acyclic graph, or a DAG for short. (The

term “DAG” is typically pronounced as a word, not spelled out as an acronym.)

DAGs are a very common structure in computer science, because they encode precedence

relations, or dependencies, in the following way. Suppose we have a list of tasks labeled

{1, 2, . . . , n} that need to be performed, and there are dependencies among them stipulating,

for certain pairs i and j, that i must be performed before j. For example, the tasks may be

courses, with pre-requisite requirements stating that certain courses must be taken before

others. Or the tasks may correspond to a pipeline of computing jobs, with assertions that

the output of job i is used in determining the input to job j, and hence job i must be done

before job j.

We can represent such an inter-dependent set of tasks by introducing a node for each

task, and a directed edge (i, j) whenever i must be done before j. If the precedence relation

is to be at all meaningful, the resulting graph G must be a DAG. Indeed, if it contained a

cycle C, there would be no way to do any of the tasks in C: since each task in C cannot

begin until some other one completes, no task in C could ever be done, since none could be

done first.

Let’s continue a little further with this picture of DAGs as precedence relations. Given

a set of tasks with dependencies, it would be natural to seek a valid order in which the

tasks could be performed, so that all dependencies are respected. Specifically, for a directed

graph G, we say that a topological ordering of G is an ordering of its nodes as v1, v2, . . . , vn

so that for every edge (vi, vj), we have i < j. In other words, all edges point “forwards” in

the ordering. A topological ordering on tasks provides an order in which they can be safely

performed; when we come to the task vj, all the tasks that are required to precede it have

already been done.

We can also view a topological ordering of G as providing an immediate “proof” that G

has no cycles, via the following.

(2.10) If G has a topological ordering, then G is a DAG.

Proof. Suppose by way of contradiction that G has a topological ordering v1, v2, . . . , vn, and

also has a cycle C. Let vi be the lowest-indexed node on C, and let vj be the node on C just

52 CHAPTER 2. ALGORITHMIC PRIMITIVES FOR GRAPHS

before vi — thus (vj, vi) is an edge. But by our choice of i, we have j > i, which contradicts

the assumption that v1, v2, . . . , vn was a topological ordering.

The main question we consider here is the converse of (2.10) : does every DAG have a

topological ordering, and if so, how do we find one efficiently? A method to do this for every

DAG would be very useful: it would show that for any precedence relation on a set of tasks

without cycles, there is an efficiently computable order in which to perform the tasks.

In fact, the converse of (2.10) does hold, and we establish this via a linear-time algorithm

to compute a topological ordering. The key to this lies in finding a way to get started: which

node do we put at the beginning of the topological ordering? Such a node v1 would need

to have no in-coming edges, since any such edge would violate the defining property of the

topological ordering, that all edges point forward. Thus, we need to prove the following fact.

(2.11) In every DAG G, there is a node v with no in-coming edges.

Proof. Let G be a directed graph in which every node has at least one in-coming edge. We

show how to find a cycle in G; this will prove the claim. We pick any node v, and begin

following edges backward from v: since v has at least one in-coming edge (u, v), we can walk

backward to u; then, since u has at least one in-coming edge (x, u), we can walk backward

to x; and so on. We can continue this process indefinitely, since every node we encounter

has an in-coming edge. But after n + 1 steps, we will have visited some node w twice. If we

let C denote the sequence of nodes encountered between successive visits to w, then clearly

C forms cycle.

In fact, the existence of such a node v is all we need to produce a topological ordering

of G by induction. We place v first in the topological ordering; this is safe, since all edges

out of v will point forward. Now, G−{v} is a DAG — deleting v cannot create any cycles

— and so by induction it has a topological ordering which we can append after v. In fact,

this argument is a complete proof of the desired converse of (2.10) .

(2.12) If G is a DAG, then G has a topological ordering.

The inductive proof contains the following algorithm to compute a topological ordering

of G.

To compute a topological ordering of G:

Find a node v with no in-coming edges and order it first.

Delete v from G.

Recursively compute a topological ordering of G−{v}
and append this order after v

2.6. DIRECTED ACYCLIC GRAPHS AND TOPOLOGICAL ORDERING 53

Identifying the node v and deleting it from G can be done in O(n) time. Since the algorithm

runs for n iterations, the total running time is O(n2).

This is not a bad running time; and if G is very dense, containing Θ(n2) edges, then it

is linear in the size of the input. But we may well want something better when the number

of edges m is much less than n2; in such a case, a running time of O(m + n) could be a

significant improvement over Θ(n2).

In fact, we can achieve a running time of O(m + n) using the same high-level algorithm

— iteratively deleting nodes with no in-coming edges. We simply have to be more efficient

in finding these nodes. We will maintain a queue S consisting of nodes without in-coming

edges, which we initialize at the outset. In each iteration, we extract the node v that is at

the front of the queue S, and we delete v from G. As we delete each of v’s out-going edges

(v, w), we check whether this was the last edge entering w; if so, we add w to the end of the

queue S.

Observe that this is indeed just an implementation of the high-level inductive algorithm

above: by the time each node v comes to the front of the queue S, there are no nodes either

in S or still in the graph that have an edge to v, and so it is safe to place v next in the

topological ordering. We summarize the algorithm as follows.

Improved algorithm to compute a topological ordering of G:

Initialize a queue S consisting of all nodes without in-coming edges.

While S is not empty

Let v be the node at the front of S.
Delete v from G:

For each edge (v, w) in list of v’s out-going edges

Delete (v, w) from the list of w’s in-coming edges

If the list of w’s in-coming edges is now empty then

Add w to the end of S
Endif

Endfor

Place v in the next position of the topological ordering

Endwhile

If all nodes have been deleted from G then

The algorithm has produced a topological ordering of G
Else

In the graph on the nodes that remain, every node has

an in-coming edge, and so there is a cycle by (2.11) .

Endif

What is the running time of this algorithm? Initializing S takes O(n) time. We spend

constant time per node when it comes to the front of the queue S. We spend constant time

per edge (v, w), at the time when its tail v is being deleted from G. Thus, the overall running

time is O(m + n).

54 CHAPTER 2. ALGORITHMIC PRIMITIVES FOR GRAPHS

2.7 Exercises

1. Inspired by the example of that great Cornellian, Vladimir Nabokov, some of your

friends have become amateur lepidopterists. (They study butterflies.) Often when

they return from a trip with specimens of butterflies, it is very difficult for them to

tell how many distinct species they’ve caught — thanks to the fact that many species

look very similar to one another.

One day they return with n butterflies, and they believe that each belongs to one of

two different species, which we’ll call A and B for purposes of this discussion. They’d

like to divide the n specimens into two groups — those that belong to A, and those

that belong to B — but it’s very hard for them to directly label any one specimen. So

they decide to adopt the following approach.

For each pair of specimens i and j, they study them carefully side-by-side; and if they’re

confident enough in their judgment, then they label the pair (i, j) either “same” (mean-

ing they believe them both to come from the same species) or “different” (meaning they

believe them to come from opposite species). They also have the option of rendering

no judgment on a given pair, in which case we’ll call the pair ambiguous.

So now they have the collection of n specimens, as well as a collection of m judgments

(either “same” or “different”) for the pairs that were not declared to be ambiguous.

They’d like to know if this data is consistent with the idea that each butterfly is from

one of species A or B; so more concretely, we’ll declare the m judgments to be consistent

if it is possible to label each specimen either A or B in such a way that for each pair

(i, j) labeled “same,” it is the case that i and j have the same label; and for each pair

(i, j) labeled “different,” it is the case that i and j have opposite labels. They’re in

the middle of tediously working out whether their judgments are consistent, when one

of them realizes that you probably have an algorithm that would answer this question

right away.

Give an algorithm with running time O(m + n) that determines whether the m judg-

ments are consistent.

2. We have a connected graph G = (V, E), and a specific vertex u ∈ V . Suppose we

compute a depth-first search tree rooted at u, and obtain the spanning tree T . Suppose

we then compute a breadth-first search tree rooted at u, and obtain the same spanning

tree T . Prove that G = T . (In other words, if T is both a depth-first search tree and

a breadth-first search tree rooted at u, then G cannot contain any edges that do not

belong to T .)

3. When we discussed the problem of determining the cut-points in a graph, we mentioned

2.7. EXERCISES 55

that one can compute the values earliest(u) for all nodes u as part of the DFS com-

putation — rather than computing the DFS tree first, and these values subsequently.

Give an algorithm that does this: show how to augment the recursive procedure

DFS(v) so that it still runs in O(m + n), and it terminates with globally stored

values for earliest(u).

4. A number of recent stories in the press about the structure of the Internet and the

Web have focused on some version of the following question: How far apart are typical

nodes in these networks? If you read these stories carefully, you find that many of them

are confused about the difference between the diameter of a network and the average

distance in a network — they often jump back and forth between these concepts as

though they’re the same thing.

As in the text, we say that the distance between two nodes u and v in a graph G =

(V, E) is the minimum number of edges in a path joining them; we’ll denote this by

dist(u, v). We say that the diameter of G is the maximum distance between any pair

of nodes; and we’ll denote this quantity by diam(G).

Let’s define a related quantity, which we’ll call the average pairwise distance in G

(denoted apd(G)). We define apd(G) to be the average, over all
(

n
2

)

sets of two distinct

nodes u and v, of the distance between u and v. That is,

apd(G) =





∑

{u,v}⊆V

dist(u, v)



 /

(

n

2

)

.

Here’s a simple example to convince yourself that there are graphs G for which diam(G) 6=
apd(G). Let G be a graph with three nodes u, v, w; and with the two edges {u, v} and

{v, w}. Then

diam(G) = dist(u, w) = 2,

while

apd(G) = [dist(u, v) + dist(u, w) + dist(v, w)]/3 = 4/3.

Of course, these two numbers aren’t all that far apart in the case of this 3-node graph,

and so it’s natural to ask whether there’s always a close relation between them. Here’s

a claim that tries to make this precise.

Claim: There exists a positive natural number c so that for all graphs G, it

is the case that
diam(G)

apd(G)
≤ c.

56 CHAPTER 2. ALGORITHMIC PRIMITIVES FOR GRAPHS

Decide whether you think the claim is true or false, and give a proof of either the claim

or its negation.

5. Some friends of yours work on wireless networks, and they’re currently studying the

properties of a network of n mobile devices. As the devices move around (really, as

their human owners move around), they define a graph at any point in time as follows:

there is a node representing each of the n devices, and there is an edge between device

i and device j if the physical locations of i and j are no more than 500 meters apart.

(If so, we say that i and j are “in range” of each other.)

They’d like it to be the case that the network of devices is connected at all times, and

so they’ve constrained the motion of the devices to satisfy the following property: at

all times, each device i is within 500 meters of at least n/2 of the other devices. (We’ll

assume n is an even number.) What they’d like to know is: Does this property by

itself guarantee that the network will remain connected?

Here’s a concrete way to formulate the question as a claim about graphs:

Claim: Let G be a graph on n nodes, where n is an even number. If every

node of G has degree at least n/2, then G is connected.

Decide whether you think the claim is true or false, and give a proof of either the claim

or its negation.

Chapter 3

Greedy Algorithms

In Wall Street, that iconic movie of the 80’s, Michael Douglas gets up in front of a room

full of stockholders and proclaims, “Greed . . . is good. Greed is right. Greed works.” In

this chapter, we’ll be taking a much more understated perspective as we investigate the pros

and cons of short-sighted greed in the design of algorithms. Indeed, our aim is to approach

a number of different computational problems with a recurring set of questions: Is greed

good? Does greed work?

It is hard, if not impossible, to define precisely what is meant by a greedy algorithm.

An algorithm is greedy if it builds up a solution in small steps, choosing a decision at each

step myopically to maximize some underlying criterion. One can often design many different

“greedy algorithms” for the same problem, each one locally, incrementally optimizing some

different measure on its way to a solution.

When a greedy algorithm succeeds in solving a non-trivial problem optimally, it typically

implies something interesting and useful about the structure of the problem itself; there is

a local decision rule that one can use to construct optimal solutions. The same is true of

problems in which a greedy algorithm can produce a solution that is guaranteed to be close

to optimal, even if it does not achieve the precise optimum. These are the kinds of issues

we’ll be dealing with in this section: It’s easy to invent greedy algorithms for almost any

problem; finding cases in which they work well, and proving that they work well, is the

interesting challenge.

The first two sections of this chapter will develop two basic methods for proving that

a greedy algorithm produces an optimal solution to a problem. One can view the first

approach as establishing that “the greedy algorithm stays ahead”. By this we mean that if

one measures the greedy algorithm’s progress in a step-by-step inductive fashion, one sees

that it does better than any other algorithm at each step; it then follows that it produces an

optimal solution. The second approach is known as an exchange argument, and it is more

general — one considers any possible solution to the problem, and gradually transforms it

into the solution found by the greedy algorithm without hurting its quality. Again, it will

57

58 CHAPTER 3. GREEDY ALGORITHMS

follow that the greedy algorithm must have found a solution that is at least as good as any

other solution.

Following our introduction of these two styles of analysis, we focus on two of the most

well-known applications of greedy algorithms: shortest paths in a graph, and the minimum

spanning tree problem. They each provide nice examples of our analysis techniques. Finally,

we consider a more complex application, the minimum-cost arborescence problem, which

further extends of our notion of what a greedy algorithm can accomplish.

3.1 The Greedy Algorithm Stays Ahead

Interval Scheduling

Let’s recall the interval scheduling problem, which was the first of the five representative prob-

lems we considered in the introduction to the course. We have a set of requests {1, 2, . . . , n};
the ith request corresponds to an interval of time starting at si and finishing at fi. We’ll say

that a subset of the requests is compatible if no two of them overlap in time, and our goal is

to accept as large a compatible subset as possible. (Compatible sets of maximum size will

called optimal.)

In defining the problem, we assume that all requests are known to the scheduling al-

gorithm when it is choosing the compatible subset. It would also be natural, of course,

to think about the version of the problem in which the scheduler needs to make decisions

about accepting or rejecting certain requests before knowing about the full set of requests:

Customers (requestors) may well be impatient, they may give up and leave if the scheduler

waits too long to gather information about all other requests. Towards the end of the course

we will briefly discuss such on-line algorithms, which must make decisions as time proceeds,

without knowledge of future input. For now we will be concerned with the off-line version

of the problem in which all information is available to the algorithm at the start.

Both off-line and on-line problems arise in many applications; off-line scheduling problems

come up in allocating lecture rooms for lectures, or exams for the semester, or a transporta-

tion timetable assuming that all routing data is known in advance.

Greedy Algorithms for Interval Scheduling. Using the interval scheduling problem,

we can make our discussion of greedy algorithms above much more concrete. The basic idea

in a greedy algorithm for interval scheduling is to use a simple rule to select a first request

i1. Once a request i1 is accepted we reject all requests that are not compatible with i1. We

then select the next request i2 to be accepted, and again reject all requests that are not

compatible with i2. We continue in this fashion until we run out of requests. The challenge

in designing a good greedy algorithm is in deciding which simple rule to use for the selection

— and there are many natural rules for this problem that do not give good solutions.

3.1. THE GREEDY ALGORITHM STAYS AHEAD 59

Let’s try to think of some of the most natural rules, and see how they work.

• Maybe the most obvious rule would be to always select the available request that starts

earliest. That is, we always pick the request with minimal start time si. This way our

resource starts being used as quickly as possible.

This method does not yield an optimal solution. If the earliest request i is for a very

long interval, then by accepting request i we have to possibly reject a lot of requests

for shorter time intervals; since our goal is to satisfy as many requests as possible,

we will end up with a sub-optimal solution. In a really bad case, say when the finish

time fi is the maximum among all requests, the accepted request i keeps our resource

occupied for the whole time. In this case our greedy method would accept a single

request, while the optimal solution could accept many. We represent this in the simple

schematic picture below.

--- --- --- --- ---

• The arguments above would suggest that we should accept first the request that re-

quires the smallest interval of time; namely, the request for which fi − si is as small

as possible. As it turns out, this is a somewhat better rule than the previous one, but

still we can get a sub-optimal schedule. For example, consider the picture below: If

we have requests for the time intervals 0 − 10, 9 − 11, and 10 − 20, then our greedy

method would accept the short interval 9 − 11 and hence would have to reject both

of the other requests. Meanwhile, the optimum schedule rejects request 9 − 11 and

accepts the other two, which are compatible.

------- --------

• In the previous greedy rule our problem was that the second request competes with both

the first and the third; i.e., accepting this request made us reject two other requests.

We could design a greedy algorithm that is based on this idea: for each request, we

count the number of other requests that are not compatible, and accept the request

which has the fewest number of non-compatible requests. This greedy choice would

lead to the optimum solution in the previous example. In fact, it is quite a bit harder

to design a bad example for this rule; but one can, and we’ve drawn an example in

the picture below. The unique optimal solution in this example is to accept the four

requests in the top row. The greedy method suggested here accepts the middle request

in the second row, and thereby ensures a solution of size no greater than three.

60 CHAPTER 3. GREEDY ALGORITHMS

----- ----- ----- -----

--- --- ---

--- ---

--- ---

The greedy rule that does lead to the optimal solution is based on a fourth idea: we

should accept first the request finishes first, i.e., the request i for which fi is as small as

possible. This is also quite a natural idea: we ensure that our resource becomes free as soon

as possible while still satisfying one request. In this way we can maximize the time left to

satisfy other requests.

We state the algorithm a bit more formally. We will use R to denote the set of requests

that we have neither accepted nor rejected yet, and use A to denote the set of accepted

requests.

Initially let R be the set of all requests, and A be empty.

While R is not yet empty

Choose a request i ∈ R that has smallest finishing time

fi = min
j∈R

fj

Add request i to A.

Delete all requests from R that are not compatible with request i.
EndWhile

Return the set A as the set of accepted requests

While this greedy method is quite natural, it is certainly not obvious that it returns

an optimal set of intervals. Indeed, it would only be sensible to reserve judgment on its

optimality: the ideas that led to the previous non-optimal versions of the greedy method

also seemed promising at first.

As a start, we can immediately declare that the intervals in the set A returned by the

algorithm are all compatible.

(3.1) A is a compatible set of requests.

What we need to show is that this solution is optimal. So, for purposes of comparison, let

O be an optimal set of intervals. Ideally one might want to show that A = O, but this is

too much to ask: there may be many optimal solutions, and at best A is equal to a single

one of them. So instead we will simply show that |A| = |O|, i.e., that A is also an optimal

solution.

The idea underlying the proof, as we suggested initially, will be to find a sense in which

our greedy algorithm “stays ahead” of this solution O. We will compare the partial solutions

that the greedy algorithm constructs to initial segments of the solution O, and show that

the greedy algorithm is doing better in a step-by-step fashion.

3.1. THE GREEDY ALGORITHM STAYS AHEAD 61

We introduce some notation to help with this proof. Let i1, . . . , ik be the set of requests

in A in the order they were added to A. Note that |A| = k. Similarly, let the set of requests

in O be denoted by j1, . . . , jm. Our goal is to prove that k = m. Assume that the requests

in O are also ordered in the natural left to right order of the corresponding intervals, i.e.,

the order of the start and finish points. Note that the requests in O are compatible, and

this implies that the start points have the same order as the finish points.

Our intuition for the greedy method came from wanting our resource to become free

again as soon as possible after satisfying the first request. And indeed, our greedy rule

guarantees that fi1 ≤ fj1. First we prove that this is also true for later requests: in the

algorithm’s schedule, the rth accepted request finishes no later than the rth request in the

optimal schedule.

(3.2) For all indices r ≤ k we have fir ≤ fjr
.

Proof. We will prove this statement by induction. For r = 1 the statement is clearly true:

the algorithm starts by selecting the request i1 with minimum finish time.

Now let r > 1. We will assume as our induction hypothesis that the statement is true for

r − 1, and we will try to prove it for r. In the figure below we use the lower line to indicate

the requests jr−1 and jr in the optimal schedule, and the upper line to indicate the request

ir−1 from the algorithm’s schedule.

---------- --------

By the induction hypothesis we have fir−1 ≤ fjr−1. Since the optimal schedule consists of

compatible intervals, we also know that fjr−1 ≤ sjr
. Combining these two facts, we see that

the request jr is in our set R when request ir is selected. The greedy algorithm selects the

request ir with smallest finish time, and request jr is one of the options in R when it makes

the selection, so we must have that fir ≤ fjr
.

Thus, we have formalized the sense in which the greedy algorithm is remaining ahead of

O — for each r, the rth interval it selects finishes at least as soon as the rth interval in O.

We now see why this implies the optimality of the greedy algorithm’s set A.

(3.3) The greedy algorithm returns an optimal set A.

Proof. We will prove the statement by contradiction. If A is not optimal, than an optimal

set O must have more requests, i.e., we must have m > k. Applying (3.2) with r = k, we get

that fik ≤ fjk
. Since m > k, there is a request jk+1 in O. This request starts after request

jk ends, and hence after ik ends. So after deleting all requests that are not compatible with

requests i1, . . . , ik, the set of possible requests R still contains jk+1. But the greedy algorithm

stops with request ik, and it is only supposed to stop when R is empty — a contradiction.

62 CHAPTER 3. GREEDY ALGORITHMS

Implementation. We can make our algorithm run in time O(n log n) as follows. We begin

by sorting the n requests in order of finishing time, and labeling them in this order; that is,

we will assume that fi ≤ fj when i < j. This takes time O(n log n). In addition O(n) time,

we construct an array S[1 . . . n] with the property that S[i] contains the value si.

We now select requests by processing the intervals in order of increasing fi. We always

select the first interval; we then iterate through the intervals in order until reaching the first

interval j for which sj ≥ f1; we then select this one as well. More generally, if the most

recent interval we’ve selected, we continue iterating through subsequent intervals until we

reach the first j for which sj ≥ f . In this way, we implement the greedy algorithm analyzed

above in one pass through the intervals, spending constant time per interval. Thus, this part

of the algorithm takes time O(n) as well.

Variations. The interval scheduling problem we considered here is a quite a simple schedul-

ing problem. There are many further complications that could arise in practical settings.

The following are two issues that we will see later.

(i) In our problem we have only a single resource. But one could imagine having many

similar lecture rooms, and each request asks to use one of them (any free room is fine)

at a specified time.

(ii) Our goal was to maximize the number of satisfied requests. But we could picture the

situation in which each request has a different value to us. For example, each request

i could also have a weight wi (the amount gained by satisfying request i), and the goal

would be to maximize our income: the sum of the weights of all satisfied requests.

This leads to the weighted interval scheduling problem, the second of the representative

problems we described at the beginning of the course.

Clearly, there are many other variants and combinations that can arise. Interestingly,

these problems have quite a range of difficulty. The purpose of this section has been to show

that the simple interval scheduling problem discussed above can be solved optimally by a

greedy algorithm. Our algorithm can in fact be extended to solve variation (i) in which we

seek to schedule many identical resources. We will see a method for solving variation (ii)

when we discuss dynamic programming.

Selecting Breakpoints

We now discuss another natural setting in which one can see a greedy algorithm “staying

ahead” of all other algorithms, and ending up with an optimal solution.

Suppose that three of your friends, inspired by repeated viewings of that cult phenomenon

The Blair Witch Project, have decided to hike the Appalachian Trail this summer. They

3.1. THE GREEDY ALGORITHM STAYS AHEAD 63

want to hike as much as possible per day, but — for obvious reasons — not after dark.

On a map they’ve identified a large set of good stopping points for camping, and they’re

considering the following system for deciding when to stop for the day. Each time they come

to a potential stopping point, they determine whether they can make it to the next one

before nightfall. If they can make it, then they keep hiking; otherwise, they stop.

Despite many significant drawbacks, they claim this system does have one good feature.

“Given that we’re only hiking in the daylight,” they claim, “it minimizes the number of

camping stops we have to make.”

Is this true? Might it not help to stop early on some day, so as to get better synchronized

with camping opportunities on future days? The proposed system is a greedy algorithm,

and we wish to determine whether it minimizes the number of stops needed.

To think about the fundamental issue at work here, we make a large number of simplifying

assumptions. We’ll model the Appalachian Trail as a long line segment of length L, and

assume that your friends can hike d miles per day (independent of terrain, weather conditions,

and so forth). We’ll assume that the potential stopping points are located at distances

x1, x2, . . . , xn from the start of the Trail. We’ll also assume (very generously) that your

friends are always correct when they estimate whether they can make it to the next stopping

point before nightfall.

We’ll say that a set of stopping points is valid if the distance between each adjacent pair

is at most d, the first is at distance at most d from the start of the Trail, and the last is

at distance at most d from the end of the Trail. Thus, a set of stopping points is valid if

one could camp only at these places, and still make it across the whole Trail. We’ll assume,

naturally, that the full set of n stopping points is valid; otherwise, there would be no way

make it the whole way. Thus, the question is whether your friends’ greedy algorithm —

hiking as long as possible each day — is optimal, in the sense that it finds a valid set whose

size is as small as possible.

Indeed, the algorithm is optimal; and we will prove this by identifying the natural sense in

which the stopping points it chooses “stay ahead” of any other legal set of stopping points.

Note an interesting contrast with the interval scheduling problem — there we needed to

prove that a greedy algorithm maximized a quantity of interest, whereas here we seek to

minimize a certain quantity.

Let R = {xp1, . . . , xpk
} denote the set of stopping points chosen by the greedy algo-

rithm, and suppose by way of contradiction that there is a valid set of stopping points

S = {xq1 , . . . , xqm
} with m < k. We claim the following.

(3.4) For each j = 1, 2, . . . , m, we have xpj
≥ xqj

.

Proof. We prove this by induction on j. The case j = 1 follows directly from the definition

of the greedy algorithm — your friends travel as long as possible on the first day before

stopping.

64 CHAPTER 3. GREEDY ALGORITHMS

Now let j > 1 and assume that the claim is true for all i < j. Then

xqj
− xpj−1

≤ xqj
− xqj−1

≤ d,

where the first inequality follows from our assumption that the claim is true for j − 1, and

the second inequality follows from the fact that S is a valid set. This means that your friends

have the option of hiking all the way from xpj−1
to xqj

in one day; and hence the location

xpj
at which they finally stop can only be farther along than xqj

.

(3.4) implies in particular that xqm
≤ xpm

. Now, if m < k, then we must have xpm
< L−d,

for otherwise your friends would never have stopped at the location xpm+1 . Combining these

two inequalities, we have concluded that xqm
< L − d; but this contradicts the assumption

that S is a valid set of stopping points.

Consequently, we cannot have m < k, and so we have proved

(3.5) The greedy algorithm produces a valid set of stopping points of minimum possible

size.

3.2 Exchange Arguments

Scheduling to Minimize Lateness

A greedy algorithm similar to what we saw for interval scheduling works for a closely related

problem as well. Proving its optimality for this problem, however, will require a more

sophisticated kind of analysis.

Consider again a situation in which we have a single resource, and a set of n requests to

use the resource for an interval of time. Assume that the resource is available starting at time

s. In contrast to the previous problem, however, each request is now more flexible: Instead

of a start time and finish time, the request i has a deadline di, and requires a contiguous time

interval of length ti, but it is willing to be scheduled at any time before the deadline. Each

accepted request must be assigned an interval of time of length ti, and different requests

must be assigned non-overlapping intervals.

Selecting a maximum-size subset of requests that can be satisfied turns out to be com-

putationally very difficult. Here we consider the following other natural objective function.

Suppose that we plan to satisfy each request, but we are allowed to let certain requests run

late. Thus, beginning at our overall start time s, we will assign each request i an interval of

time of length ti; let us denote this interval by [si, fi], with fi = si + ti. Unlike the previous

problem, then, the algorithm must actually determine a start time (and hence a finish time)

for each interval.

We say that a request i is late if it misses the deadline, i.e., if fi > di. The lateness of

a such a request i is defined to be li = fi − di. We will say that li = 0 if request i is not

3.2. EXCHANGE ARGUMENTS 65

late. The goal in our new optimization problem will be to schedule all requests, using non-

overlapping intervals, so as to minimize the maximum lateness, L = maxi li. This problem

arises naturally when scheduling jobs that need to use a single machine, and so we will refer

to our requests as jobs.

The natural greedy algorithm for this problem is analogous to the greedy algorithm for the

previous interval scheduling problem. We will consider the jobs in increasing order of their

deadlines di, and schedule them in this order. This greedy rule for constructing schedules is

often called Earliest Deadline First.

By renaming the jobs if necessary, we can assume that the jobs are labeled in the order

of their deadlines, i.e., we have that

d1 ≤ . . . ≤ dn.

We will simply schedule all jobs in this order. Again, let s be the start time for all jobs. Job

1 will start at time s = s1 and end at time f1 = s1 + t1; job 2 will start at time s2 = f1 and

end at time f2 = s2 + t2; and so forth. We will use f to denote the finishing time of the last

scheduled job. We write this algorithm below.

Order the requests in order of their deadlines

Assume for simplicity of notation that d1 ≤ . . . ≤ dn

Initially, f = s
Consider the requests i = 1, . . . , n in this order

Assign request i to the time interval from si = f to fi = f + ti
Let f = f + ti

End

Return the set of scheduled intervals [si, fi] for i = 1, . . . , n

As before, the greedy algorithm is quite natural here — we always work on the job with

the closest deadline — but it is not clear that the resulting solution should be optimal. For

example, if we were looking for things to worry about, we could observe that the decision

rule it uses to order the jobs throws away half the data — the lengths of the jobs — and

focuses only on their deadlines.

To reason about the optimality of the algorithm, we first observe that the schedule it

produces has no “gaps” — times when the machine is not working, yet there are requests

left. The time that passes during a gap will be called idle time — there is work to be done,

yet for some reason the machine is sitting idle. Not only does the schedule A produced by

our algorithm have no idle time; it is also very easy to show that there is an optimal schedule

with this property. We do not write down a proof for this.

(3.6) There is an optimal schedule with no idle time.

66 CHAPTER 3. GREEDY ALGORITHMS

Now, how can we prove that our schedule A is optimal, i.e., that its maximum lateness

L is as small as possible? We will consider an optimal schedule O. Our plan here is to

gradually modify O, preserving its optimality at each step, but eventually transforming it

into a schedule that is identical to the schedule A found by the greedy algorithm. We refer

to this type of analysis as an exchange argument.

We first try characterizing schedules in the following way. We say that a schedule A′ has

an inversion if a request i with deadline di is scheduled before another request j with earlier

deadline dj < di. Notice that, by definition, the schedule A produced by our algorithm has

no inversions. If there are requests with identical deadlines, then there can be many different

schedules with no inversions. However, we can show that all these schedules have the same

maximum lateness.

(3.7) All schedules with no inversions and no idle time have the same maximum lateness.

Proof. If two different schedules have neither inversions nor idle time, then they differ only

in the order in which jobs with identical deadlines are scheduled. Consider such a deadline d.

In both schedules, the jobs with deadline d are scheduled consecutively (after all jobs with

earlier deadlines, and before all jobs with later deadlines). Among the jobs with deadline d,

the last one has the the greatest lateness, and this lateness does not depend on the order of

the jobs.

The main step in showing the optimality of our algorithm is to establish that there is

an optimal schedule that has no inversions and no idle time. To do this, we will start with

any optimal schedule having no idle time; we will then convert it into a schedule with no

inversions without increasing its maximum lateness. Thus, the resulting scheduling after this

conversion will be optimal as well.

(3.8) There is an optimal schedule that has no inversions and no idle time.

Proof. By (3.6) , there is an optimal schedule O with no idle time. The proof will consist of

a sequence of statements. The first of these is simple to establish:

(a) If O has an inversion, then there is a pair of requests i and j such that j is scheduled

immediately after i and has dj < di.

Suppose O has at least one inversion, and let i and j be a pair of such adjacent inverted

requests.

We will decrease the number of inversions in O by swapping the requests i and j in the

schedule O. The pair (i, j) formed an inversion in O, this inversion is eliminated by the

swap, and no new inversions are created. Thus we have

3.2. EXCHANGE ARGUMENTS 67

(b) After swapping i and j we get a schedule with one fewer inversion.

The hardest part of this proof is to argue that the inverted schedule is also optimal.

(c) The new swapped schedule has a maximum lateness no larger than that of O.

Proof of (c). We invent some notation to describe the schedule O: assume that each request

r is scheduled for the time interval [s′r, f
′
r], and has lateness l′r. Let L′ = maxr l′r denote the

maximum lateness of this schedule. Let O′′ denote the swapped schedule; we will use s′′r , f ′′
r ,

l′′r , and L′′ to denote the corresponding quantities in the swapped schedule. Now recall our

two adjacent, inverted jobs i and j. All jobs other than jobs i and j finish at the same time

in the two schedules. Using the notation just introduced, we have

s′i ≤ f ′
i = s′i + ti = s′j ≤ f ′

j = s′j + tj.

Job j will get finished earlier in the new schedule, and hence the swap does not increase the

lateness of job j.

The thing to worry about is clearly job i — its lateness has been increased, and what if

this actually raises the maximum lateness of the whole schedule? Note that after the swap,

job i will be finished at time f ′
j, when job j was finished in the schedule O. If job i is late,

its lateness is l′′i = f ′′
i − di = f ′

j − di. Our assumption di > dj implies that the lateness l′′i of

request i in the new schedule is at most l′j, the lateness of request j in the schedule O. This

shows that the swap does not increase the maximum lateness of the schedule.

We finish the proof of (3.8) by observing that the schedule O can have at most
(

n
2

)

inversions (if all pairs are inverted), and hence after at most
(

n
2

)

swaps we get an optimal

schedule with no inversions.

The optimality of our greedy algorithm now follows immediately.

(3.9) The schedule A produced by the greedy algorithm has optimal maximum lateness

L.

Proof. (3.8) proves that an optimal schedule with no inversions exists. Now by (3.7) all

schedules with no inversions have the same maximum lateness, and so the schedule obtained

by the greedy algorithm is optimal.

Variations. There are many possible generalizations of this scheduling problem. For ex-

ample, we assumed that all jobs are available to start at the common start time s. A natural,

but harder, version of this problem would contain requests i that in addition to the deadline

di and the requested time ti would also have an earliest possible starting time ri. This earliest

possible starting time is usually referred to as the release time. Problems with release times

68 CHAPTER 3. GREEDY ALGORITHMS

arises naturally in scheduling problems where requests can take the form “Can I reserve the

room for a 2 hour lecture, sometime between 1pm and 5pm?” Our proof that the greedy

algorithm finds an optimal solution relied crucially on the fact that all jobs are available at

the common start time s. (Do you see where?) Unfortunately, as we will see later in the

course, this more general version of the problem is much more difficult to solve optimally.

An Optimal Caching Strategy

We now consider a problem that involves processing a sequence of requests of a different

form, and we develop an algorithm whose analysis requires a more subtle use of the exchange

argument. The problem is that of cache maintenance.

To motivate caching, consider the following image. You’re working on a long research

paper, and your draconian library will only allow you to have eight books checked out at

once. You know that you’ll probably need more than this over the course of working on the

paper, but any point in time, you’d like to have ready access to the eight books that are

most relevant at that time. How should you decide which books to check out, and when

should you return some in exchange for others, to minimize the number of times you have

to exchange a book at the library?

This is precisely the problem that arises when dealing with a memory hierarchy: There

is a small amount of data that can be accessed very quickly, and a large amount of data

that requires more time to access; and you must decide which pieces of data to have close at

hand.

Memory hierarchies have been a ubiquitous feature of computers since very early in their

history. To begin with, data in the main memory of a processor can be accessed much more

quickly than the data on its hard disk; but the disk has much more storage capacity. Thus,

it is important to keep the most regularly used pieces of data in main memory, and go to

disk as infrequently as possible. The same phenomenon, qualitatively, occurs with on-chip

caches in modern processors — these can be accessed in a few cycles, and so data can be

retrieved from cache much more quickly than it can be retrieved from main memory. This is

another level of hierarchy: small caches have faster access time than main memory, which in

turn is smaller and faster to access than disk. And one can see extensions of this hierarchy

in many other settings. When one uses a Web browser, the disk often acts as a cache for

frequently visited Web pages — since going to disk is still much faster than downloading

something over the Internet.

Caching is a general term for the process of storing a small amount of data in a fast

memory, so as to reduce the amount of time spent interacting with a slow memory. In the

examples above, the on-chip cache reduces the need to fetch data from main memory, the

main memory acts as a cache for the disk, and the disk acts as a cache for the Internet.

(And indeed, your desk acts as a cache for the campus library, and the assorted facts you’re

3.2. EXCHANGE ARGUMENTS 69

able to remember without looking them up constitute a cache for the books on your desk.)

In order for caching to be as effective as possible, it should generally be the case that

when you go to access a piece of data, it is already in the cache. To achieve this, a cache

maintenance algorithm is responsible for determining what to keep in the cache, and what

to evict from the cache when new data needs to be brought in.

Of course, as the caching problem arises in different settings, it involves various different

considerations based on the underlying technology. For our purposes here, though, we take

an abstract view of the problem that underlies most of these settings. We consider a set U

of n pieces of data stored in main memory. We also have a faster memory, the cache, that

can hold k < n pieces of data at any one time. We will assume that the cache initially holds

some k items. A sequence of data items D = d1, d2, . . . , dm drawn from U is presented to us

— this is the sequence of memory references we must process — and in processing them we

must decide at all time which k items to keep in the cache. When item di is presented, we

can access it very quickly if it is already in the cache; otherwise, we are required to bring it

from main memory into the cache and — if the cache is full — to evict some other piece of

data that is currently in the cache, so as to make room for di. This is called a cache miss,

and we want to have as few of these as possible.

Thus on a particular sequence of memory references, a cache maintenance algorithm

determines an eviction schedule — specifying which items should be evicted from the cache

at which points in the sequence — and this determines the contents of the cache and the

number of misses over time. For example, suppose we have three items {a, b, c}, the cache

size is k = 2, and we are presented with the sequence

a, b, c, b, c, a, b.

Suppose that the cache initially contains the items a and b. Then on the third item in the

sequence, we could evict a so as to bring in c; and on the sixth item we could evict c so as

to bring in a; we thereby incur two cache misses over the whole sequence. After thinking

about it, one concludes that any eviction schedule for this sequence must include at least

two cache misses.

Under real operating conditions, cache maintenance algorithms must process memory

references d1, d2, . . . without knowledge of what’s coming in the future; but for purposes

of evaluating the quality of these algorithms, systems researchers very early on sought to

understand the nature of the optimal solution to the caching problem. Given a full sequence

S of memory references, what is the eviction schedule that incurs as few cache misses as

possible?

In the 1960’s, Les Belady showed that the following simple rule will always incur the

minimum number of misses:

When di needs to be brought into the cache,

70 CHAPTER 3. GREEDY ALGORITHMS

evict the item that is needed the farthest into the future.

We will call this the Farthest-in-Future algorithm. When it is time to evict something, we

look at the next time that each item in the cache will be referenced, and choose the one for

which this is as late as possible.

This is a very natural algorithm. At the same time, the fact that it is optimal on all

sequences is somewhat more subtle than it first appears. Why evict the item that is needed

farthest in the future, as opposed – for example – to the one that will be used least frequently

in the future? Moreover, consider a sequence like

a, b, c, d, a, d, e, a, d, b, c

with k = 3 and items {a, b, c} initially in the cache. The Farthest-in-Future rule will

produce a schedule S that evicts c on the fourth step and b on the seventh step; a different

eviction schedule S ′ evicts b on the fourth step and c on the seventh step, incurring the

same number of misses. So in fact it’s easy to find cases where schedules produced by rules

other than Farthest-in-Future are just as good; and given this flexibility, why might a

deviation from Farthest-in-Future early on not yield an actual savings farther along in

the sequence? For example, on the seventh step in the above example, the schedule S ′ is

actually evicting an item (c) that is needed farther into the future than the item evicted at

this point by Farthest-in-Future, since Farthest-in-Future gave up c earlier on.

These are at least the kinds of things one should worry about before concluding that

Farthest-in-Future really is optimal. In thinking about the example above, we quickly

appreciate that it doesn’t really matter whether b or c is evicted at the fourth step, since the

other one should be evicted at the seventh step; so given a schedule where b is evicted first,

we can swap the choices of b and c without changing the cost. This reasoning — swapping

one decision for another — forms the first outline of an exchange argument that proves the

optimality of Farthest-in-Future.

Before delving into this analysis, we clear up one important issue. All the cache main-

tenance algorithms that we’ve been considering so far produce schedules that only bring an

item d into the cache in a step i if there is a request to d in step i, and d is not already in the

cache. Let us call such a schedule reduced — it does the minimal amount of work necessary

in a given step. But in general, one could imagine an algorithm that produced schedules

that are not reduced, by bringing in items in steps when they are not requested. We now

show that for every non-reduced schedule, there is an equally good reduced schedule.

Let S be a schedule that may not be reduced. We define a new schedule S — the reduction

of S — as follows. In any step i where S brings in an item d that has not been requested,

our constructing of S “pretends” to do this, but actually leaves d in main memory. It only

actually brings d into the cache in the next step j after this when d is requested. In this way,

3.2. EXCHANGE ARGUMENTS 71

the cache miss incurred by S in step j can be charged to the earlier cache miss incurred by

S in step i. Hence we have the following fact.

(3.10) S is a reduced schedule that incurs at most as many misses as the schedule S.

We now proceed with the exchange argument showing that Farthest-in-Future is op-

timal. Consider an arbitrary sequence D of memory references; let SFF denote the schedule

produced by Farthest-in-Future, and let S∗ denote a schedule that incurs the minimum

possible number of misses. We will now gradually “transform” the schedule S∗ into the

schedule SFF , one eviction decision at a time, without increasing the number of misses.

Here is the basic fact we use to perform one step in the transformation.

(3.11) Let S be a reduced schedule that makes the same eviction decisions as SFF through

the first j items in the sequence, for a number j. Then there is a reduced schedule S ′ that

makes the same eviction decisions as SFF through the first j + 1 items, and incurs no more

misses than S does.

Proof. Consider the (j + 1)st request, to item d = dj+1. Since S and SFF have agreed up

to this point, they have the same cache contents. So if d is in the cache for both, then no

eviction decision is necessary (both schedules are reduced), and so S in fact agrees with SFF

through step j +1, and we can set S ′ = S. Similarly, if d needs to be brought into the cache,

but S and SFF both evict the same item to make room for d, then we can again set S ′ = S.

So the interesting case arises when d needs to be brought into the cache — and to do

this S evicts item f while SFF evicts item e 6= f . Here, S and SFF do not already agree

through step j + 1 — S has e in cache while SFF has f in cache. Hence we must actually

do something non-trivial to construct S ′.

As a first step, we should have S ′ evict e rather than f . Now we need to further ensure

that S ′ incurs no more misses than S. An easy way to do this would be to have S ′ agree

with S for the remainder of the sequence; but this is no longer possible, since S and S ′ have

slightly different caches from this point onward. So instead, we’ll have S ′ try to get its cache

back to the same state as S as quickly as possible, while not incurring unnecessary misses —

once the caches are the same, we can finish the construction of S ′ by just having it behave

like S.

Specifically, from request j+2 onward, S ′ behaves exactly like S until one of the following

things happens for the first time.

(i) There is a request to an item g 6= e, f that is not in the cache of S, and S evicts e to

make room for it. Since S ′ and S only differ on e and f , it must be that g is not in

the cache of S ′ either; so we can have S ′ evict f , and now the caches of S and S ′ are

the same. We can then have S ′ behave exactly like S for the rest of the sequence.

72 CHAPTER 3. GREEDY ALGORITHMS

(ii) There is a request to f , and S evicts an item e′. If e′ = e, then we’re all set: S ′

can simply access f from the cache, and after this step the caches of S and S ′ will

be the same. If e′ 6= e, then we have S ′ evict e′ as well, and bring in e from main

memory; this too results in S and S ′ having the same caches. However, we must be

careful here, since S ′ is no longer a reduced schedule — it brought in e when it wasn’t

immediately needed. So to finish this part of the construction, we further transform

S ′ to its reduction S ′ using (3.10) ; this doesn’t increase the number of misses of S ′,

and it still agrees with SFF through step j + 1.

Hence in both these cases, we have a new reduced schedule S ′ that agrees with SFF through

the first j + 1 items, and incurs no more misses than S does. And crucially — here is where

we use the defining property of the Farthest-in-Future algorithm — one of these two cases

will arise before there is a reference to e. This is because in step j +1, Farthest-in-Future

evicted the item (e) that would be needed farthest in the future; so before there could be a

request to e, there would have to be a request to f , and then case (ii) above would apply.

Using this result, it is easy to complete the proof of optimality. We begin with an optimal

schedule S∗, and use (3.11) to construct a schedule S1 that agrees with SFF through the first

step. We continue applying (3.11) inductively for j = 1, 2, 3, . . . , m, producing schedules

Sj that agree with SFF through the first j steps. Each schedule incurs no more misses than

the previous one; and by definition Sm = SFF , since it agrees with it through the whole

sequence. Thus we have

(3.12) SFF incurs no more misses than any other schedule S∗, and hence is optimal.

Caching under Real Operating Conditions. As we discussed above, Belady’s optimal

algorithm provides a benchmark for caching performance; but in applications, one generally

must make eviction decisions on the fly without knowledge of future requests. Experi-

mentally, the best caching algorithms under this requirement seem to be variants of the

Least-Recently-Used (LRU) principle, which proposes evicting the item from the cache that

was referenced longest ago.

If one thinks about it, this is just Belady’s algorithm with the direction of time reversed

— longest in the past rather than farthest in the future. It is effective because applications

generally exhibit locality of reference — a running program will generally keep accessing

the things it has just been accessing. (It is easy to invent pathological exceptions to this

principle, but these are relatively rare in practice.) Thus, one wants to keep the more recently

referenced items in the cache.

Although we won’t go into it here, it’s worth mentioning that long after the adoption of

LRU in practice, Sleator and Tarjan showed that one could actually provide some theoretical

analysis of the performance of LRU , bounding the number of misses it incurs relative to

Farthest-in-Future.

3.3. SHORTEST PATHS IN A GRAPH 73

3.3 Shortest Paths in a Graph

Some of the basic algorithms for graphs are based on greedy design principles. Here we apply

a greedy algorithm to the problem of finding shortest paths, and in the next section we look

at the construction of minimum-cost spanning trees.

As we’ve seen, graphs are often used to model networks in which one travels from one

point to another — traversing a sequence of highways through interchanges, or traversing

a sequence of communication links through intermediate routers. As a result, a basic algo-

rithmic problem is to determine the shortest path between nodes in a graph. We may ask

this as a point-to-point question: given nodes u and v, what is the shortest u-v path? Or

we may ask for more information: given a start node s, what is the shortest path from s to

each other node?

The concrete set-up of the shortest paths problem is as follows. We are given a directed

graph G = (V, E), with a designated start node s. We assume that s has a path to each

other node in G. Each edge e has a length `e > 0, indicating the time (or distance, or cost)

it takes to traverse e. For a path P , the length of P — denoted `(P) — is the sum of the

lengths of all edges in P . Our goal is to determine the shortest path from s to each other

node in the graph. We should mention that although the problem is specified for a directed

graph, we can handle the case of an undirected graph by simply replacing each undirected

edge (u, v) of length ` by two directed edges (u, v) and (v, u), each of length `.

In 1959, Edsger Dijkstra proposed a very simple greedy algorithm to solve the single-

source shortest paths problem. We begin by describing an algorithm that just determines the

length of the shortest path from s to each other node in the graph; it is then easy to produce

the paths as well. The algorithm maintains a set S of vertices u for which we have determined

a shortest-path distance d(u) from s; this is the “explored” part of the graph. Initially

S = {s}, and d(s) = 0. Now, for each node v ∈ V−S, we determine the shortest path the can

be constructed by traveling along a path through the explored part S to some u ∈ S, followed

by the single edge (u, v). That is, we consider the quantity d′(v) = min
e=(u,v):u∈S

d(u) + `e. We

choose the node v ∈ V−S for which this quantity is minimized, add v to S, and define d(v)

to be the value d′(v).

Dijkstra’s Algorithm (G, `)
Let S be the set of explored nodes.

For each u ∈ S, we store a distance d(u).
Initially S = {s} and d(s) = 0.
While S 6= V

Select a node v /∈ S with at least one edge from S for which

d′(v) = min
e=(u,v):u∈S

d(u) + `e is as small as possible.

Add v to S and define d(v) = d′(v).
EndWhile

74 CHAPTER 3. GREEDY ALGORITHMS

It is simple to produce the s-u paths corresponding to these distances. As each node

v is added to the set S, we simply record the edge (u, v) on which it achieved the value

min
e=(u,v):u∈S

d(u) + `e. The path Pv is implicitly represented by these edges: if (u, v) is the edge

we have stored for v, then Pv is just (recursively) the path Pu followed by the single edge

(u, v). In other words, to construct Pv, we simply start at v, follow the edge we have stored

for v in the reverse direction to u; then follow the edge we have stored for u in the reverse

direction to its predecessor; and so on until we reach s. Note that s must be reached, since

our backwards walk from v visits nodes that were added to S earlier and earlier.

Now we must prove the correctness of Dijkstra’s algorithm, by showing that these paths

Pu really are shortest paths. Dijkstra’s algorithm is greedy in the sense that we always form

the shortest new s-v path we can make from a path in S followed by a single edge. And we

prove its correctness using our first style of analysis, showing a concrete sense in which it

“stays ahead” of any other solution.

In previous analysis based on the “greedy algorithm stays ahead” principle, the underlying

problem always had a natural one-dimensional character — so it was clear what “staying

ahead” meant. But what do we mean here? It turns out that the set S has a special property

that is not obvious from the statement of the algorithm — nodes are added to it in increasing

order of their distance from s. Thus, the first k nodes discovered by Dijkstra’s algorithm are

at least as close to s as the first k nodes discovered by any algorithm.

(3.13) Consider the point in the algorithm at which |S| = k. Then S consists of the k

closest nodes to s, and for each u ∈ S, the path Pu is a shortest s-u path.

Note that this fact immediately establishes the correctness of Dijkstra’s algorithm, by

applying it when |S| = n, in which case S includes all nodes.

Proof of (3.13) . We prove this by induction on k. The case k = 1 is easy, since then we

have S = {s} and d(s) = 0. Suppose the claim holds for some value of k ≥ 1 and set S; we

now grow S to size k + 1 by adding the node v. Let (u, v) be the final edge on our s-v path

Pv.

By induction hypothesis, Pu is the shortest s-u path for each u ∈ S. Now, consider any

other s-v path P ; we wish to show that it is at least as long as Pv. See Figure 3.1. Let z

be the first node on P that is not in S, let y be the node on P just before z, and let P ′ be

the sub-path of P from s to y. Then `(P ′) ≥ `(Py), and so `(P ′) + `(y, z) ≥ d′(z). But the

full path length `(P) is at least as large as `(P ′) + `(y, z), and by our choice of v we have

d′(z) ≥ d′(v). Thus, `(P) ≥ d′(v) = `(Pv), establishing that no other s-v path is shorter

than Pv.

Moreover, the argument in the previous paragraph also establishes that for any node

z 6∈ S, the length of the shortest s-z path is at least d′(z), which is at least d′(v). Thus v is

as close to s as any other node in V−S.

3.3. SHORTEST PATHS IN A GRAPH 75

s

v

z

Pv

P

Figure 3.1: The shortest path Pv and an alternate path P in the graph.

Here are two things to notice about Dijkstra’s algorithm and its analysis. First, the

algorithm does not always find shortest paths if some of the edges can have negative lengths.

(Do you see where the proof breaks?) Many shortest-path applications involve negative edge

lengths, and a more complex algorithm — due to Bellman and Ford — is required for this

case. We will see this algorithm when we consider the topic of dynamic programming.

The second observation is that Dijkstra’s algorithm is, in a sense, even simpler than we’ve

described here. Recall how breadth-first search discovered the nodes of G one “layer” at a

time, from a start node s. Dijkstra’s algorithm is really a “continuous” version of breadth-

first search, motivated by the following picture. Suppose the edges of G formed a system of

pipes filled with water, joined together at the nodes; each edge e has length `e and a fixed

cross-sectional area. Now suppose an extra droplet of water falls at node s, and starts a

wave from s. As the wave expands out of node s at a constant speed, the expanding sphere

of wavefront reaches nodes in increasing order of their distance from s. It is easy to believe

(and also true) that the path taken by the wavefront to get to any node v is a shortest path.

Indeed, it is easy to see that this is exactly the path to v found by Dijkstra’s algorithm,

and that the nodes are discovered by the expanding water in the same order that they are

discovered by Dijkstra’s algorithm.

Implementation. To conclude our discussion of Dijkstra’s algorithm, we consider its run-

ning time. There are n − 1 iterations of the While loop for a graph with n nodes, as each

iteration adds a new node v to S. Selecting the correct node v efficiently is a more subtle is-

sue. One’s first impression is that each iteration would have to consider each node v 6∈ S, and

go through all the edges between S and v to determine the minimum min
e=(u,v):u∈S

d(u) + `e, so

that we can select the node v for which this minimum is smallest. For a graph with m edges,

computing all these minima can take O(m) time, so this would lead to an implementation

that runs in O(mn) time.

76 CHAPTER 3. GREEDY ALGORITHMS

We can do considerably better if we use the right data structures. First, we will explicitly

maintain the values of the minima d′(v) = min
e=(u,v):u∈S

d(u) + `e for each node v ∈ V −S, rather

than recomputing them in each iteration. We can further improve the efficiency by keeping

the nodes V − S in a priority queue with d′(v) as their keys. A priority queues is a data

structure that should be familiar from earlier courses. It is designed to maintain a set of

n elements, each with a key; it can efficiently insert elements, delete elements, change an

element’s key, and extract the element with minimum key. We will need the third and fourth

of the above operations: ChangeKey and ExtractMin.

How do we implement Dijkstra’s algorithm using a priority queue? To select the node v

that should be added to the set S, we need the ExtractMin operation. To see how to update

the keys, consider an iteration in which node v is added to S, and let w /∈ S be a node

that remains in the priority queue. What do we have to do to update the value of d′(w)?

If (v, w) is not an edge, then we don’t have to do anything: the set of edges considered

in the minimum min
e=(u,w):u∈S

d(u) + `e is exactly the same before and after adding v to S. If

e′ = (v, w) ∈ E, on the other hand, then the new value for the key is min(d′(w), d(v) + `e′).

If d′(w) > d(v) + `e′ then we need to use the ChangeKey operation to decrease the key of

node w appropriately. This ChangeKey operation can occur at most once per edge, when the

tail of the edge e′ is added to S. In summary, we have the following result.

(3.14) Using a priority queue, Dijkstra’s algorithm can be implemented on a graph with n

nodes and m edges to run in O(m) time, plus the time for n ExtractMin, and m ChangeKey

operations.

Using a simple heap-based priority queue as discussed in previous courses, each prior-

ity queue operation can be made to run in O(logn) time. Thus the overall time for the

implementation is O(m log n).

3.4 The Minimum Spanning Tree Problem

We now apply an exchange argument in the context of a second fundamental problem on

graphs — the minimum spanning tree problem. Suppose we have a set of locations V =

{v1, v2, . . . , vn}, and we want to build a communication network on top of them. The network

should be connected — there should be a path between every pair of nodes — but subject

to this requirement, we wish to build it as cheaply as possible.

For certain pairs (vi, vj), we may build a direct link between vi and vj for a certain cost

c(vi, vj) > 0. Thus, we can represent the set of possible links that may be built using a graph

G = (V, E), with a positive cost ce associated with each edge e = (vi, vj). The problem is to

find a subset of the edges T ⊆ E so that the graph (V, T) is connected, and the total cost

3.4. THE MINIMUM SPANNING TREE PROBLEM 77

∑

e∈T

ce is as small as possible. (We will assume that the full graph G is connected; otherwise,

no solution is possible.)

Here is a basic thing to notice.

(3.15) Let T be a minimum-cost solution to the network design problem defined above.

Then (V, T) is a tree.

Proof. By definition, (V, T) must be connected; we show that it also will contain no cycles.

Indeed, suppose it contained a cycle C, and let e be any edge on C. We claim that (V, T−{e})
is still connected; for any path that previously used the edge e can now go “the long way”

around the remainder of the cycle C instead. It follows that (V, T − {e}) is also a valid

solution to the problem, and it is cheaper — a contradiction.

We will call a subset T ⊆ E a spanning tree of G if (V, T) is a tree. In view of (3.15) ,

our network design problem is generally called the minimum spanning tree problem.

Unless G is a very simple graph, it will have exponentially many different spanning trees,

whose structures may look very different from one another. It is not at all clear how to

find the cheapest among these efficiently. In this section, we will discuss two simple greedy

algorithms for the problem. Both algorithms are very natural, and the hard part in each

case is to actually prove that they produce a minimum spanning tree for every graph.

In describing both algorithms, we will make the simplifying assumption that all edge

costs are distinct from one another (i.e. no two are equal). This assumption makes make

things cleaner to think about, while preserving the all main issues in the problem.

Prim’s Algorithm

The first approach we discuss, Prim’s algorithm, is a natural adaptation of Dijkstra’s al-

gorithm to the present setting. Rather than seeking short paths from a single source, we

now want to link up all the nodes of an undirected graph; this new goal is in a sense more

“symmetric.” At all times, we maintain a growing set S ⊆ V , together with a spanning tree

T on S. (S will start out as a single arbitrary node.) We grow S one node at a time; but

rather than looking at the distances of nodes from a particular source in S, we use an even

simpler greedy rule: we just choose the node v that costs the least to add in this step. Given

a node v, what’s the least we have to pay to attach v to S? We need to join it to some node

in S by an edge, so the cost is min
e=(u,v):u∈S

ce. This “attachment cost” is the crucial quantity

in Prim’s algorithm.

Prim’s Algorithm (G, c)
Initially S = {s} and T = ∅
While S 6= V

78 CHAPTER 3. GREEDY ALGORITHMS

Select a node v /∈ S which has an edge into S and

for which the attachment cost min
e=(u,v):u∈S

ce is as small as possible

Add v to S
Add the edge e where the minimum is obtained to T

EndWhile

Return the spanning tree T

It is fairly easy to see that the set of edges T returned by the algorithm is indeed a

spanning tree of G.

(3.16) If the graph G is connected, then the set of edges T returned by the algorithm is

a spanning tree of G.

Proof. First we make sure that the algorithm is well defined: could we reach a point where

S 6= V , but there is no v /∈ S with an edge into S? In this case, the algorithm could never

finish the While loop. But this cannot happen, for in a connected graph G every subset of

nodes S ⊆ V has an edge leaving the set; i.e., an edge (v, w) with v /∈ S and w ∈ S.

To show that the set of edges T forms a spanning tree, we prove the following fact by

induction on the number of steps of the algorithm: in each iteration, the graph (S, T) is a

tree. (In other words, T “spans” S at all times.) This is clearly true when S = {s}. And if

it is true for some set S, then it remains true after we add a node v to S, and an edge (v, w)

(w ∈ S) to T — the resulting graph is still connected, and no cycle has been created.

As has been the case with previous greedy algorithms, making up the algorithm was not

difficult. What is not at all obvious is that Prim’s algorithm is computing a spanning tree of

minimum cost. With Dijkstra’s algorithm, we ultimately came up with an intuitive reason

why it was doing the right thing — it was essentially visiting nodes by a uniformly expanding

“wavefront.” But Prim’s algorithm seems harder to believe in — why shouldn’t it be the

case that adding a more expensive edge initially would make it possible to add many cheap

edges later on, so that suppressing our greed in the short term might pay off in the long

run? And here is another thing to worry about: We know that we’re trying to minimize

a quantity (the spanning tree cost) that is a sum of many terms; yet nowhere does Prim’s

algorithm ever add two numbers together.

We now prove that the algorithm does find a minimum spanning tree. This result holds

even without the assumption that all edge costs are distinct; but adopting this assumption

will make the proof somewhat cleaner, and it will yield an additional consequence: the

minimum spanning tree of G is unique.

The key to our analysis is the following fact. Its proof contains the fundamental exchange

argument we need for reasoning about the algorithm — given any spanning tree, we will

transform it into one that is no more expensive, and “closer” to the one found by Prim’s

algorithm.

3.4. THE MINIMUM SPANNING TREE PROBLEM 79

(3.17) Assume that all edge costs are distinct. For any subset ∅ 6= S ⊂
6= V , let edge e be

the minimum-cost edge with one end in S and the other in V −S. Then every minimum-cost

spanning tree contains the edge e.

Proof. Let T be a minimum-cost spanning tree that does not contain e. We need to show

that T does not have the minimum possible cost. Write e = (v, w). T is a spanning tree, so

there must is a path P in T from v to to w. Starting at v, suppose we follow the nodes of

P in sequence; there is a first node w′ on P that is in V − S. See Figure 3.2. Let v′ ∈ S be

the node just before w′ on P , and let e′ = (v′, w′) be the edge joining them. Thus, e′ is an

edge of T with one end in S and the other in V − S.

v

w
e

S

v’ w’

e’

Figure 3.2: A spanning tree T that does not contain edge e.

Let’s consider the set of edges T ′ = T − {e′} ∪ {e}. First we claim that T ′ is a spanning

tree. Clearly it has n−1 edges. Also, (V, T ′) is connected, since (V, T) is connected, and any

path in (V, T) that used the edge e′ = (v′, w′) can now be “re-routed” in (V, T ′) to follow

the portion of P from v′ to v, then the edge e, and then the portion of P from w to w′.

We noted above that the edge e′ has one end in S and the other in V − S. But e is the

cheapest edge with this property, and so ce < ce′. (The inequality is strict since no two edges

have the same cost.) Thus the total cost of T ′ is less than that of T , which proves that T is

not a minimum-cost spanning tree.

Now, to show that Prim’s algorithm produces a minimum spanning tree, we observe that

every time we add an edge e to the tree, e is the minimum-cost edge leaving the set S, and

so we can apply (3.17) .

(3.18) If all edge costs are distinct, then the spanning tree T returned by Prim’s algorithm

is the unique minimum-cost spanning tree in G.

Proof. Assume by way of contradiction that T ∗ 6= T is a minimum spanning tree. Consider

the first iteration in which Prim’s algorithm adds an edge e /∈ T ∗. Let S be the set of nodes

80 CHAPTER 3. GREEDY ALGORITHMS

already connected at the start of this iteration; and let e = (v, w) with v /∈ S and w ∈ S.

We claim that e is the minimum-cost edge with one end in S and the other end in V − S.

For if there were a cheaper edge e′ = (v′, w′) with v′ /∈ S and w′ ∈ S, then it would have

been considered in this iteration; and the algorithm would have selected such a node v ′ and

edge e′, rather than v and e. Thus, (3.17) implies that e is in every minimum spanning tree,

which contradicts our assumption that T ∗ was minimum.

Hence, no tree other than T can be a minimum spanning tree, which proves the claim.

As we noted above, one can prove by very similar means that Prim’s algorithm finds a

minimum spanning tree even when the edge costs are not all distinct; but in this case, it is

not necessarily the unique minimum spanning tree.

Implementation. The proof of correctness of Prim’s algorithm was quite different from

the proof of Dijkstra’s; but their implementations are almost identical. By analogy with

Dijkstra’s algorithm, we need to be able to decide which node v to add next to S, by

maintaining the attachment costs a(v) = min
e=(u,v):u∈S

ce for each node v ∈ V −S. As before, we

keep the nodes in a priority queue with a(v) as the keys; we select a node with an ExtractMin

operation, and update the attachment costs using ChangeKey operations. There are n − 1

iterations in which we perform ExtractMin, and we perform ChangeKey at most once for

each edge. Thus we have

(3.19) Using a priority queue, Prim’s algorithm can be implemented on a graph with n

nodes and m edges to run in O(m) time, plus the time for n ExtractMin, and m ChangeKey

operations.

Using a heap-based priority queue, we can implement both ExtractMin and ChangeKey

in O(log n) time, and so get an overall running time of O(m log n). Alternatively, we can

use an array-based priority queue, taking O(n) time on each ExtractMin, but only O(1) for

ChangeKey , and so get an overall running time of O(n2), which is better for dense graphs.

Kruskal’s Algorithm

We derived the optimality of Prim’s algorithm from the very general statement of (3.17) .

Looking more closely at the proof of its optimality, we can ask what was really important in

the analysis. Could we construct a minimum spanning tree by greedily considering edges in

any order at all? Clearly this would be too much to expect. What (3.17) proves is that we

can safely add an edge to our solution as long as it is the minimum-cost edge leaving some

set S.

There is another basic greedy algorithm for the minimum spanning tree problem that

follows this principle, and in a sense it is even simpler than Prim’s algorithm. This is

3.4. THE MINIMUM SPANNING TREE PROBLEM 81

Kruskal’s algorithm, and it behaves as follows. It initially sorts all the edges in order of

increasing weight. It then considers them in a single pass; when it comes to the edge e, it

includes it in the tree if and only if it does not form a cycle when added to the set of edges

already chosen.

Kruskal’s Algorithm (G, c)
Sort the edges in order of increasing cost.

Initially T = ∅
For each edge e = (v, w) in the sorted order

If there is currently no path from v to w in (V, T) then

(Adding e won’t create a cycle)

Add e to T.
EndIf

EndFor

Return the set of edges T

Note the basic difference between Prim and Kruskal. In Prim’s algorithm we grow a

single connected component S, and as the algorithm proceeds we add more and more nodes

to this one component. In Kruskal’s algorithm there are many components growing at the

same time, and edges are added to connect up these separate components.

(3.20) If all edge costs are distinct, then the set of edges T returned by Kruskal’s algo-

rithm is the unique minimum-cost spanning tree in G.

Proof. First we argue that (V, T) is a tree. By the definition of the algorithm, it has no

cycles. Suppose it is not connected; then there are two nodes v and w with no path between

them. Let S be the set of all nodes to which v has a path in (V, T). Since G is connected,

and φ 6= S ⊂
6= V , we know there is at least one edge with exactly one end in S; let ê be such

an edge. Note that ê /∈ T . But then when Kruskal’s algorithm considered ê, it could have

added it without forming a cycle, a contradiction. Thus (V, T) is a tree.

The proof that T is a minimum spanning tree is almost the same as our proof of the

optimality of Prim’s algorithm: each edge added by Kruskal’s algorithm is the cheapest edge

leaving some set S, and so it is guaranteed to belong to every minimum spanning tree, by

(3.17) . More concretely, suppose that T ∗ 6= T is a minimum spanning tree, and consider the

first edge e = (v, w) 6∈ T ∗ that Kruskal’s algorithm adds to T . At the point just before e is

added, let S be the set of all nodes to which v has a path in (V, T). e is the cheapest edge

with exactly one end in S, and so by (3.17) , every minimum spanning tree contains e. This

contradicts our assumption that T ∗ was minimum.

One can prove similarly that Kruskal’s algorithm also produces a minimum spanning tree

when the edge costs are not all distinct.

82 CHAPTER 3. GREEDY ALGORITHMS

What do we need in order to implement Kruskal’s algorithm? The first step, sorting

the edges, takes time O(m log m). For the remainder of the algorithm, we need to maintain

the connected components of (V, T) as they change under the insertion of new edges. It

is possible to design a data structure for maintaining the connected components that al-

lows us to test whether or not to add each edge e in O(log m) time; consequently, we can

implement Kruskal’s algorithm in O(m logm) time. We will not discuss the details of this

implementation here.

A Clustering Perspective

We motivated the construction of minimum spanning trees through the problem of finding

a low-cost network connecting a set of sites. But minimum spanning trees arise in a range

of different settings, several of which appear on the surface to be quite different from one

another. An appealing example is the role that minimum spanning trees play in the area of

clustering.

Clustering arises whenever one has a collection of objects — say a set of photographs,

or documents, or micro-organisms — that one is trying to classify, or organize into coherent

groups. Faced with such a situation, it is natural to look first for measures of how similar or

dissimilar each pair of objects is. One common approach is to define a distance function on

the objects, with the interpretation that objects at larger distance from one another are less

similar to each other. For points in the physical world, distance may actually be related to

their physical distance; but in many applications, distance takes on a much more abstract

meaning. For example, we could define the distance between two species to be the number

of years since they diverged in the course of evolution; we could define the distance between

two images in a video stream as the number of corresponding pixels at which their intensity

values differ by at least some threshold.

Now, given a distance function on the objects, the clustering problem seeks to divide

them into groups so that, intuitively, objects within the same group are “close,” and objects

in different groups are “far apart.” Starting from this vague set of goals, the field of clustering

branches into a vast number of technically different approaches, each seeking to formalize

this general notion of what a good set of groups might look like.

Clusterings of Maximum Spacing. Minimum spanning trees play a role in one of the

most basic formalizations, which we describe here. Suppose we are given a set U of n objects,

labeled p1, p2, . . . , pn. For each pair, pi and pj, we have a numerical distance d(pi, pj). We

require only that d(pi, pi) = 0; that d(pi, pj) > 0 for distinct pi and pj; and that distances

are symmetric: d(pi, pj) = d(pj, pi).

Suppose we are seeking to divide the objects in U into k groups, for a given parameter k.

We say that a k-clustering of U is a partition of U into k non-empty sets C1, C2, . . . , Ck. We

3.4. THE MINIMUM SPANNING TREE PROBLEM 83

define the spacing of a k-clustering to be the minimum distance between any pair of points

lying in different clusters. Given that we want points in different clusters to be far apart

from one another, a natural goal is to seek the k-clustering with maximum possible spacing.

The question now becomes the following. There are exponentially many different k-

clusterings of a set U ; how can we efficiently find the one that has maximum spacing?

To do this, we consider growing a graph on the vertex set U . The connected components

will be the clusters, and we will try to bring nearby points together into the same cluster

as rapidly as possible. (This way, they don’t end up as points in different clusters that are

very close together.) Thus, we start by drawing an edge between the closest pair of points.

We then draw an edge between the next closest pair of points. We continue adding edges

between pairs of points, in order of increasing distance d(pi, pj). In this way, we are growing

a graph H on U edge-by-edge, with connected components corresponding to clusters. Notice

that we are only interested in the connected components of the graph H, not the full set of

edges; so if we are about to add the edge (pi, pj) and find that pi and pj already belong to the

same cluster, we will refrain from adding the edge — it’s not necessary, since it won’t change

the set of components. In this way, our graph-growing process will never create a cycle;

so H will actually be a union of trees. Each time we add an edge that spans two distinct

components, it is as though we have merged the two corresponding clusters. In the clustering

literature, the iterative merging of clusters in this way is often termed single-link clustering,

a special case of hierarchical agglomerative clustering. (“Agglomerative” here means that

we combine clusters; “single-link” means that we do so as soon as a single link joins them

together.)

What is the connection to minimum spanning trees? It’s very simple: although our graph-

growing procedure was motivated by this cluster-merging idea, our procedure is precisely

Kruskal’s minimum spanning tree algorithm. We are doing exactly what Kruskal’s algorithm

would do if given a graph G on U in which there was an edge of cost d(pi, pj) between each

pair of nodes (pi, pj). The only different is that we seek a k-clustering, so we stop the

procedure once we obtain k connected components.

In other words, we are running Kruskal’s algorithm but stopping it just before it adds its

last k−1 edges. This is equivalent to taking the full minimum spanning tree T (as Kruskal’s

algorithm would have produced it), deleting the k−1 most expensive edges (the ones that we

never actually added), and defining the k-clustering to be the resulting connected components

C1, C2, . . . , Ck. Thus, iteratively merging clusters is equivalent to computing a minimum

spanning tree and deleting the most expensive edges.

So two superficially different approaches yield the same set of clusters C1, C2, . . . , Ck.

Have we achieved our goal of producing clusters that are as spaced apart as possible? The

following claim shows that we have.

(3.21) The components C1, C2, . . . , Ck formed by deleting the k− 1 most expensive edges

84 CHAPTER 3. GREEDY ALGORITHMS

of the minimum spanning tree T constitute a k-clustering of maximum spacing.

Proof. Let C denote the clustering C1, C2, . . . , Ck. The spacing of C is precisely the length

d∗ of the (k − 1)st most expensive edge in the minimum spanning tree; this is the length of

the edge that Kruskal’s algorithm would have added next, at the moment we stopped it.

Now, consider some other k-clustering C ′, which partitions U into non-empty sets C ′
1, C

′
2, . . . , C

′
k.

We must show that the spacing of C ′ is at most d∗.

Since the two clusterings C and C ′ are not the same, it must be that one of our clusters

Cr is not a subset of any of the k sets C ′
s in C ′. Hence there are points pi, pj ∈ Cr that belong

to different clusters in C ′; say pi ∈ C ′
s and pj ∈ C ′

t 6= C ′
s.

Since pi and pj belong to the same component Cr, it must be that Kruskal’s algorithm

added all the edges of a pi-pj path P before we stopped it. In particular, this means that

each edge on P has length at most d∗. Now, we know that pi ∈ C ′
s but pj 6∈ C ′

s; so let p′

be the first node on P that does not belong to C ′
s, and let p be the node on P that comes

just before p′. We have just argued that d(p, p′) ≤ d∗, since the edge (p, p′) was added by

Kruskal’s algorithm. But p and p′ belong to different sets in the clustering C ′, and hence the

spacing of C ′ is at most d(p, p′) ≤ d∗. This completes the proof.

3.5 Minimum-Cost Arborescences: A Multi-Phase Greedy

Algorithm

As we’ve seen more and more examples of greedy algorithms, we’ve come to appreciate that

there can be considerable diversity in the way they operate. Many greedy algorithms make

some sort of an initial “ordering” decision on the input, and then process everything in a

one-pass fashion. Others make more incremental decisions — still local and opportunistic,

but without a global “plan” in advance. In this lecture, we consider a problem that stresses

our intuitive view of greedy algorithms still further. The problem is to compute a minimum-

cost arborescence of a directed graph. This is essentially an analogue of the the minimum

spanning tree problem for directed, rather than undirected, graphs; we will see that the move

to directed graphs introduces significant new complications. At the same time, the style of

the algorithm has a strongly “greedy” flavor, since it still constructs a solution according to

a local, myopic rule.

We begin with the basic definitions. Let G = (V, E) be a directed graph in which we’ve

distinguished one node r ∈ V as a root. An arborescence (with respect to r) is essentially a

directed tree rooted at r — specifically, it is a subgraph T = (V, F) such that T is a spanning

tree of G if we ignore the direction of edges; and there is a path in T from r to each other

node v ∈ V if we take the direction of edges into account. Figure 3.3 gives an example of

two different arborescences in the same directed graph.

There is a useful equivalent way to characterize arborescences, and this is as follows.

3.5. MINIMUM-COST ARBORESCENCES: A MULTI-PHASE GREEDY ALGORITHM85

r rr

Figure 3.3: Two arborescences in the same underlying graph.

(3.22) A subgraph T = (V, F) of G is an arborescence with respect to root r if and only

if T has no cycles, and for each node v 6= r, there is exactly one edge in F that enters v.

Proof. If T is an arborescence with root r, then indeed each other node v has exactly one

entering edge: this is simply the last edge on the unique r-v path.

Conversely, suppose T has no cycles, and each node v 6= r has exactly one entering edge.

Then in order to establish that T is an arborescence, we need only show that there is a

directed path from r to each other node v. Here is how to construct such a path. We start

at v, and repeatedly follow edges in the backward direction. Since T has no cycles, we can

never return to a node we’ve previously visited, and thus this process must terminate. But

r is the only node without incoming edges, and so the process must in fact terminate by

reaching r; the sequence of nodes thus visited yields a path (in the reverse direction) from r

to v.

Just as every connected graph has a spanning tree, it is easy to show that a directed

graph has an arborescence rooted at r provided that r can reach every node. Indeed, in this

case, the edges traversed in a breadth-first search beginning at r will form an arborescence.

(3.23) A directed graph G has an arborescence rooted at r if and only if there is a directed

path from r to each other node.

Now, here is the central problem for this lecture: we are given a directed graph G =

(V, E), with a distinguished root node r and with a non-negative cost ce ≥ 0 on each edge,

and we wish to compute an arborescence rooted at r of minimum total cost. (We will refer

to this as the optimal arborescence.) We will assume throughout that G at least has an

arborescence rooted at r; by (3.23) , this can be easily checked at the outset.

Given the relationship between arborescences and trees, the minimum-cost arborescence

problem certainly has a strong initial resemblance to the minimum spanning tree problem for

86 CHAPTER 3. GREEDY ALGORITHMS

r

1

2
10

48

10

4

2 2

r

2

4

4

2 2

Figure 3.4: A directed graph with edge costs, and the optimal arborescence rooted at r.

undirected graphs. Thus, it’s natural to start by asking whether the ideas we developed for

that problem can be carried over directly to this setting. For example, must the minimum-

cost arborescence contain the cheapest edge in the whole graph? Can we safely delete the

most expensive edge on a cycle, confident that it cannot be in the optimal arborescence?

Clearly the cheapest edge e in G will not belong to the optimal arborescence if e enters

the root; for the arborescence we’re seeking is not supposed to have any edges entering the

root. But even if the cheapest edge in G belongs to some arborescence rooted at r, it need

not belong to the optimal one, as the example of Figure 3.4 shows. Indeed, including the

edge of cost 1 in Figure 3.4 would prevent us from including the edge of cost 2 out of the

root r (since there can only be one entering edge per node); and this in turn would force us

to incur an unacceptable cost of 10 when we included one of the other edges out of r. This

kind of argument never clouded our thinking in the minimum spanning tree problem, where

it was always safe to plunge ahead and include the cheapest edge; it suggests that finding

the optimal arborescence may be a significantly more complicated task. (It’s worth noticing

that the optimal arborescence in Figure 3.4 also includes the most expensive edge on a cycle;

with a different construction, one can even cause the optimal arborescence to include the

most expensive edge in the whole graph.)

Despite this, it is possible to design a greedy type of algorithm for this problem; it’s just

that our myopic rule for choosing edges has to be a little more sophisticated. First, let’s

consider a little more carefully what goes wrong with the general strategy of including the

cheapest edges. Here’s a particular version of this strategy: for each node v 6= r, select the

cheapest edge entering v (breaking ties arbitrarily), and let F ∗ be this set of n − 1 edges.

Now consider the subgraph (V, F ∗). Since we know that the optimal arborescence needs to

3.5. MINIMUM-COST ARBORESCENCES: A MULTI-PHASE GREEDY ALGORITHM87

have exactly one edge entering each node v 6= r, and (V, F ∗) represents the cheapest possible

way of making these choices, we have the following fact.

(3.24) If (V, F ∗) is an arborescence, then it is a minimum-cost arborescence.

So the difficulty is that (V, F ∗) may not be an arborescence. In this case, (3.22) implies

that (V, F ∗) must contain a cycle C, which does not include the root. We now must decide

how to proceed in this situation.

To make matters somewhat clearer, we begin with the following observation. Every

arborescence contains exactly one edge entering each node v 6= r; so if we pick some node v

and subtract a uniform quantity from the cost of every edge entering v, then the total cost

of every arborescence changes by exactly the same amount. This means, essentially, that

the actual cost of the cheapest edge entering v is not important; what matters is the cost of

all other edges entering v relative to this. Thus, let yv denote the minimum cost of any edge

entering v. For each edge e = (u, v), with cost ce ≥ 0, we define its modified cost c′e to be

ce− yv. Note that since ce ≥ yv, all the modified costs are still non-negative. More crucially,

our discussion motivates the following fact.

(3.25) T is an optimal arborescence in G subject to costs {ce} if and only if it is an

optimal arborescence subject to costs {c′e}.

Proof. Consider an arbitrary arborescence T . The difference between its cost with costs

{ce} and {c′e} is exactly
∑

v 6=r yv; i.e.

∑

e∈T

ce −
∑

e∈T

c′e =
∑

v 6=r

yv.

This is because an arborescence has exactly one edge entering each node v in the sum. Since

the difference between the two costs is independent of the choice of the arborescence T , we

see that T has minimum cost subject to {ce} if and only if it has minimum cost subject to

{c′e}.

We now consider the problem in terms of the costs {c′e}. All the edges in our set F ∗

have cost 0 under these modified costs; and so if (V, F ∗) contains a cycle C, we know that

all edges in C have cost 0. This suggests that we can afford to use as many edges from C as

we want (consistent with producing an arborescence), since including edges from C doesn’t

raise the cost.

Thus, our algorithm continues as follows. We contract C into a single super-node, ob-

taining a smaller graph G′ = (V ′, E ′). Here, V ′ contains the nodes of V−C, plus a single

node c∗ representing C. We transform each edge e ∈ E to an edge e′ ∈ E ′ by replacing each

end of e that belongs to C with the new node c∗. This can result in G′ having parallel edges

88 CHAPTER 3. GREEDY ALGORITHMS

(i.e. edges with the same ends), which is fine; however, we delete self-loops from E ′ — edges

that have both ends equal to c∗. We recursively find an optimal arborescence in this smaller

graph G′, subject to the costs {c′e}. The arborescence returned by this recursive call can be

converted into an arborescence of G by including all but one edge on the cycle C.

In summary, here is the full algorithm.

For each node v 6= r
Let yv be the minimum cost of an edge entering node v.
Modify the costs of all edges e entering v to c′e = ce − yv.

Choose one 0-cost edge entering each v 6= r, obtaining a set F ∗.

If F ∗ forms an arborescence, then return it.

Else there is a directed cycle C ⊆ F ∗

Contract C to a single super-node, yielding a graph G′ = (V ′, E ′).
Recursively find an optimal arborescence (V ′, F ′) in G′

with costs {c′e}.
Extend (V ′, F ′) to an arborescence (V, F) in G

by adding all but one edge of C.

It is easy to implement this algorithm so that it runs in polynomial time. But does it

lead to an optimal arborescence? Before concluding that it does, we need to worry about the

following point: not every arborescence in G corresponds to an arborescence in the contracted

graph G′; could we perhaps “miss” the true optimal arborescence in G by focusing on G′?

What is true is the following: the arborescences of G′ are in one-to-one correspondence with

arborescences of G that have exactly one edge entering the cycle C; and these corresponding

arborescences have the same cost with respect to {c′e}, since C consists of 0-cost edges. (We

say that an edge e = (u, v) enters C if v ∈ C; it does not matter in this definition whether

or not u also belongs to C.) So to prove that our algorithm finds an optimal arborescence

in G, we must prove that G has an optimal arborescence with exactly one edge entering C.

We do this now.

(3.26) Let C be a cycle in G consisting of edges of cost 0, such that r 6∈ C. Then there

is an optimal arborescence rooted at r that has exactly one edge entering C.

Proof. Consider any arborescence T in G. Since r has a path in T to every node, there is at

least one edge of T that enters C. If T enters C exactly once, then we are done. Otherwise,

suppose that T enters C more than once; we show how to modify it to obtain an arborescence

of no greater cost that enters C exactly once.

Let e = (a, b) be an edge entering C that lies on as short a path from r as possible; this

means in particular that no edges on the path from r to e can enter C. We delete all edges

of T that enter C, except for the edge e. We add in all edges of C except for the one edge

that enters b, the head of edge e. Let T ′ denote the resulting subgraph of G.

3.6. EXERCISES 89

We claim that T ′ is also an arborescence. This will establish the result, since the cost of

T ′ is clearly no greater than that of T : the only edges of T ′ that do not also belong to T have

cost 0. So why is T ′ an arborescence? First, observe that T ′ has exactly one edge entering

each node v 6= r, and no edge entering r. So T ′ has exactly n − 1 edges, and hence if we

can show there is an r-v path in T ′ for each v, then T ′ must be connected in an undirected

sense, and hence a tree. Thus it would satisfy our initial definition of an arborescence.

So consider any node v 6= r; we must show there is an r-v path in T ′. If v ∈ C, we can

use the fact that the path in T from r to e has been preserved in the construction of T ′;

thus, we can reach v by first reaching e, and then following the edges of the cycle C. Now

suppose that v 6∈ C, and let P denote the r-v path in T . If P did not touch C, then it still

exists in T ′. Otherwise, let w be the last node in P ∩ C, and let P ′ be the sub-path of P

from w to v. Observe that all the edges in P ′ still exist in T ′. We have already argued that

w is reachable from r in T ′, since it belongs to C; concatenating this path to w with the

sub-path P ′ gives us a path to v as well.

We can now put all the pieces together to argue that our algorithm is correct.

(3.27) The algorithm finds an optimal arborescence rooted at r in G.

Proof. The proof is by induction on the number of nodes in G. If the edges of F form

an arborescence, then the algorithm returns an optimal arborescence by (3.24) . Otherwise,

we consider the problem with the modified costs {c′e}, which is equivalent by (3.25) . After

contracting a 0-cost cycle C to obtain a smaller graph G′, the algorithm produces an optimal

arborescence in G′ by the inductive hypothesis. Finally, by (3.26) , there is an optimal

arborescence in G that corresponds to the optimal arborescence computed for G′.

3.6 Exercises

1. You are consulting for a trucking company that does a large amount of business ship-

ping packages between New York and Boston. The volume is high enough that they

have to send a number of trucks each day between the two locations. Trucks have a

fixed limit W on the maximum amount of weight they are allowed to carry. Boxes

arrive to the New York station one-by-one, and each package i has a weight wi. The

trucking station is quite small, so at most one truck can be at the station at any time.

Company policy requires that boxes are shipped in the order they arrive — otherwise,

a customer might get upset upon seeing a box that arrived after his make it to Boston

faster. At the moment the company is using a simple greedy algorithm for packing:

they pack boxes in the order they arrive, and whenever the next box does not fit, they

send the truck on its way.

90 CHAPTER 3. GREEDY ALGORITHMS

But they wonder if they might be using too many trucks, and want your opinion on

whether the situation can be improved. Here is how they are thinking: maybe one

could decrease the number of trucks needed by sometimes sending off a truck that was

less full, and in this way allowing the next few trucks to be better packed.

Prove that the greedy algorithm currently in use actually minimizes the number of

trucks that are needed. Your proof should follow the type of analysis we used for the

Interval Scheduling problem — it should establish the optimality of this greedy packing

algorithm by identifying a measure under which it “stays ahead” of all other solutions.

2. Some of your friends have gotten into the burgeoning field of time-series data mining,

in which one looks for patterns in sequences of events that occur over time. Purchases

at stock exchanges — what’s being bought — are one source of data with a natural

ordering in time. Given a long sequence S of such events, your friends want an efficient

way to detect certain “patterns” in them — e.g. they may want to know if the four

events

buy Yahoo, buy eBay, buy Yahoo, buy Oracle

occur in this sequence S, in order but not necessarily consecutively.

They begin with a finite collection of possible events (e.g. the possible transactions)

and a sequence S of n of these events. A given event may occur multiple times in S

(e.g. Yahoo stock may be bought many times in a single sequence S). We will say that

a sequence S ′ is a subsequence of S if there is a way to delete certain of the events from

S so that the remaining events, in order, are equal to the sequence S ′. So for example,

the sequence of four events above is a subsequence of the sequence

buy Amazon, buy Yahoo, buy eBay, buy Yahoo, buy Yahoo, buy Oracle

Their goal is to be able to dream up short sequences and quickly detect whether they

are subsequences of S. So this is the problem they pose to you: Give an algorithm

that takes two sequences of events — S ′ of length m and S of length n, each possibly

containing an event more than once — and decides in time O(m + n) whether S ′ is a

subsequence of S.

3. Let’s consider a long, quiet country road with houses scattered very sparsely along

it. (We can picture the road as a long line segment, with an eastern endpoint and a

western endpoint.) Further, let’s suppose that despite the bucolic setting, the residents

of all these houses are avid cell phone users. You want to place cell phone base stations

at certain points along the road, so that every house is within 4 miles of one of the

base stations.

Give an efficient algorithm that achieves this goal, using as few base stations as possible.

3.6. EXERCISES 91

4. Consider the following variation on the Interval Scheduling Problem from lecture. You

have a processor that can operate 24 hours a day, every day. People submit requests

to run daily jobs on the processor. Each such job comes with a start time and an end

time; if the job is accepted to run on the processor, it must run continuously, every

day, for the period between its start and end times. (Note that certain jobs can begin

before midnight and end after midnight; this makes for a type of situation different

from what we saw in the Interval Scheduling Problem.)

Given a list of n such jobs, your goal is to accept as many jobs as possible (regardless

of their length), subject to the constraint that the processor can run at most one job

at any given point in time. Provide an algorithm to do this with a running time that

is polynomial in n, the number of jobs. You may assume for simplicity that no two

jobs have the same start or end times.

Example: Consider the following four jobs, specified by (start-time, end-time) pairs.

(6 pm, 6 am), (9 pm, 4 am), (3 am, 2 pm), (1 pm, 7 pm).

The unique solution would be to pick the two jobs (9 pm, 4 am) and (1 pm, 7 pm),

which can be scheduled without overlapping.

5. Consider the following scheduling problem. You have a n jobs, labeled 1, . . . , n, which

must be run one at a time, on a single processor. Job j takes time tj to be processed.

We will assume that no two jobs have the same processing time; that is, there are no

two distinct jobs i and j for which ti = tj.

You must decide on a schedule: the order in which to run the jobs. Having fixed an

order, each job j has a completion time under this order: this is the total amount of

time that elapses (from the beginning of the schedule) before it is done being processed.

For example, suppose you have a set of three jobs {1, 2, 3} with

t1 = 3, t2 = 1, t3 = 5,

and you run them in this order. Then the completion time of job 1 will be 3, the

completion of job 2 will be 3 + 1 = 4, and the completion time of job 3 will be

3 + 1 + 5 = 9.

On the other hand, if you run the jobs in the reverse of the order in which they’re

listed (i.e. 3, 2, 1), then the completion time of job 3 will be 5, the completion of job

2 will be 5 + 1 = 6, and the completion time of job 1 will be 5 + 1 + 3 = 9.

(a) Give an algorithm that takes the n processing times t1, . . . , tn, and orders the jobs

so that the sum of the completion times of all jobs is as small as possible. (Such an

order will be called optimal.)

92 CHAPTER 3. GREEDY ALGORITHMS

The running time of your algorithm should be polynomial in n. You should give a

complete proof of correctness of your algorithm, and also briefly analyze the running

time. As above, you can assume that no two jobs have the same processing time.

(b) Prove that if no two jobs have the same processing time, then the optimal order is

unique. In other words, for any order other than the one produced by your algorithm

in (a), the sum of the completion times of all jobs is not as small as possible.

You may find it helpful to refer to parts of your analysis from (a).

6. Your friend is working as a camp counselor, and he is in charge of organizing activities

for a set of junior-high-school-age campers. One of his plans is the following mini-

triathalon exercise: each contestant must swin 20 laps of a pool, then bike 10 miles,

then run 3 miles. The plan is to send the contestants out in a staggered fashion, via

the following rule: the contestants must use the pool one at a time. In other words,

first one contestant swins the 20 laps, gets out, and starts biking. As soon as this first

person is out of the pool, a second contestant begins swimming the 20 laps; as soon as

he/she’s out and starts biking, a third contestant begins swimming . . . and so on.)

Each contestant has a projected swimming time (the expected time it will take him or

her to complete the 20 laps), a projected biking time (the expected time it will take

him or her to complete the 10 miles of bicycling), and a projected running time (the

time it will take him or her to complete the 3 miles of running. Your friend wants to

decide on a schedule for the triathalon: an order in which to sequence the starts of

the contestants. Let’s say that the completion time of a schedule is the earliest time

at which all contestants will be finished with all three legs of the triathalon, assuming

they each spend exactly their projected swimming, biking, and running times on the

three parts.

What’s the best order for sending people out, if one wants the whole competition to

be over as early as possible? More precisely, give an efficient algorithm that produces

a schedule whose completion time is as small as possible.

7. The wildly popular Spanish-language search engine El Goog needs to do a serious

amount of computation every time it re-compiles its index. Fortunately, the company

has at its disposal a single large super-computer together with an essentially unlimited

supply of high-end PC’s.

They’ve broken the overall computation into n distinct jobs, labeled J1, J2, . . . , Jn,

which can performed completely independently of each other. Each job consists of two

stages: first it needs to be pre-processed on the super-computer, and then it needs to

be finished on one of the PC’s. Let’s say that job Ji needs pi seconds of time on the

super-computer followed by fi seconds of time on a PC.

3.6. EXERCISES 93

Since there are at least n PC’s available on the premises, the finishing of the jobs can be

performed fully in parallel — all the jobs can be processed at the same time. However,

the super-computer can only work on a single job at a time, so the system managers

need to work out an order in which to feed the jobs to the super-computer. As soon as

the first job in order is done on the super-computer, it can be handed off to a PC for

finishing; at that point in time a second job can be fed to the super-computer; when

the second job is done on the super-computer, it can proceed to a PC regardless of

whether or not the first job is done or not (since the PC’s work in parallel); and so on.

Let’s say that a schedule is an ordering of the jobs for the super-computer, and the

completion time of the schedule is the earliest time at which all jobs will have finished

processing on the PC’s. This is an important quantity to minimize, since it determines

how rapidly El Goog can generate a new index.

Give a polynomial-time algorithm that finds a schedule with as small a completion

time as possible.

8. Suppose you have n video streams that need to be sent, one after another, over a

communication link. Stream i consists of a total of bi bits that need to be sent, at a

constant rate, over a period of ti seconds. You cannot send two streams at the same

time, so you need to determine a schedule for the streams: an order in which to send

them. Whichever order you choose, there cannot be any delays between the end of one

stream and the start of the next. Suppose your schedule starts at time 0 (and therefore

ends at time
∑n

i=1 ti, whichever order you choose). We assume that all the values bi

and ti are positive integers.

Now, because you’re just one user, the link does not want you taking up too much

bandwidth — so it imposes the following constraint, using a fixed parameter r:

(∗) For each natural number t > 0, the total number of bits you send over

the time interval from 0 to t cannot exceed rt.

Note that this constraint is only imposed for time intervals that start at 0, not for time

intervals that start at any other value.

We say that a schedule is valid if it satisfies the constraint (∗) imposed by the link.

The problem is: Given a set of n streams, each specified by its number of bits bi and

its time duration ti, as well as the link parameter r, determine whether there exists a

valid schedule.

94 CHAPTER 3. GREEDY ALGORITHMS

Example. Suppose we have n = 3 streams, with

(b1, t1) = (2000, 1), (b2, t2) = (6000, 2), (b3, t3) = (2000, 1),

and suppose the link’s parameter is r = 5000. Then the schedule that runs the streams

in the order 1, 2, 3, is valid, since the constraint (∗) is satisfied:

t = 1: the whole first stream has been sent, and 2000 < 5000 · 1
t = 2: half the second stream has also been sent,

and 2000 + 3000 < 5000 · 2
Similar calculations hold for t = 3 and t = 4.

(a) Consider the following claim:

Claim: There exists a valid schedule if and only if each stream i satisfies

bi < rti.

Decide whether you think the claim is true or false, and give a proof of either the claim

or its negation.

(b) Give an algorithm that takes a set of n streams, each specified by its number of

bits bi and its time duration ti, as well as the link parameter r, and determines whether

there exists a valid schedule.

The running time of your algorithm should be polynomial in n. You should prove that

your algorithm works correctly, and include a brief analysis of the running time.

9. (a) Suppose you’re a consultant for a communications company in northern New Jersey,

and they come to you with the following problem. Consider a fiber-optic cable that

passes through a set of n terminals, t1, . . . , tn, in sequence. (I.e. it begins at terminal

t1, then passes through terminals t2, t3, . . . , tn−1, and ends at tn.) Certain pairs of

terminals wish to establish a connection on which they can exchange data; for ti to tj
to establish a connection, they need to reserve access to the portion of the cable that

runs between ti and tj.

Now, the magic of fiber-optic technology is that you can accomodate all connections

simultaneously as follows. You assign a wavelength to each connection in such a way

that two connections requiring overlapping portions of the cable need to be assigned

different wavelengths. (So you can assign the same wavelength more than once, pro-

vided it is to connections using non-overlapping portions of the cable.) Of course, you

could safely assign a different wavelength to every single connection, but this would be

wasteful: the goal is to use as few distinct wavelengths as possible.

Define the load of the set of connection to be the maximum number of connections

that require access to any single point on the cable. The load gives a natural lower

3.6. EXERCISES 95

bound on the number of distinct wavelengths you need: if the load is L, then there is

some point on the cable through which L connections will be sending data, and each

of these needs a different wavelength.

For an arbitrary set of connections (each specified by a pair of terminals) having a load

of L, is it always possible to accomodate all connections using only L wavelengths?

If so, give an algorithm to assign each connection one of L possible wavelengths in a

conflict-free fashion; if not, give an example of a set of connections requiring a number

of wavelengths greater than its load.

(b) Instead of routing on a linear cable, let’s look at the problem of routing on a

ring. So we consider a circular fiber-optic cable, passing through terminals t1, . . . , tn in

clockwise order. For ti and tj to establish a connection, they must reserve the portion

of the cable extending clockwise from ti to tj.

The rest of the set-up is the same as in part (a), and we can ask the same question:

For an arbitrary set of connections (each specified by a pair of terminals) having a load

of L, is it always possible to accomodate all connections using only L wavelengths?

If so, give an algorithm to assign each connection one of L possible wavelengths in a

conflict-free fashion; if not, give an example of a set of connections requiring a number

of wavelengths greater than its load.

10. Timing circuits are a crucial component of VLSI chips; here’s a simple model of such

a timing circuit. Consider a complete binary tree with n leaves, where n is a power of

two. Each edge e of the tree has an associated length `e, which is a positive number.

The distance from the root to a given leaf is the sum of the lengths of all the edges on

the path from the root to the leaf.

The root generates a clock signal which is propagated along the edges to the leaves.

We’ll assume that the time it takes for the signal to reach a given leaf is proportional

to the distance from the root to the leaf.

Now, if all leaves do not have the same distance from the root, then the signal will

not reach the leaves at the same time, and this is a big problem: we want the leaves

to be completely synchronized, and all receive the signal at the same time. To make

this happen, we will have to increase the lengths of certain of the edges, so that all

root-to-leaf paths have the same length (we’re not able to shrink edge lengths). If we

achieve this, then the tree (with its new edge lengths) will be said to have zero skew.

Our goal is to achieve zero skew in a way that keeps the sum of all the edge lengths as

small as possible.

Give an algorithm that increases the lengths of certain edges so that the resulting tree

has zero skew, and the total edge length is as small as possible.

96 CHAPTER 3. GREEDY ALGORITHMS

Example. Consider the tree in accompanying figure, with letters naming the nodes

and numbers indicating the edge lengths.

v

v′
v′′

a b c d

2

2 1

1

2 1

Figure 3.5: An instance of the zero-skew problem.

The unique optimal solution for this instance would be to take the three length-1 edges,

and increase each of their lengths to 2. The resulting tree has zero skew, and the total

edge length is 12, the smallest possible.

11. Given a list of n natural numbers d1, d2, . . . , dn, show how to decide in polynomial

time whether there exists an undirected graph G = (V, E) whose node degrees are

precisely the numbers d1, d2, . . . , dn. (That is, if V = {v1, v2, . . . , vn}, then the degree

of vi should be exactly di.) G should not contain multiple edges between the same pair

of nodes, or “loop” edges with both endpoints equal to the same node.

12. Your friends are planning an expedition to a small town deep in the Canadian north

next winter break. They’ve researched all the travel options, and have drawn up a

directed graph whose nodes represent intermediate destinations, and edges represent

the roads between them.

In the course of this, they’ve also learned that extreme weather causes roads in this

part of the world to become quite slow in the winter, and may cause large travel delays.

They’ve found an excellent travel Web site that can accurately predict how fast they’ll

be able to travel along the roads; however, the speed of travel depends on the time of

year. More precisely, the Web site answers queries of the following form: given an edge

e = (v, w) connecting two sites v and w, and given a proposed starting time t from

location v, the site will return a value fe(t), the predicted arrival time at w. The Web

site guarantees that fe(t) ≥ t for all edges e and all times t (you can’t travel backwards

in time), and that fe(t) is a monotone increasing function of t (that is, you do not

arrive earlier by starting later). Other than that, the functions fe(t) may be arbitrary.

For example, in areas where the travel time does not vary with the season, we would

have fe(t) = t+ `e, where `e is the time needed to travel from the beginning to the end

of edge e.

3.6. EXERCISES 97

Your friends want to use the Web site to determine the fastest way to travel through

the directed graph from their starting point to their intended destination. (You should

assume that they start at time 0, and that all predictions made by the Web site are

completely correct.) Give a polynomial-time algorithm to do this, where we treat a

single query to the Web site (based on a specific edge e and a time t) as taking a single

computational step.

13. Suppose you are given an undirected graph G, with edge weights that you may assume

are all distinct. G has n vertices and m edges. A particular edge e of G is specified.

Give a algorithm with running time O(m + n) to decide whether e is contained in a

minimum-weight spanning tree of G.

14. Let G = (V, E) be an (undirected) graph with costs ce ≥ 0 on the edges e ∈ E. Assume

you are given a minimum cost spanning tree T in G. Now assume that a new edge is

added, connecting two nodes v, w ∈ V with cost c.

a Give an efficient algorithm to test if T remains the minimum cost spanning tree

with the new edge added. Make your algorithm run in time O(|E|). Can you

do it in O(|V |) time? Please note any assumption you make about what data

structure is used to represent the tree T and the graph G.

b Suppose T is no longer the minimum cost spanning tree. Give a linear time

algorithm to update the tree T to the new minimum cost spanning tree.

15. One of the basic motivations behind the minimum spanning tree problem is the goal

of designing a spanning network for a set of nodes with minimum total cost. Here, we

explore another type of objective: designing a spanning network for which the most

expensive edge is as cheap as possible.

Specifically, let G = (V, E) be a connected graph with n vertices, m edges, and positive

edge weights that you may assume are all distinct. Let T = (V, E ′) be a spanning tree

of G; we define the bottleneck edge of T to be the edge of T with the greatest weight.

A spanning tree T of G is a minimum bottleneck spanning tree if there is no spanning

tree T ′ of G with a lighter bottleneck edge.

(a) Is every minimum bottleneck tree of G a minimum spanning tree of G? Prove or

give a counter-example.

(b) Is every minimum spanning tree of G a minimum bottleneck tree of G? Prove or

give a counter-example.

(c)(∗) Give an algorithm with running time O(m + n) that, on input G, computes a

minimum bottleneck spanning tree of G. (Hint: You may use the fact that the median

of a set of k numbers can be computed in time O(k).)

98 CHAPTER 3. GREEDY ALGORITHMS

16. In trying to understand the combinatorial structure of spanning trees, we can consider

the space of all possible spanning trees of a given graph, and study the properties of

this space. This is a strategy that has been applied to many similar problems as well.

Here is one way to do this. Let G be a connected graph, and T and T ′ two different

spanning trees of G. We say that T and T ′ are neighbors if T contains exactly one

edge that is not in T ′, and T ′ contains exactly one edge that is not in T .

Now, from any graph G, we can build a (large) graph H as follows. The nodes of

H are the spanning trees of G, and there is an edge between two nodes of H if the

corresponding spanning trees are neighbors.

Is it true that for any connected graph G, the resulting graph H is connected? Give

a proof that H is always connected, or provide an example (with explanation) of a

connected graph G for which H is not connected.

17. Suppose you’re a consultant for the networking company CluNet, and they have the

following problem. The network that they’re currently working on is modeled by a

connected graph G = (V, E) with n nodes. Each edge e is a fiber-optic cable that is

owned by one of two companies — creatively named X and Y — and leased to CluNet.

Their plan is to choose a spanning tree T of G, and upgrade the links corresponding to

the edges of T . Their business relations people have already concluded an agreement

with companies X and Y stipulating a number k so that in the tree T that is chosen,

k of the edges will be owned by X and n− k − 1 of the edges will be owned by Y .

CluNet management now faces the following problem: It is not at all clear to them

whether there even exists a spanning tree T meeting these conditions, and how to find

one if it exists. So this is the problem they put to you: give a polynomial-time algorithm

that takes G, with each edge labeled X or Y , and either (i) returns a spanning tree

with exactly k edges labeled X, or (ii) reports correctly that no such tree exists.

18. Suppose you are given a connected graph G = (V, E), with a weight we on each edge

e. On the first problem set, we saw that when all edge weights are distinct, G has a

unique minimum-weight spanning tree. However, G may have many minimum-weight

spanning trees when the edge weights are not all distinct. Here, we formulate the

question: can Kruskal’s algorithm be made to find all the minimum-weight spanning

trees of G?

Recall that Kruskal’s algorithm sorted the edges in order of increasing weight, then

greedily processed edges one-by-one, adding an edge e as long as it did not form a cycle.

When some edges have the same weight, the phrase “in order of increasing weight” has

to be specified a little more carefully: we’ll say that an ordering of the edges is valid

if the corresponding sequence of edge weights is non-decreasing. We’ll say that a valid

3.6. EXERCISES 99

execution of Kruskal’s algorithm is one that begins with a valid ordering of the edges

of G.

For any graph G, and any minimum spanning tree T of G, is there a valid execution

of Kruskal’s algorithm on G that produces T as output? Give a proof or a counter-

example.

19. Every September, somewhere in a far-away mountainous part of the world, the county

highway crews get together and decide which roads to keep clear through the coming

winter. There are n towns in this county, and the road system can be viewed as a

(connected) graph G = (V, E) on this set of towns, each edge representing a road

joining two of them. In the winter, people are high enough up in the mountains that

they stop worrying about the length of roads and start worrying about their altitude

— this is really what determines how difficult the trip will be.

So each road — each edge e in the graph — is annotated with a number ae that gives

the altitude of the highest point on the road. We’ll assume that no two edges have

exactly the same altitude value ae. The height of a path P in the graph is then the

maximum of ae over all edges e on P . Finally, a path between towns i and j is declared

to be winter-optimal if it achieves the minimum possible height over all paths from i

to j.

The highway crews are going to select a set E ′ ⊆ E of the roads to keep clear through

the winter; the rest will be left unmaintained and kept off limits to travelers. They all

agree that whichever subset of roads E ′ they decide to keep clear, it should clearly have

the property that (V, E ′) is a connected subgraph; and more strongly, for every pair

of towns i and j, the height of the winter-optimal path in (V, E ′) should be no greater

than it is in the full graph G = (V, E). We’ll say that (V, E ′) is a minimum-altitude

connected subgraph if it has this property.

Given that they’re going to maintain this key property, however, they otherwise want

to keep as few roads clear as possible. One year, they hit upon the following conjecture:

The minimum spanning tree of G, with respect to the edge weights ae, is a

minimum-altitude connected subgraph.

(In an earlier problem, we claimed that there is a unique minimum spanning tree when

the edge weights are distinct. Thus, thanks to the assumption that all ae are distinct,

it is okay for us to speak of the minimum spanning tree.)

Initially, this conjecture is a somewhat counter-intuitive claim, since the minimum

spanning tree is trying to minimize the sum of the values ae, while the goal of minimiz-

ing altitude seems to be asking for a fairly different thing. But lacking an argument

to the contrary, they begin considering an even bolder second conjecture:

100 CHAPTER 3. GREEDY ALGORITHMS

A subgraph (V, E ′) is a minimum-altitude connected subgraph if and only if

it contains the edges of the minimum spanning tree.

Note that this second conjecture would immediately imply the first one, since the

minimum spanning tree contains its own edges.

So here’s the question:

(a) Is the first conjecture true, for all choices of G and altitudes ae? Give a proof or a

counter-example with explanation.

(b) Is the second conjecture true, for all choices of G and altitudes ae? Give a proof

or a counter-example with explanation.

20. One of the first things you learn in calculus is how to minimize a differentiable function

like y = ax2 + bx + c, where a > 0. The minimum spanning tree problem, on the other

hand, is a minimization problem of a very different flavor: there are now just a finite

number of possibilities for how the minimum might be achieved — rather than a

continuum of possibilities — and we are interested in how to perform the computation

without having to exhaust this (huge) finite number of possibilities.

One can ask what happens when these two minimization issues are brought together,

and the following question is an example of this. Suppose we have a connected graph

G = (V, E). Each edge e now has a time-varying edge cost given by a function fe :

R → R. Thus, at time t, it has cost fe(t). We’ll assume that all these functions are

positive over their entire range. Observe that the set of edges constituting the minimum

spanning tree of G may change over time. Also, of course, the cost of the minimum

spanning tree of G becomes a function of the time t; we’ll denote this function cG(t).

A natural problem then becomes: find a value of t at which cG(t) is minimized.

Suppose each function fe is a polynomial of degree 2: fe(t) = aet
2 + bet + ce, where

ae > 0. Give an algorithm that takes the graph G and the values {(ae, be, ce) : e ∈ E},
and returns a value of the time t at which the minimum spanning tree has minimum

cost. Your algorithm should run in time polynomial in the number of nodes and edges of

the graph G. You may assume that arithmetic operations on the numbers {(ae, be, ce)}
can be done in constant time per operation.

21. Suppose we are given a set of points P = {p1, p2, . . . , pn}, together with a distance

function d on the set P ; as usual, d is simply a function on pairs of points in P with

the properties that d(pi, pj) = d(pj, pi) > 0 if i 6= j, and that d(pi, pi) = 0 for each i.

We define a stratified metric on P to be any distance function τ that can be constructed

as follows. We build a rooted tree T with n leaves, and we associate with each node

3.6. EXERCISES 101

v of T (both leaves and internal nodes) a height hv. These heights must satisfy the

properties that h(v) = 0 for each leaf v, and if u is the parent of v in T , then h(u) ≥
h(v). We place each point in P at a distinct leaf in T . Now, for any pair of points pi

and pj, their distance τ(pi, pj) is defined as follows. We determine the least common

ancestor v in T of the leaves containing pi and pj, and define τ(pi, pj) = hv.

We say that a stratified metric τ is consistent with our distance function d if for all

pairs i, j, we have τ(pi, pj) ≤ d(pi, pj).

Give a polynomial-time algorithm that takes the distance function d and produces a

stratified metric τ with the following properties:

(i) τ is consistent with d, and

(ii) if τ ′ is any other stratified metric consistent with d, then τ ′(pi, pj) ≤ τ(pi, pj) for

each pair of points pi and pj.

22. Let’s go back to the original motivation for the minimum spanning tree problem: we

are given a connected, undirected graph G = (V, E) with positive edge lengths {`e},
and we want to find a spanning subgraph of it. Now, suppose we are willing to settle

for a subgraph H = (V, F) that is “denser” than a tree, and we are interested in

guaranteeing that for each pair of vertices u, v ∈ V , the length of the shortest u-v path

in H is not much longer than the length of the shortest u-v path in G. By the length

of a path P here, we mean the sum of `e over all edges e in P .

Here’s a variant of Kruskal’s algorithm designed to produce such a subgraph.

• First, we sort all the edges in order of increasing length. (You may assume all

edge lengths are distinct.)

• We then construct a subgraph H = (V, F) by considering each edge in order.

• When we come to edge e = (u, v), we add e to the subgraph H if there is currently

no u-v path in H. (This is what Kruskal’s algorithm would do as well.) On the

other hand, if there is a u-v path in H, we let duv denote the total length of the

shortest such path; again, length is with respect to the values {`e}. We add e to

H if 3`e < duv.

In other words, we add an edge even when u and v are already in the same connected

component, provided that the addition of the edge reduces their shortest-path distance

by a sufficient amount.

Let H = (V, F) be the subgraph of G returned by the algorithm.

(a) Prove that for every pair of nodes u, v ∈ V , the length of the shortest u-v path in

H is at most 3 times the length of the shortest u-v path in G.

102 CHAPTER 3. GREEDY ALGORITHMS

(b)(∗) Despite its ability to approximately preserve shortest-path distances, the

subgraph H produced by the algorithm cannot be too dense. Let f(n) denote the

maximum number of edges that can possibly be produced as the output of this algo-

rithm, over all n-node input graphs with edge lengths. Prove that

lim
n→∞

f(n)

n2
= 0.

23. Let G = (V, E) be a graph with n nodes in which each pair of nodes is joined by

an edge. There is a positive weight wij on each edge (i, j); and we will assume these

weights satisfy the triangle inequality wik ≤ wij + wjk. For a subset V ′ ⊆ V , we will

use G[V ′] to denote the subgraph (with edge weights) induced on the nodes in V ′.

We are given a set X ⊆ V of k terminals that must be connected by edges. We say

that a Steiner tree on X is a set Z so that X ⊆ Z ⊆ V , together with a sub-tree T of

G[Z]. The weight of the Steiner tree is the weight of the tree T .

Show that the problem of finding a minimum-weight Steiner tree on X can be solved

in time O(nO(k)).

24. Recall the problem of computing a minimum-cost arborescence in a directed graph

G = (V, E), with a cost ce ≥ 0 on each edge. Here we will consider the case in which

G is a directed acyclic graph; that is, it contains no directed cycles.

As in general directed graphs, there can in general be many distinct minimum-cost so-

lutions. Suppose we are given a directed acyclic graph G = (V, E), and an arborescence

A ⊆ E with the guarantee that for every e ∈ A, e belongs to some minimum-cost ar-

borescence in G. Can we conclude that A itself must be a minimum-cost arborescence

in G? Give a proof, or a counter-example with explanation.

25. Consider a directed graph G = (V, E) with a root r ∈ V and nonnegative costs on the

edges. In this problem we consider variants of the min-cost arborescence algorithm.

(a) The algorithm discussed in Section 3.5 works as follows: we modify the costs,

consider the subgraph of zero-cost edges, look for a directed cycle in this subgraph,

and contract it (if one exists). Argue briefly that instead of looking for cycles, we can

instead identify and contract strongly connected components of this subgraph.

(b) In the course of the algorithm, we defined yv to be the min cost of an edge entering

v, and we modified the costs of all edges e entering node v to be c′e = ce− yv. Suppose

we instead use the following modified cost: c′′e = max(0, ce − 2yv). This new change is

likely to turn more edges 0 cost. Suppose, now we find an arborescence T of 0 cost.

Prove that this T has cost at most twice the cost of the minimum cost arborescence in

the original graph.

3.6. EXERCISES 103

(c)(∗) Assume you do not find an arborescence of 0 cost. Contract all 0-cost strongly

connected components, and recursively apply the same procedure on the resulting

graph till an arborescence is found. Prove that this T has cost at most twice the cost

of the minimum cost arborescence in the original graph.

26. (∗) Suppose you are given a directed graph G = (V, E) in which each edge has a

cost of either 0 or 1. Also, suppose that G has a node r such that there is a path

from r to each other node in G. You are also given an integer k. Give a polynomial-

time algorithm that either constructs an arborescence rooted at r of cost exactly k, or

reports (correctly) that no such arborescence exists.

104 CHAPTER 3. GREEDY ALGORITHMS

Chapter 4

Divide and Conquer

Divide-and-conquer refers to a class of algorithmic techniques in which one breaks the input

into several parts, solves the problem in each part recursively, and then combines the solutions

to these sub-problems into an overall solution. In many cases, it can be a simple and powerful

method.

We will not devote too much time to divide-and-conquer as a technique in its own right,

for two main reasons. First, it is an idea that should already be familiar from earlier courses.

many of the most fundamental methods for sorting and searching follow the divide-and-

conquer paradigm; these include binary search, Quicksort, and Mergesort. Second, it

is a technique that pervades the design of many algorithms, and we will see it implicitly in

a number of subsequent chapters.

For our coverage of divide-and-conquer here, we focus on what is arguably its most

widespread impact — taking problems for which a naive approach requires O(n2) running

time, and producing an algorithm with the much better running time of O(n logn). Im-

provements of this type are very often a consequence of the following general approach:

(†) Break the input into two pieces of equal size; solve the two sub-problems on

these pieces separately by recursion; and then spend linear time to combine the

two results into an overall solution.

The Mergesort algorithm for sorting a list of n numbers does precisely this: it recursively

sorts the front half and back halves separately, and then “merges” these two sorted halves in

an additional O(n) steps. We will prove below that any algorithm with this general structure

has an O(n log n) running time; and this fact actually goes a long way towards explaining

the ubiquity of the function O(n logn) in computer science.

4.1 A Useful Recurrence Relation

Consider an algorithm that follows the technique outlined in (†), and let T (n) denote its

maximum running time on input instances of size n. The algorithm divides the input into

105

106 CHAPTER 4. DIVIDE AND CONQUER

pieces of size dn/2e and bn/2c, spends T (dn/2e)+T (bn/2c) to solve these two sub-problems

recursively, and then spends O(n) to combine the solutions. Thus, the running time satisfies

the following recurrence relation:

(4.1) T (n) ≤ T (dn/2e) + T (bn/2c) + O(n) for n ≥ 2, and T (1) = c1 for a constant c1.

You’ll often see this written as T (n) ≤ 2T (n/2)+ O(n), under the (often unstated) assump-

tion that n is power of 2.

This recurrence relation can be used to derive a tight upper bound on T (n). In the

analysis we use log n to mean the base 2 logarithm log2 n; but recall that the base of the

logarithm does not matter inside O(·) notation, since different bases result in a change of

only a constant factor.

(4.2) Any function T (·) satisfying (4.1) is bounded by O(n log n), when n > 1.

Proof. Let us make the constant inside the “O(·)” notation of (4.1) explicit: we write it

as c′n where c′ is an absolute constants. Assume that n > 1 and let k = dlog2 ne. Note that

applying (4.1) directly, we have T (2) ≤ 2c1 + c′; let c denote this constant quantity.

We claim that for n > 1 we have T (n) ≤ ckn, and prove this by induction on n. (Note

that we start the induction proof at n = 2 since log 1 = 0. The claim is clearly true when

n = 2, since T (2) ≤ c by definition.

Now, for a general value of n, write n1 = dn/2e and n2 = bn/2c. A key observation,

which is not difficult to show, is that dlog2 nie ≤ k − 1 for i = 1, 2.

We use this fact together with the induction hypothesis for T (n1) and T (n2):

T (n) ≤ T (n1) + T (n2) + c′n

≤ T (n1) + T (n2) + cn

≤ c(k − 1)n1 + c(k − 1)n2 + cn

= c(k − 1)(n1 + n2) + cn

= ckn.

We apply this result in the remainder of the chapter. We consider two problems which

initially seem to require quadratic time, and show how to use the approach described above

to get a running time of O(n log n). In both cases, it takes some work to make the general

divide-and-conquer strategy actually succeed.

4.2. COUNTING INVERSIONS 107

4.2 Counting Inversions

Variants of the Mergesort technique can be used to solve some problems that are not

directly related to sorting elements.

A number of sites on the Web try to match your preferences (for books, movies, restau-

rants) with those of other people out on the Internet. You rank a set of n movies, and

then the site consults its database to look for other people who had “similar” rankings. But

what’s a good way to measure, numerically, how similar two people’s rankings are? Clearly

an identical ranking is very similar, and a completely reversed ranking is very different; we

want something that interpolates through the middle region.

Let’s consider comparing your ranking and a stranger’s ranking of the same set of n

movies. A natural method would to label the movies from 1 to n according to your ranking,

then order these labels according to the stranger’s ranking, and see how many pairs are “out

of order.” More concretely, we will consider the following problem. We are given a sequence

of n numbers a1, . . . , an; we will assume that all the numbers are distinct. We want to define

a measure that tells us how far this list is from being in ascending order; the value of the

measure should be 0 if a1 < a2 < . . . < an, and should increase as the numbers become more

scrambled.

A natural way to quantify this notion is by counting the number of inversions. We say

that two indices i < j form an inversion if ai > aj, i.e., if the two elements ai and aj are “out

of order.” We will seek to determine the number of inversions in the sequence a1, . . . , an.

Note that if the sequence is in ascending order, then there are no inversions; if the sequence

is in descending order (i.e. as bad as possible), then every pair forms an inversion, and so

there are n(n− 1)/2 of them.

What is the simplest algorithm to count inversions? Clearly, we could look at every

pair of numbers (ai, aj) and determine whether they constitute an inversion; this would take

O(n2) time.

We now show how to count the number of inversions much more quickly, in O(n log n)

time. Note that since there can be a quadratic number of inversions, such an algorithm must

be able to compute the total number without ever looking at each inversion individually. The

basic idea is to follow the strategy (†) defined above. We set m = dn/2e and divide the list

into the two pieces a1, . . . , am and am+1, . . . , an. We first count the number of inversions in

each of these two halves separately. Then, we count the number of inversions (ai, aj), where

the two numbers belong to different halves; the trick is that we must do this part in O(n)

time, if we want to apply (4.2) . Note that these first-half/second-half inversions have a

particularly nice form: they are precisely the pairs (ai, aj) where ai is in the first half, aj is

in the second half, and ai > aj.

To help with counting the number of inversions between the two halves, we will make

the algorithm recursively sort the numbers in the two halves as well. Having the recursive

108 CHAPTER 4. DIVIDE AND CONQUER

step do a bit more work (sorting as well as counting inversions) will make the “combining”

portion of the algorithm easier.

So the crucial routine in this process is Merge-and-Count. Suppose we have recursively

sorted the first and second halves of the list, and counted the inversions in each. We now

have two sorted lists A and B, containing the first and second halves respectively. We want

to produce a single sorted list C from their union, while also counting the number of pairs

(a, b) with a ∈ A, b ∈ B, and a > b. By our discussion above, this is precisely what we will

need for the “combining” step that computes the number of first-half/second-half inversions.

The Merge-and-Count routine walks through the sorted lists A and B, removing elements

from the front and appending them to the sorted list C. In one step, it compares the elements

ai and bj being pointed to in each list, removes the smaller one from its list, and appends

it to the end of list C. Now, because A and B are sorted, it is very easy to keep track of

the number of inversions we encounter. Every time the element ai is appended to C, no

new inversions are encountered — since ai is smaller than everything left in list B, and it

comes before all of them. On the other hand, if bj is appended to list C, then it is smaller

than all the remaining items in A, and it comes after all of them — so we increase our count

of the number of inversions by the number of elements remaining in A. This is the crucial

idea: in constant time, we have accounted for a potentially large number of inversions. See

Figure 4.1 for an illustration of this process.

merged result
A

B

ia

bj

Elements inverted with jb

Figure 4.1: Merging the first half of the list A with the second half B

We use this Merge-and-Count routine in a recursive procedure that simultaneously sorts

and counts the number of inversions in a list L.

Sort-and-Count(L)
If the list has one element then

there are no inversions

Else

Divide the list into two halves:

A contains the first dn/2e elements.

B contains the remaining bn/2c elements.

(rA, A)=Sort-and-Count(A)

4.3. FINDING THE CLOSEST PAIR OF POINTS 109

(rB, B)=Sort-and-Count(B)

(r, L)=Merge-and-Count(A, B)

Endif

Return r = rA + rB + r, and the sorted list L

Since our Merge-and-Count procedure takes O(n) time, the running time T (n) of the

full Sort-and-Count procedure satisfies the recurrence (4.1) . By (4.2) , we have

(4.3) The Sort-and-Count algorithm correctly sorts the input list and counts the number

of inversions; it runs in O(n logn) time for a list with n elements.

4.3 Finding the Closest Pair of Points

We now describe another problem that can be solved by an algorithm in the style we’ve been

discussing; but finding the right way to “merge” the solutions to the two sub-problems it

generates requires quite a bit of ingenuity. The problem itself is very simple to state: given

n points in the plane, find the pair that is closest together.

The problem was considered by M.I. Shamos and D. Hoey in the early 1970’s, as part of

their project to work out efficient algorithms for basic computational primitives in geometry.

These algorithms formed the foundations of the then-fledgling field of computational geome-

try, and they have found their way into areas such as graphics, computer vision, geographic

information systems, and molecular modeling. And although the closest-pair problem is

one of the most natural algorithmic problems in geometry, it is surprisingly hard to find an

efficient algorithm for it. It is immediately clear that there is an O(n2) solution — compute

the distance between each pair of points and take the minimum — and so Shamos and Hoey

asked whether an algorithm asymptotically faster than quadratic could be found. It took

quite a long time before they resolved this question, and the O(n logn) algorithm we give

below is essentially the one they discovered.

We begin with a bit of notation. Let us denote the set of points by P = {p1, . . . , pn},
where pi has coordinates (xi, yi); and for two points pi, pj ∈ P , we use d(pi, pj) to denote

the standard Euclidean distance between them. Our goal is to find the pair of points pi, pj

which minimizes d(pi, pj).

We will assume that no two points in P have the same x-coordinate or the same y-

coordinate. This makes the discussion cleaner; and it’s easy to eliminate this assumption

either by initially applying a rotation to the points that makes it true, or by slightly extending

the algorithm we develop here.

It’s instructive to consider the one-dimensional version of this problem for a minute, since

it is much simpler and the contrasts are revealing. How would we find the closest pair of

points on a line? We’d first sort them, in O(n logn) time, and then we’d walk through the

110 CHAPTER 4. DIVIDE AND CONQUER

sorted list, computing the distance from each point to the one that comes after it. It is easy

to see that one of these distances must be the minimum one.

In two dimensions, we could try sorting the points by their y-coordinate (or x-coordinate),

and hoping that the two closest points were near one another in the order of this sorted list.

But it is easy to construct examples in which they are very far apart, preventing us from

adapting our one-dimensional approach.

Instead, our plan will be to apply the style of divide-and-conquer used in Mergesort:

we find the closest pair among the points in the “left half” of P and the closest pair among

the points in the “right half” of P ; and then we need to use this information to get the

final solution in linear time. This last part is the catch: the distances that have not been

considered by either of our recursive calls are precisely those that occur between a point in

the left half and a point in the right half; there are Ω(n2) such distances, yet we need to find

the smallest one in O(n) time after the recursive calls return. If we can do this, our solution

will be complete: it will be the smallest of the values computed in the recursive calls and

this minimum “left-to-right” distance.

Setting up the Recursion. Let’s get a few easy things out of the way first. It will be

very useful if every recursive call, on a set P ′ ⊆ P , begins with two lists: a list P ′
x in which

all the points in P ′ have been sorted by increasing x-coordinate, and a list P ′
y in which all the

points in P ′ have been sorted by increasing y-coordinate. We can ensure that this remains

true throughout the algorithm as follows.

First, before any of the recursion begins, we sort all the points in P by x-coordinate and

again by y-coordinate, producing lists Px and Py. Attached to each entry in each list is a

record of the position of that point in both lists.

The first level of recursion will work as follows, with all further levels working in a

completely analogous way. We define Q to be the set of points in the first dn/2e positions

of the list Px (the “left half”) and R to be the set of points in the final bn/2c positions of

the list Px (the “right half”). See Figure 4.2. By a single pass through each of Px and Py, in

O(n) time, we can create the following four lists: Qx, consisting of the points in Q sorted by

increasing x-coordinate; Qy, consisting of the points in Q sorted by increasing y-coordinate;

and analogous lists Rx and Ry. For each entry of each of these lists, as before, we record the

position of the point in both lists it belongs to.

We now recursively determine the closest pair of points in Q (with access to the lists Qx

and Qy). Suppose that q∗0 and q∗1 are (correctly) returned as a closest pair of points in Q.

Similarly, we determine the closest pair of points in R, obtaining r∗0 and r∗1.

Combining the Solutions. The general machinery of divide-and-conquer has gotten us

this far, without our really having delved into the structure of the closest-pair problem.

4.3. FINDING THE CLOSEST PAIR OF POINTS 111

line LQ R

δ

Figure 4.2: The first level of recursion

But it still leaves us with the problem that we saw looming originally: how do we use the

solutions to the two sub-problems as part of a linear-time “combining” operation?

Let δ be the minimum of d(q∗0,q
∗
1) and d(r∗0,r

∗
1). The real question is: are there points

q ∈ Q and r ∈ R for which d(q, r) < δ? If not, then we have already found the closest pair

in one of our recursive calls. But if there are, then the closest such q and r form the closest

pair in P .

Let x∗ denote the x-coordinate of the rightmost point in Q, and let L denote the vertical

line described by the equation x = x∗. This line L “separates” Q from R. Here is a simple

fact:

(4.4) If there exists q ∈ Q and r ∈ R for which d(q, r) < δ, then each of q and r lies

within a distance δ of L.

Proof. Suppose such q and r exist; we write q = (qx, qy) and r = (rx, ry). By the definition

of x∗, we know that qx ≤ x∗ ≤ rx. Then we have

x∗ − qx ≤ rx − qx ≤ d(q, r) < δ

and

rx − x∗ ≤ rx − qx ≤ d(q, r) < δ,

so each of q and r has an x-coordinate within δ of x∗, and hence lies within distance δ of the

line L.

112 CHAPTER 4. DIVIDE AND CONQUER

So if we want to find a close q and r, we can restrict our search to the narrow band

consisting only of points in P within δ of L. Let S ⊆ P denote this set, and let Sy denote

the list consisting of the points in S sorted by increasing y-coordinate. By a single pass

through the list Py, we can construct Sy in O(n) time.

We can restate (4.4) as follows, in terms of the set S.

(4.5) There exist q ∈ Q and r ∈ R for which d(q, r) < δ if and only if there exist s, s′ ∈ S

for which d(s, s′) < δ.

It’s worth noticing at this point that S might in fact be the whole set P , in which case

(4.4) and (4.5) really seem to buy us nothing. But this is actually far from true, as the

following amazing fact shows.

(4.6) If s, s′ ∈ S have the property that d(s, s′) < δ, then s and s′ are within 15 positions

of each other in the sorted list Sy.

..

..

..

..

..

..

..

�

:

j

δ/2

δ/2

δ δ

boxes

line L

Proof. Consider the subset Z of the plane consisting of all points within distance δ of L.

We partition Z into boxes: squares with horizontal and vertical sides of length δ/2. One row

of Z will consist of four boxes whose horizontal sides have the same y-coordinates.

4.3. FINDING THE CLOSEST PAIR OF POINTS 113

Suppose two points of S lay in the same box. Since all points in this box lie on the same

side of L, these two points either both belong to Q or both belong to R. But any two points

in the same box are within distance δ ·
√

2/2 < δ, which contradicts our definition of δ as

the minimum distance between any pair of points in Q or in R. Thus, each box contains at

most one point of S.

Now suppose that s, s′ ∈ S have the property that d(s, s′) < δ, and that they are at

least 16 positions apart in Sy. Assume without loss of generality that s has the smaller

y-coordinate. Then since there can be at most one point per box, there are at least three

rows of Z lying between s and s′. But any two points in Z separated by at least three rows

must be a distance of at least 3δ/2 apart — a contradiction.

We note that the value of 15 can be reduced; but for our purposes at the moment, the

important thing is that it is an absolute constant.

In view of (4.6) , we can conclude the algorithm as follows. We make one pass through

Sy, and for each s ∈ Sy, we compute its distance to each of the next 15 points in Sy. (4.6)

implies that in doing so, we will have computed the distance of each pair of points in S (if

any) that are at distance less than δ from one another. So having done this, we can compare

the smallest such distance to δ, and we can report one of two things: (i) the closest pair of

points in S, if their distance is less than δ; or (ii) the (correct) conclusion that no pairs of

points in S are within δ of one another. In case (i), this pair is the closest pair in P ; in case

(ii), the closest pair found by our recursive calls is the closest pair in P .

Note the resemblance between this procedure and the algorithm we rejected at the very

beginning, which tried to make one pass through P in order of y-coordinate. The reason

such an approach works now is due to the extra knowledge (the value of δ) we’ve gained

from the recursive calls, and the special structure of the set S.

This concludes the description of the “combining” part of the algorithm, since by (4.5)

we have now determined whether the minimum distance between a point in Q and a point

in R is less than δ, and if so, we have found the closest such pair.

A complete description of the algorithm and its proof of correctness are implicitly con-

tained in the discussion so far, but for the sake of concreteness, we now summarize both.

Summary. A high-level description of the algorithm is the following, using the notation

we have developed above.

Closest-Pair(P)

Construct Px and Py (O(n log n) time)

(p∗0,p
∗
1) = Closest-Pair-Rec(Px,Py)

Closest-Pair-Rec(Px, Py)

If |P | ≤ 3 then

114 CHAPTER 4. DIVIDE AND CONQUER

find closest pair by measuring all pairwise distances

Construct Qx,Qy,Rx,Ry (O(n) time)

(q∗0,q
∗
1) = Closest-Pair-Rec(Qx, Qy)

(r∗0,r
∗
1) = Closest-Pair-Rec(Rx, Ry)

δ = min(d(q∗0,q
∗
1), d(r∗0,r

∗
1))

x∗ = maximum x-coordinate of a point in set Q
L = {(x,y) : x = x∗}
S = points in P within distance δ of L.

Construct Sy (O(n) time)

For each point s ∈ Sy, compute distance from s
to each of next 15 points in Sy.

Let s,s′ be pair achieving minimum of these distances

(O(n) time)

If d(s,s′) < δ then

Return (s,s′)
Else if d(q∗0,q

∗
1) < d(r∗0,r

∗
1) then

Return (q∗0,q
∗
1)

Else

Return (r∗0,r
∗
1)

(4.7) The algorithm correctly outputs a closest pair of points in P .

Proof. As we’ve noted, all the components of the proof have already been worked out above;

so here we just summarize how they fit together.

We prove the correctness by induction on the size of P , the case of |P | ≤ 3 being clear.

For a given P , the closest pair in the recursive calls is computed correctly by induction. By

(4.6) and (4.5) , the remainder of the algorithm correctly determines whether any pair of

points in S is at distance less than δ, and if so returns the closest such pair. Now the closest

pair in P either has both elements in one of Q or R, or it has one element in each. In the

former case, the closest pair is correctly found by the recursive call; in the latter case, this

pair is at distance less than δ, and it is correctly found by the remainder of the algorithm.

(4.8) The running time of the algorithm is O(n log n).

Proof. The initial sorting of P by x- and y-coordinate takes time O(n log n). The running

time of the remainder of the algorithm satisfies the recurrence (4.1), and hence is O(n log n)

by (4.2) .

4.4. EXERCISES 115

4.4 Exercises

1. You are interested in analyzing some hard-to-obtain data from two separate databases.

Each database contains n numerical values — so there are 2n values total — and you

may assume that no two values are the same. You’d like to determine the median of

this set of 2n values, which we will define here to be the nth smallest value.

However, the only way you can access these values is through queries to the databases.

In a single query, you can specify a value k to one of the two databases, and the chosen

database will return the kth smallest value that it contains. Since queries are expensive,

you would like to compute the median using as few queries as possible.

Give an algorithm that finds the median value using at most O(log n) queries.

2. Recall the problem of finding the number of inversions. As in the text, we are given a

sequence of n numbers a1, . . . , an, which we assume be all distinct, and we define an

inversion to be a pair i < j such that ai > aj.

We motivated the problem of counting inversions as a good measure of how different

two orderings are. However, one might feel that this measure is too sensitive. Let’s

call a pair a significant inversion if i < j and ai > 2aj. Give an O(n logn) algorithm

to count the number of significant inversions between two orderings.

3. (∗) Hidden surface removal is a problem in computer graphics that scarcely needs an

introduction — when Woody is standing in front of Buzz you should be able to see

Woody but not Buzz; when Buzz is standing in front of Woody, . . . well, you get the

idea.

The magic of hidden surface removal is that you can often compute things faster than

your intuition suggests. Here’s a clean geometric example to illustrate a basic speed-up

that can be achieved. You are given n non-vertical lines in the plane, labeled L1, . . . , Ln,

with the ith line specified by the equation y = aix + bi. We will make the assumption

that no three of the lines all meet at a single point. We say line Li is uppermost at a

given x-coordinate x0 if its y-coordinate at x0 is greater than the y-coordinates of all

the other lines at x0: aix0 + bi > ajx0 + bj for all j 6= i. We say line Li is visible if

there is some x-coordinate at which it is uppermost — intuitively, some portion of it

can be seen if you look down from “y =∞.”

Give an algorithm that takes n lines as input, and in O(n log n) time returns all of the

ones that are visible. The accompanying figure gives an example.

4. Suppose you’re consulting for a bank that’s concerned about fraud detection, and they

come to you with the following problem. They have a collection of n “smart-cards”

that they’ve confiscated, suspecting them of being used in fraud. Each smart-card is

116 CHAPTER 4. DIVIDE AND CONQUER

1

2

3

4

5

Figure 4.3: An instance with five lines (labeled “1”–“5” in the figure). All the lines except
for “2” are visible.

a small plastic object, containing a magnetic stripe with some encrypted data, and it

corresponds to a unique account in the bank. Each account can have many smart-

cards corresponding to it, and we’ll say that two smart-cards are equivalent if they

correspond to the same account.

It’s very difficult to read the account number off a smart-card directly, but the bank

has a high-tech “equivalence tester” that takes two smart-cards and, after performing

some computations, determines whether they are equivalent.

Their question is the following: among the collection of n cards, is there a set of more

than n/2 of them that are all equivalent to one another? Assume that the only feasible

operations you can do with the cards are to pick two of them and plug them in to

the equivalence tester. Show how to decide the answer to their question with only

O(n log n) invocations of the equivalence tester.

Chapter 5

Dynamic Programming

5.1 Weighted Interval Scheduling: The Basic Set-up

We have seen that a particular greedy algorithm produces an optimal solution to the interval

scheduling problem, where the goal is to accept as large a set of non-overlapping intervals

as possible. We also discussed a more general version of the problem, weighted interval

scheduling, in which each interval has a certain value to us, and we want to accept a set of

maximum value.

In this section, we’ll consider the following natural version of the weighted interval

scheduling problem: the value of each interval is proportional to its length, so our goal

is to accept a set of intervals of maximum total length. This arises naturally in the case in

which our resource is available for rent, for a fixed rate per hour; then the amount of revenue

we accrue from a given interval is proportional to its length, and we want to maximize our

revenue. We’ll see at the end that the solution we develop for this problem carries over

pretty much directly to the case in which each interval has an arbitrary value.

Using the same types of examples we applied to the original interval scheduling problem,

we can show that essentially every natural greedy algorithm one might think of can fail to

find the optimal solution. Even our previously successful algorithm, in which we sort by

increasing finish times, does not work for the current problem; see the picture below:

Since we last looked at interval scheduling problems, we’ve also seen the divide-and-

conquer technique. But it seems difficult to apply this to the current problem as well. For

example, we could divide the intervals into two sets, solve the problem optimally on each

set, and then combine these solutions; but the solutions will presumably overlap, and it is

not clear how to deal with this. Alternately we could divide “time” into two halves, and

try solving the problem optimally in each half. But it may well be the case that there is no

117

118 CHAPTER 5. DYNAMIC PROGRAMMING

dividing point on the time line that would not cut through several intervals; and then it is

not clear how even to set up the sub-problems.

There is, however, a very efficient algorithm for this problem. It is based on the idea of

breaking things down into sub-problems, but it manages the set of sub-problems in a more

careful way than we saw with divide-and-conquer. There are two styles in which to develop

the algorithm, conceptually different but arriving at essentially the same final result. We’ll

describe both of them, in an attempt to get at the subtle nature of the underlying idea:

dynamic programming.

Style #1: Branching with Memoization

We keep the notation from our previous encounter with interval scheduling problems: We

have n requests labeled 1, . . . , n, with each request i specifying a start time si and a finish

time fi. The length `i of request i is the difference between its finish time and its start

time: `i = fi − si. Two requests are compatible if they do not overlap. The goal of our

current problem is to select a subset S ⊆ {1, . . . , n} of mutually compatible requests, so as

to maximize the sum of the lengths of the requests in S,

∑

i∈S

`i =
∑

i∈S

fi − si.

Let’s suppose that the requests are sorted in order of non-decreasing finish time: f1 ≤
f2 ≤ · · · ≤ fn. We’ll say a request i comes before a request j if i < j. Here’s a bit of notation

that will be very useful for us: for a request j, let p(j) denote the largest-numbered request

before j that is compatible with j. We define p(j) = 0 if no request before j is compatible

with j. Note that the set of all compatible requests before j is simply {1, 2, . . . , p(j)}. An

example is illustrated below.

p(j) --------

j ---------------

Now, let’s consider an optimal solution O, ignoring for now that we have no idea what

it is. Here’s something completely obvious that we can say about O: either request n (the

last one) belongs to O, or it doesn’t. Suppose we explore both sides of this dichotomy a

little further. If n ∈ O, then clearly no interval strictly between p(n) and n can belong to

5.1. WEIGHTED INTERVAL SCHEDULING: THE BASIC SET-UP 119

O. Moreover, in this case, O must include an optimal solution to the problem consisting

of requests {1, . . . , p(n)} — for if it didn’t, we could replace its choice of requests from

{1, . . . , p(n)} with a better one, with no danger of overlapping request n. On the other

hand, if n 6∈ O, then O is simply equal to the optimal solution to the problem consisting

of requests {1, . . . , n− 1}. This is by completely analogous reasoning: we’re assuming that

O does not include request n; so if it does not choose the optimal set of requests from

{1, . . . , n− 1}, we could replace it with a better one.

For any value of i between 1 and n, let OPT (i) denote the value of an optimal solution

to the problem consisting of requests {1, . . . , i}. The optimal value we’re seeking is precisely

OPT (n). So for our optimal solution O, we’ve observed that either n ∈ O, in which case

OPT (n) = `n + OPT (p(n)), or n 6∈ O, in which case OPT (n) = OPT (n − 1). Since these

are precisely the two possible choices (n ∈ O or n 6∈ O), we can further say:

(5.1) OPT (n) = max(`n + OPT (p(n)), OPT (n− 1)).

And how do we decide whether n belongs to an optimal solution? This too is easy: it belongs

to an optimal solution if and only if the first of the options above is at least as good as the

second; in other words,

(5.2) Request n belongs to an optimal solution if and only if

`n + OPT (p(n)) ≥ OPT (n− 1).

These facts form the first crucial component on which a dynamic programming solution is

based: a recurrence equation that expresses the optimal solution (or its value) in terms of

the optimal solutions to smaller sub-problems.

Indeed, this recurrence equation (5.1) directly gives us a recursive algorithm to compute

OPT (n), assuming that we have already sorted the requests by finishing time and computed

the values of p(j) for each j.

Compute-Opt(n)
If n = 0 then

Return 0
Else

v = Compute-Opt(p(n))
v′ = Compute-Opt(n − 1)
If `n + v ≥ v′ then

Return `n + v
Else

Return v′

Endif

Endif

120 CHAPTER 5. DYNAMIC PROGRAMMING

The correctness of the algorithm follows directly from (5.1) .

If we really implemented the algorithm as just written, it would take exponential time

to run in the worst case; this is not surprising, since each call generates two new calls, while

potentially only shrinking the problem size from n to n−O(1). Thus we have not achieved

a polynomial-time solution.

A fundamental observation, which forms the second crucial component of a dynamic

programming solution, is that our recursive algorithm is really only solving n + 1 different

sub-problems: Compute-Opt(0), Compute-Opt(1), . . . Compute-Opt(n). The fact it runs

in exponential time as written, is simply due to the spectacular redundancy in the number

of times it issues each of these calls.

How could we eliminate all this redundancy? We could store the value of Compute-Opt(i)

in a globally accessible place the first time we compute it, and then simply use this pre-

computed value in place of all future recursive calls. This technique of saving values that

have already been computed is often called memoization.

We implement the above strategy in the more “intelligent” procedure M-Compute-Opt.

This procedure will make use of an array M [0 . . . n]; M [i] will start with the value “empty,”

but will hold the value of Compute-Opt(i) as soon as it is first determined. To determine

OPT (n), we invoke M-Compute-Opt(n).

M-Compute-Opt(n)
If M [n] = "empty" then

v = Compute-Opt(n)
M [n] = v.
Return v.

Else

Return M [n]
Endif

Compute-Opt(n)
If n = 0 then

Return 0
Else

v = M-Compute-Opt(p(n))
v′ = M-Compute-Opt(n − 1)
If `n + v ≥ v′ then

Return `n + v
Else

Return v′

Endif

Endif

5.1. WEIGHTED INTERVAL SCHEDULING: THE BASIC SET-UP 121

Clearly, this looks very similar to our previous implementation of the algorithm; however,

memoization has brought the running time way down.

(5.3) The running time of M-Compute-Opt(n) is O(n).

Proof. The time spent in a single call to Compute-Opt or M-Compute-Opt is O(1), excluding

the time spent in recursive calls it generates. So the running time is bounded by a constant

times the number of calls ever issued to either of these procedures. Since the implementation

itself gives no explicit upper bound, we invoke the strategy of looking for a good measure of

“progress.”

The most useful progress measure here is the number of entries in M that are not “empty.”

Initially this number is 0; but each call to Compute-Opt increases the number by 1. Since

M has only n + 1 entries, there can be at most n + 1 calls to Compute-Opt.

Now, each invocation of M-Compute-Opt is either the initial one, or it comes from

Compute-Opt. But each call to Compute-Opt generates only two calls to M-Compute-Opt; and

there are at most n + 1 calls to Compute-Opt. Thus the number of calls to M-Compute-Opt

is at most 1 + 2(n + 1) = 2n + 3.

It follows that the entire algorithm has running time O(n).

Computing a solution, in addition to its value. So far we have simply computed the

value of an optimal solution; presumably we want a full optimal set of requests as well. It is

easy to extend M-Compute-Opt to do this: we change Compute-Opt(i) to keep track of the

optimal solution in addition to its value. We would maintain an additional array S so that

S[i] contains an optimal set of intervals among {1, 2, . . . , i}. Enhancing the code to maintain

the solutions in the array S costs us an O(n) blow-up in the running time: While a position

in the M array can be updated in O(1) time, writing down a set in the S array takes O(n)

time. We can avoid this O(n) blow-up by not explicitly maintaining the S, but rather by

recovering the optimal solution from values saved in the array M after the optimum value

has been computed.

Using our observation from (5.2) , n belongs to some optimal solution for the set of

requests {1, . . . , i} if and only if in the comparison “`n + v ≥ v′” the left-hand-side is at

least as large as the right-hand-side. Using this observation for all values i ≤ n we get the

following procedure, which “traces back” through the array M to find the set of intervals in

an optimal solution.

Find-Solution(i)
If i = 0 then

Output nothing.

Else

v = M [p(i)]

122 CHAPTER 5. DYNAMIC PROGRAMMING

v′ = M [i− 1]
If `i + v ≥ v′ then

Output i and the result of Find-Solution(p(i)).
Else

Output the result of Find-Solution(i − 1)
Endif

Endif

(5.4) Given the array M of the optimal values of the sub-problems as computed by

M-Compute-Opt, the code Find-Solution returns the optimal set S in O(n) time.

Proof. The time spent in a single call to Find-Solution is O(1), excluding the time spent in

recursive calls it generates. So the running time is bounded by a constant times the number

of calls ever issued. A call to Find-Solution(i) issues at most one recursive call to a problem

with smaller i value, so the number of calls ever issued by Find-Solution(n) is at most n.

Style #2: Building up Solutions to Sub-Problems

If we think for a little while, and unwind what the memoized version of Compute-Opt is

doing, we see that it’s really just building up entries in an array. One could argue that it’s

simpler just to do that with a For loop, as follows:

Iterative-Compute-Opt(n)
Array M [0 . . . n]
M [0] = 0
For i = 1, 2, . . . , n

If `i + M [p(i)] ≥M [i− 1] then

M [i] = `i + M [p(i)]
Else

M [i] = M [i− 1]
Endif

Endfor

Return M [n]

Using (5.1) one can immediately prove by induction that the value M [n] is an optimal

solution for the set of requests {1, . . . , n}. The running time can be bounded as follows.

There are n iterations of the For loop, each iteration takes O(1) time, and thus the overall

time of the algorithm as implemented above is O(n). Once the array M is computed we can

run Find-Solution(n) to find the optimal set S.

Different people have different intuitions about dynamic programming algorithms; in

particular, some people find it easier to invent such algorithms in the first style, others in

5.2. SEGMENTED LEAST SQUARES: MULTI-WAY CHOICES 123

the second. Here we’ve followed the route of memoization, and only devised an iterative

“building-up” algorithm once our intuition for the problem was firmly in place.

However, it is possible to develop “building-up” algorithms from scratch as well. Essen-

tially, for such an algorithm, one needs a collection of sub-problems derived from the original

problem that satisfy the following basic properties:

(i) There are only a polynomial number of sub-problems.

(ii) The solution to the original problem can be easily computed from the solutions to

the sub-problems. (For example, the original problem may actually be one of the

sub-problems.)

(iii) There is an easy-to-compute recurrence, as in (5.1) and (5.2), allowing one to determine

the solution to a sub-problem from the solutions to some number of “smaller” sub-

problems.

Naturally, these are informal guidelines; in particular, the notion of “smaller” in part (iii)

will depend on the type of recurrence one has.

In future uses of dynamic programming, we will specify our algorithm more compactly by

using the iterative approach, but will often use ideas from the recursive approach to design

the collection of sub-problems we use.

Weighted Interval Scheduling

The general weighted interval scheduling problem consists of n requests, with each request

i specified by an interval and a non-negative value, or weight, wi. The goal is to accept a

compatible set of requests of maximum total value.

We started by saying that we would consider the special case of the problem in which

wi is defined to be the length `i of interval i, for i = 1, . . . , n. But if we go back over our

solution to this problem, we see that we never actually used the fact that `i was the length

of i, as opposed to a completely arbitrary non-negative value. Indeed, it is easy to check

that facts (5.1) and (5.2) remain true if in place of the lengths {`i} we assume general

non-negative values {wi}, and thus our algorithms in fact solve the general weighted interval

scheduling problem as well.

5.2 Segmented Least Squares: Multi-way Choices

We now discuss a different type of problem, which illustrates a slightly more complicated

style of dynamic programming. In the previous section, we developed a recurrence based on

a fundamentally binary choice: either the interval n belonged to an optimal solution or it

didn’t. In the problem we consider here, the recurrence will involve what might be called

124 CHAPTER 5. DYNAMIC PROGRAMMING

“multi-way choices” — at each step, we have a polynomial number of possibilities to consider

for the structure of the optimal solution. As we’ll see, the dynamic programming approach

adapts to this more general situation very naturally.

As a separate issue, the problem developed in this section is also a nice illustration of

how a clean algorithmic definition can formalize a notion that initially seems too fuzzy and

intuitive to work with mathematically.

Often when looking at scientific or statistical data, plotted on a two-dimensional set of

axes, one tries to pass a “line of best fit” through the data as in Figure 5.1.

Figure 5.1: A “line of best fit.”

This is a foundational problem in statistics and numerical analysis, formulated as follows.

Suppose our data consists of a set P of n points in the plane, denoted (x1, y1), (x2, y2), . . . , (xn, yn);

and suppose x1 < x2 < · · · < xn. Given a line L defined by the equation y = ax + b, we say

that the error of L with respect to P is the sum of its squared “distances” to the points in

P :

Error(L, P) =
n
∑

i=1

(yi − axi − b)2.

A natural goal is then to find the line with minimum error; this turns out to have a nice

closed-form solution that can be easily derived using calculus. Skipping the derivation here,

we simply state the result: The line of minimum error is y = ax + b, where

a =
n
∑

i xiyi − (
∑

i xi) (
∑

i yi)

n
∑

i x
2
i − (

∑

i xi)
2 and b =

∑

i yi − a
∑

i xi

n
.

5.2. SEGMENTED LEAST SQUARES: MULTI-WAY CHOICES 125

Now, here’s a kind of issue that these formulas weren’t designed to cover. Often we have

data that looks something like the picture in Figure 5.2. In this case, we’d like to make a

statement like: “The points lie roughly on a sequence of two lines.” How could we formalize

this concept?

Figure 5.2: Two lines would be better.

Essentially, any single line through the points in the figure would have a terrible error;

but if we use two lines, we could achieve quite a small error. So we could try formulating

a new problem as follows: rather than seek a single line of best fit, we are allowed to pass

an arbitrary set of lines through the points, and we seek a set of lines that minimizes the

error. But this fails as a good problem formulation, because it has a trivial solution: if we’re

allowed to fit the points with an arbitrarily large set of lines, we could fit the points perfectly

by having a different line pass through each pair of consecutive points in P .

At the other extreme, we could try “hard-coding” the number two into the problem: we

could seek the best fit using at most two lines. But this too misses a crucial feature of our

intuition: we didn’t start out with a pre-conceived idea that the points lay approximately on

two lines; we concluded that from looking at the picture. For example, most people would

say that the points in Figure 5.3 lie approximately on three lines.

Thus, intuitively, we need a problem formulation that requires us to fit the points well,

using as few lines as possible. We now formulate a problem — the segmented least squares

problem – that captures these issues quite cleanly.

As before, we are given a set of points P = {(x1, y1), (x2, y2), . . . , (xn, yn)}, with x1 <

x2 < · · · < xn. We will use pi to denote the point (xi, yi). We must first partition P into

some number of segments. Each segment is a subset of P that represents a contiguous set of

x-coordinates; that is, it is a subset of the form {pi, pi+1, . . . , pj−1, pj} for some indices i ≤ j.

Then, for each segment S in our partition of P , we compute the line minimizing the error

with respect to the points in S, according to the formulas above.

126 CHAPTER 5. DYNAMIC PROGRAMMING

Figure 5.3: Three lines would be better.

The penalty of a partition is defined to be a sum of the following terms:

(i) The number of segments into which we partition P , times a fixed, given multiplier

C > 0.

(ii) For each sequence, the error value of the optimal line through that segment.

Our goal in the segmented least squares problem is to find a partition of minimum penalty.

This minimization captures the trade-offs we discussed above. We are allowed to consider

partitions into any number of segments; as we increase the number of segments, we reduce

the penalty terms in part (ii) of the definition, but we increase the term in part (i). (The

multiplier C is provided with the input, and by tuning C, we can penalize the use of additional

lines to a greater or lesser extent.)

There are exponentially many possible partitions of P , and initially it is not clear that

we should be able to find the optimal one efficiently. We now show how to use dynamic

programming to find a partition of minimum penalty in time polynomial in n. (We will

make the reasonable assumption, as always, that each arithmetic operation we perform

takes a constant amount of time.)

Designing the algorithm. To begin with, we should recall the ingredients we need in a

dynamic programming algorithm from page 123. We want a polynomial number of “sub-

problems,” the solutions of which should yield a solution to the original problem; and we

should be able to build up solutions to these sub-problems using a recurrence. As with the

weighted interval scheduling problem, it helps to think about some simple properties of the

optimal solution. Note, however, that there is not really a direct analogy to weighted interval

scheduling: there we were looking for a subset of n objects, whereas here we are seeking to

partition n objects.

5.2. SEGMENTED LEAST SQUARES: MULTI-WAY CHOICES 127

For segmented least squares, the following observation is very useful: The last point pn

belongs to a single segment in the optimal partition, and that segment begins at some earlier

point pj. This is the type of observation that can suggest the right set of sub-problems: if

we knew the identity of the last segment pj, . . . , pn (see Figure 5.4), then we could remove

those points from consideration and recursively solve the problem on the remaining points

p1, . . . , pj−1.

n

OPT(j-1)

j

Figure 5.4: The last segment.

Suppose we let OPT (i) denote the optimum solution for the points p1, . . . , pi, and we

let ej,n denote the minimum error of any line with respect to pj, pj+1, . . . , pn. (We will write

OPT (0) = 0 as a boundary case.) Then our observation above says that we should find the

best way to produce a final segment — paying the error plus an additive C for this segment

— together with an optimal solution for the remaining points. In other words, we have

justified the following recurrence.

(5.5) If the last segment of the optimal partition is pi, . . . , pn, then the value of the

optimal solution is OPT (n) = ei,n + C + OPT (i− 1). Therefore we have

OPT (n) = min
1≤i≤n

ei,n + C + OPT (i− 1),

and the segment pi, . . . , pn is used in an optimum solution if and only if the minimum is

obtained using index i.

128 CHAPTER 5. DYNAMIC PROGRAMMING

The hard part in designing the algorithm is now behind us. From here, we simply build

up the solutions OPT (i) in order of increasing i.

Segmented-Least-Squares(n)

Array M [0 . . . n]
Set M [0] = 0
For i = 1, . . . , n

For j = 1, . . . , i
Compute the least squares error ej,i for the segment pj, . . . , pi

Endfor

Use the recurrence (5.5) to compute M [i].
Endfor

Return M [n].

The correctness of the algorithm follows immediately from (5.5) .

As in our algorithm for weighted interval scheduling, we can trace back through the array

M to compute an optimum partition.

Find-Segments(i)
If i = 0 then

Output nothing

Else

Find a j that minimizes ej,i + C + M [j − 1]
Output the segment {pj, . . . , pi} and the result of

Find-Segments(j − 1)
Endif

Finally, we consider the running time of Segmented-Least-Squares. The algorithm has

n iterations, for values i = 1, . . . , n. For each value of i we have to consider i options for the

value of j, compute the least squares error ej,i for all i of them, and choose the minimum.

We use the formula given above to compute the errors ej,i, spending O(n) on each; thus, the

overall time to compute the array entry M [i] is O(n2). As there are n + 1 array positions,

the total time is O(n3).1

5.3 Subset Sums and Knapsacks: Adding a Variable

We’re seeing more and more that issues in scheduling provide a rich source of practically

motivated algorithmic problems. So far we’ve considered problems in which requests are

1One can actually design essentially the same dynamic programming algorithm to run in total time O(n2).
The bottleneck in the current version is in computing ej,i for all pairs (j, i); by cleverly saving intermediate
results, these can all be computed in total time O(n2). This immediately reduces the time for each array
entry M [i] to O(n), and hence the overall time to O(n2). We won’t go into the details of this faster version,
but it is an interesting exercise to consider how one might compute all values ej,i in O(n2) time.

5.3. SUBSET SUMS AND KNAPSACKS: ADDING A VARIABLE 129

specified by a given interval of time on a resource, as well as problems in which requests

have a duration and a deadline, but do not mandate a particular interval during which they

need to be done.

In this section we consider a version of the second type of problem, with durations and

deadlines, which is difficult to solve directly using the techniques we’ve seen so far. We will

use dynamic programming to solve the problem, but with a twist — the “obvious” set of

sub-problems will turn out not be enough, and so we end up creating a richer collection of

sub-problems. As we will see below, this is done by adding a new variable to the recurrence

underlying the dynamic program.

In our problem formulation, we have a single machine that can process jobs, and we have

a set of requests {1, 2, . . . , n}. We are only able to use this resource for the period between

time 0 and time W , for some number W . Each request corresponds to a job that requires

time wi to process. If our goal is to process jobs so as to keep the machine as busy as possible

up to the “cut-off” W , which jobs should we choose?

More formally, we are given n items {1, . . . , n}, and each has a given nonnegative weight

wi (for i = 1, . . . , n). We are also given a bound W . We would like to select a subset S of the

items so that
∑

i∈S wi ≤ W and, subject to this restriction,
∑

i∈S wi is as large as possible.

This problem is a natural special case of a more general problem called the knapsack

problem, where each request i has both a value vi and a weight wi. The goal in this more

general problem is to select a subset of maximum total value, subject to the restriction that

its total weight not exceed W . Knapsack problems often show up as sub-problems in other,

more complex problems. The name “knapsack” refers to the problem of filling a knapsack

of capacity W as full as possible (or packing in as much value as possible), using a subset of

the items {1, . . . , n}. We will use weight or time when referring to the quantities wi and W .

Since this sort of resembles other scheduling problems we’ve seen before, it’s natural to

ask whether a greedy algorithm can find the optimal solution. It appears that the answer

is no — in any case, no efficient greedy rule is known that always constructs an optimal

solution. One natural greedy approach to try would be to sort the items by decreasing

weight — or at least to do this for all items of weight at most W — and then start selecting

items in this order as long as the total weight remains below W . But if W is a multiple of

2, and we have three items with weights {W/2 + 1, W/2, W/2}, then we see that this greedy

algorithm will not produce the optimal solution. Alternately, we could sort by increasing

weight and then do the same thing; but this fails on inputs like {1, W/2, W/2}.
The goal of this lecture is to show how to use dynamic programming to solve this problem.

Recall the main principles of dynamic programming: we have to come up with a polynomial

number of sub-problems, so that each sub-problem can be solved easily from “smaller” sub-

problems, and the solution to the original problem can be obtained easily once we know

the solutions to all the sub-problems. As usual, the hard part in designing a dynamic

130 CHAPTER 5. DYNAMIC PROGRAMMING

programming algorithm lies in figuring out a good set of sub-problems.

A False Start. One general strategy, which worked for us in the case of weighted interval

scheduling, is to consider sub-problems involving only the first i requests. We start by trying

this strategy here. We use the notation OPT (i), analogously to the notation used before,

to denote the best possible solution using a subset of the requests {1, . . . , i}. The key to

our method for the weighted interval scheduling problem was to concentrate on an optimal

solution O to our problem and consider two cases, depending whether or not the last request

n is accepted or rejected by this optimum solution. Just as last time, we have the first part,

which follows immediately from the definition of OPT (i).

• If n 6∈ O then OPT (n) = OPT (n− 1).

Next we have to consider the case in which n ∈ O. What we’d like here is a simple

recursion, which tells us the best possible value we can get for solutions that contain the

last request n. For weighted interval scheduling this was easy, as we could simply delete

each request that conflicted with request n. In the current problem, this is not so simple.

Accepting request n does not immediately imply that we have to reject any other request.

Instead, it means that for the subset of requests S ⊆ {1, . . . , n− 1} that we will accept, we

have less available weight left: a weight of wn is used on the accepted request n, and we only

have W − wn weight left for the set S of remaining requests that we accept. See Figure 5.5.

��

������������������������������������

W
wn

Figure 5.5: A knapsack of size W with the item wn included.

A Better Solution. This suggests that we need more sub-problems: To find out the value

for OPT (n) we not only need the value of OPT (n− 1), but we also need to know the best

solution we can get using a subset of the first n− 1 items, and total allowed weight W −wn.

We are therefore going to use many more sub-problems: one for each initial set {1, . . . , i} of

the items, and each possible value for the remaining available weight w. Assume that W is

an integer, and all requests i = 1, . . . , n have integer weights wi. We will have a sub-problem

for each i = 0, 1, . . . , n and each integer 0 ≤ w ≤ W . We will use OPT (i, w) to denote the

5.3. SUBSET SUMS AND KNAPSACKS: ADDING A VARIABLE 131

value of the optimal solution using a subset of the items {1, . . . , i} with maximum allowed

weight w, i.e.,

OPT (i, w) = max
S

∑

j∈S

wj,

where the maximum is over subsets S ⊆ {1, . . . , i} that satisfy
∑

j∈S wj ≤ w. Using this new

set of sub-problems, we will be able to express the value OPT (i, w) as a simple expression in

terms of values from smaller problems. Moreover, OPT (n, W) is the quantity we’re looking

for in the end. As before, let O denote an optimum solution for the original problem.

• If n 6∈ O then OPT (n, W) = OPT (n− 1, W)

• If n ∈ O then OPT (n, W) = wn + OPT (n− 1, W − wn).

When the nth item is too big, i.e., W < wn, then we must have OPT (n, W) = OPT (n−1, W).

Otherwise, we get the optimum solution allowing all n requests by taking the better of these

two options. This gives us the recursion:

(5.6) If W < wn then OPT (n, W) = OPT (n− 1, W). Otherwise

OPT (n, W) = max(OPT (n− 1, W), wn + OPT (n− 1, W − wn)).

As before, we want to design an algorithm that builds up a table of all OPT (i, w) values

while computing each of them at most once.

Subset-Sum(n, W)

Array M [0 . . . n, 0 . . .W]
For w = 0, . . . , W

M [0, w] = 0
For i = 1, 2, . . . , n

For w = 0, . . . , W
Use the recurrence (5.6) to compute M [i, w]

Endfor

Endfor

Return M [n, W]

There is an appealing pictorial way in which one can think about the computation of the

algorithm. To compute the value M [i, w] we used two other values M [i− 1, w] and M [i, w−
wi], as depicted by Figure 5.6.

Using (5.6) one can immediately prove by induction that the returned value M [n, W] is

the optimum solution value for the requests 1, . . . , n and available weight W .

Next we will worry about the running time of this algorithm. As before in the case of

the weighted interval scheduling, we are building up a table of solutions M , and we compute

each of the values M [i, w] in O(1) time using the previous values. Thus the running time is

proportional to the number of entries in the table.

132 CHAPTER 5. DYNAMIC PROGRAMMING

1 2 W

1

2

n

w

i

i-1

w-w i

Figure 5.6: How the table of OPT (i, w) values is computed.

(5.7) The Subset-Sum(n, W) algorithm correctly computes the optimal value of the prob-

lem, and runs in O(nW) time.

Note that this method is not as efficient as our dynamic program for the weighted interval

scheduling problem. Indeed, its running time is not a polynomial function of n; rather, it is

a polynomial function of n and W , the largest integer involved in defining the problem. We

call such algorithms pseudo polynomial. Pseudo polynomial algorithms can be reasonably

efficient when the numbers {wi} involved in the input are reasonably small; however, they

become less practical as these numbers grow large.

To recover an optimal set S of items, we can trace back through the array M by a

procedure similar to those we developed in the previous sections.

(5.8) Given a table M of the optimal values of the sub-problems, the optimal set S can

be found in O(n) time.

The Knapsack Problem

The knapsack problem is a bit more complex then the scheduling problem we discussed

above. Consider a situation in which each item i has a nonnegative weight wi as before, and

also a distinct value vi. Our goal is now to find a subset S of maximum value
∑

i∈S vi subject

to the restriction that the total weight of the set should not exceed W :
∑

i∈S wi ≤ W .

It is not hard to extend our dynamic programming algorithm to this more general prob-

lem. We use the analogous set of sub-problems, OPT (i, w) to denote the value of the optimal

5.4. RNA SECONDARY STRUCTURE: DYNAMIC PROGRAMMING OVER INTERVALS133

solution using a subset of the items {1, . . . , i} and maximum available weight w. We consider

an optimal solution O, and identify two cases depending on whether or not n ∈ O.

• If n 6∈ O then OPT (n, W) = OPT (n− 1, W).

• If n ∈ O then OPT (n, W) = vn + OPT (n− 1, W − wn).

This implies the following analogue of (5.6) .

(5.9) If W < wn then OPT (n, W) = OPT (n− 1, W). Otherwise

OPT (n, W) = max(OPT (n− 1, W), vn + OPT (n− 1, W − wn)).

Using this recursion we can write down an analogous dynamic programming algorithm.

(5.10) Knapsack(n, W) takes O(nW) time, and correctly computes the optimal values

of the sub-problems.

As was done before we can trace back through the table M containing the optimal values of

the sub-problems, to find an optimal solution in O(n) time.

5.4 RNA Secondary Structure: Dynamic Programming

Over Intervals

In the Knapsack problem, we were able to formulate a dynamic programming algorithm by

adding a new variable. A different but very common way by which one ends up adding

a variable to a dynamic program is through the following scenario. We start by thinking

about the set of sub-problems on {1, 2, . . . , j}, for all choices of j, and find ourselves unable

to come up with a natural recurrence. We then look at the larger set of sub-problems on

{i, i+1, . . . , j} for all choices of i and j (where i ≤ j), and find a natural recurrence relation

on these sub-problems. In this way, we have added the second variable i; the effect is to

consider a sub-problem for every contiguous interval in {1, 2, . . . , n}.
There are a few canonical problems that fit this profile; those of you who have studied

parsing algorithms for context-free grammars have probably seen at least one dynamic pro-

gramming algorithm in this style. Here we focus on the problem of RNA secondary structure

prediction, a fundamental issue in computational biology.

As one learns in introductory biology classes, Watson and Crick posited that double-

stranded DNA is “zipped” together by complementary base-pairing. Each strand of DNA

can be viewed as a string of bases, where each base is drawn from the set {A, C, G, T}. The

bases A and T pair with each other, and the bases C and G pair with each; it is these A-T

and C-G pairings that hold the two strands together.

134 CHAPTER 5. DYNAMIC PROGRAMMING

A
C
G

U
C

G

A U

C G

A

G
CG

AU A

U

CG
U
A

A

CG

A
U
A
C

G
AGC

AU
A

G

C G

G C U
A

G
A

C

Figure 5.7: An RNA secondary structure. Dotted connections indicate adjacent elements of
the sequence; solid connections indicate pairs that are matched.

Now, single-stranded RNA molecules are key components in many of the processes that go

on inside a cell, and they follow more or less the same structural principles. However, unlike

double-stranded DNA, there’s no “second strand” for the RNA to stick to; so it tends to

loop back and form base pairs with itself, resulting in interesting shapes like the one depicted

in Figure 5.7. The set of pairs (and resulting shape) formed by the RNA molecule through

this process is called the secondary structure, and understanding the secondary structure is

essential for understanding the behavior of the molecule.

For our purposes, a single-stranded RNA molecule can be viewed as a sequence of n

symbols (bases) drawn from the alphabet {A, C, G, U}.2 Let B = b1b2 · · · bn be a single-

stranded RNA molecule, where each bi ∈ {A, C, G, U}. To a first approximation, one can

model its secondary structure as follows. As usual, we require that A pairs with U , and

2Note that the symbol T from the alphabet of DNA has been replaced by a U , but this is not important
for us here.

5.4. RNA SECONDARY STRUCTURE: DYNAMIC PROGRAMMING OVER INTERVALS135

C pairs with G; we also require that each base can pair with at most one other base —

in other words, the set of base pairs forms a matching. It also turns out that secondary

structures are (again, to a first approximation) “knot-free,” which we will formalize as a

kind of “non-crossing” condition below.

Thus, concretely, we say that a secondary structure on B is a set of pairs S = {(bi, bj)}
that satisfies the following conditions:

(i) (No sharp turns.) The ends of each pair in S are separated by at least four intervening

bases; that is, if (bi, bj) ∈ S, then i < j − 4.

(ii) The elements of any pair in S consist of either {A, U} or {C, G} (in either order).

(iii) S is a matching: no base appears in more than one pair.

(iv) (The non-crossing condition.) If (bi, bj) and (bk, b`) are two pairs in S, then we cannot

have i < k < j < `.

Note that the RNA secondary structure in Figure 5.7 satisfies properties (i) through (iv).

From a structural point of view, condition (i) arises simply because the RNA molecule cannot

bend too sharply; and conditions (ii) and (iii) are the fundamental Watson-Crick rules of

base-pairing. Condition (iv) is the striking one, since it’s not obvious why it should hold in

nature. But while there are sporadic exceptions to it in real molecules (via so-called “pseudo-

knotting”), it does turn out to be a very good approximation to the spatial constraints on

real RNA secondary structures.

Now, out of all the secondary structures that are possible for a single RNA molecule,

which are the ones that are likely to arise under physiological conditions? The usual hy-

pothesis is that a single-stranded RNA molecule will form the secondary structure with the

optimum total free energy. The correct model for the free energy of a secondary structure is

a subject of much debate; but a first approximation here is to assume that the free energy

of a secondary structure is proportional simply to the number of base pairs that it contains.

Thus, having said all this, we can state the basic RNA secondary structure prediction

problem very simply. We want an efficient algorithm that takes a single stranded RNA

molecule B = b1b2 · · · bn and determines a secondary structure S with the maximum possible

number of base pairs.

A first attempt at dynamic programming. The natural first attempt to apply dy-

namic programming would presumably be based on the following sub-problems: we say that

OPT (j) is the maximum number of base pairs in a secondary structure on b1b2 · · · bj. By

the no-sharp-turns condition above, we know that OPT (j) = 0 for j ≤ 5; and we know that

OPT (n) is the solution we’re looking for.

136 CHAPTER 5. DYNAMIC PROGRAMMING

A

C

A

U

G

A

U

G

C

G

C

A

G

U

U

A C A U G A U G G C C A U G U

Figure 5.8: Two views of an RNA secondary structure. In the second view, the string has
been “stretched” lengthwise, and edges connecting matched pairs appear as non-crossing
“bubbles” over the string.

The trouble comes when we try writing down a recurrence that expresses OPT (j) in

terms of the solutions to smaller sub-problems. We can get partway there: in the optimal

secondary structure on b1b2 · · · bj, it’s the case that either

• bj is not involved in a pair; or

• bj pairs with bt for some t < j − 4.

In the first case, we just need to consult our solution for OPT (j − 1). The second case is

depicted in Figure 5.9(a); because of the non-crossing condition, we now know that no pair

can have one end between 1 and t − 1 and the other end between t + 1 and j − 1. We’ve

therefore effectively isolated two new sub-problems: one on the bases b1b2 · · · bt−1, and the

other on the bases bt+1 · · · bj−1. The first is solved by OPT (t− 1), but the second is not on

our list of sub-problems — because it does not begin with b1.

5.4. RNA SECONDARY STRUCTURE: DYNAMIC PROGRAMMING OVER INTERVALS137

i ti+1 t-1 t+1 j-1 j

tt-1 t+1 j-1 j1 2

(a)

(b)

Figure 5.9: Schematic view of the dynamic programming recurrence using (a) one variable,
and (b) two variables.

This is the insight that makes us realize we need to add a variable. We need to be able

to work with sub-problems that do not begin with b1; in other words, we need to consider

sub-problems on bibi+1 · · · bj for all choices of i ≤ j.

Dynamic programming over intervals. Once we make this decision, our previous rea-

soning leads straight to a successful recurrence. Let OPT (i, j) denote the maximum number

of base pairs in a secondary structure on bibi+1 · · · bj. The no-sharp-turns condition lets us

initialize OPT (i, j) = 0 whenever i ≥ j + 4.

Now, in the optimal secondary structure on bibi+1 · · · bj, we have the same alternatives

as before:

• bj is not involved in a pair; or

• bj pairs with bt for some t < j − 4.

In the first case, we have OPT (i, j) = OPT (i, j − 1). In the second case, depicted in

Figure 5.9(b); we recur on the two sub-problems OPT (i, t − 1) and OPT (t + 1, j − 1); as

138 CHAPTER 5. DYNAMIC PROGRAMMING

argued above, the non-crossing condition has isolated these two sub-problems from each

other.

We have therefore justified the following recurrence.

(5.11) OPT (i, j) = max(OPT (i, j − 1), max(1 + OPT (i, t− 1) + OPT (t + 1, j − 1))),

where the max is taken over t such that bt and bj are an allowable base pair (under the

Watson-Crick condition (ii)).

Now we just have to make sure we understand the proper order in which to build up the

solutions to the sub-problems. The form of (5.11) reveals that we’re always invoking the

solution to sub-problems on shorter intervals: those for which j − i is smaller. Thus, things

will work without any trouble if we build up the solutions in order of increasing interval

length.

Initialize OPT (i, j) = 0 whenever i ≥ j − 4
For i = 1, 2, . . . n
For j = i + 5, i + 6, . . . , n

Compute OPT (i, j) using the recurrence in (5.11)

Endfor

Endfor

Return OPT (1, n)

As always, we can recover the secondary structure itself (not just its value) by recording how

the minima in (5.11) are achieved, and tracing back through the computation.

It is easy to bound the running time: there are O(n2) sub-problems to solve, and evalu-

ating the recurrence in (5.11) takes time O(n) for each. Thus, the running time is O(n3).

5.5 Sequence Alignment

Dictionaries on the Web seem to get more and more useful: often it now seems easier to

pull up a book-marked on-line dictionary than to get a physical dictionary down from the

bookshelf. And many on-line dictionaries offer functions that you can’t get from a printed

one: if you’re looking for a definition and type in a word it doesn’t contain — say, “ocurrance”

— it will come back and ask, “Perhaps you mean ‘occurrence?’ ”. How does it do this? Did

it truly know what you had in mind?

Let’s defer the second question to a different course, and think a little about the first

one. To decide what you probably meant, it would be natural to search the dictionary for

the word most “similar” to the one you typed in. To do this, we have to answer the question:

how should we define similarity between two words or strings?

Intuitively we’d like to say that “ocurrance” and “occurrence” are similar because we can

make the two words identical if we add a ‘c’ to the first word, and change the ‘a’ to an ‘e’.

5.5. SEQUENCE ALIGNMENT 139

Since neither of these changes seems so large, we conclude that the words are quite similar.

To put it another way, we can nearly line up the two words letter by letter:

o-currance

occurrence

The “-” symbol indicates a gap — we had to add a gap to the second word to get it to line

up with the first. Moreover, our lining up is not perfect in that an “e” is lined up with an

“a”.

We want a model in which similarity is determined roughly by the number of gaps and

mismatches we incur when we line up the two words. Of course, there are many possible

ways to line up the two words; for example, we could have written

o-curr-ance

occurre-nce

which involves three gaps and no mismatches. Which is better: one gap and one mismatch,

or three gaps and no mismatches?

This discussion has been made easier because we know roughly what the correspondence

“ought” to look like. When the two strings don’t look like English words — for example,

“abbbaabbbbaab” and “ababaaabbbbbab” — it may take a little work to decide whether

they can be lined up nicely or not:

abbbaa--bbbbaab

ababaaabbbbba-b

Dictionary interfaces and spell-checkers are not the most computationally intensive ap-

plication for this type of problem. In fact, determining similarities among strings is one of

the central computational problems facing molecular biologists today.

Strings arise very naturally in biology: an organism’s genome — its full set of genetic

material — is divided up into giant linear DNA molecules known as chromosomes, each

of which serves conceptually as a one-dimensional chemical storage device. Indeed, it does

not obscure reality very much to think of it as an enormous linear tape, containing a string

over the alphabet {A, C, G, T}.3 The string of symbols encodes the instructions for building

protein molecules; using a chemical mechanism for reading portions of the chromosome, a

cell can construct proteins that in turn control its metabolism.

Why is similarity important in this picture? We know that the sequence of symbols in an

organism’s genome directly determines everything about the organism. So suppose we have

two strains of bacteria, X and Y , which are closely related evolutionarily. Suppose further

that we’ve determined that a certain substring in the DNA of X codes for a certain kind of

3Adenine, cytosine, guanine, and thymine, the four basic units of DNA.

140 CHAPTER 5. DYNAMIC PROGRAMMING

toxin. Then if we discover a very “similar” substring in the DNA of Y , we might be able to

hypothesize, before performing any experiments at all, that this portion of the DNA in Y

codes for a similar kind of toxin. This use of computation to guide decisions about biological

experiments is one of the hallmarks of the field of computational biology.

All this leaves us with the same question we asked initially, typing badly spelled words

into our on-line dictionary. How should we define the notion of similarity between two

strings?

In the early 1970’s, the two molecular biologists Needleman and Wunsch proposed a

definition of similarity which, basically unchanged, has become the standard definition in

use today. Its position as a standard was reinforced by its simplicity and intuitive appeal, as

well as through its independent discovery by several other researchers around the same time.

Moreover, this definition of similarity came with an efficient dynamic programming algorithm

to compute it. In this way, the paradigm of dynamic programming was independently

discovered by biologists some twenty years after Bellman first articulated it.

The definition is motivated by the considerations we discussed above, and in particular

the notion of “lining up” two strings. Suppose we are given two strings X and Y : X consists

of the sequence of symbols x1x2 · · ·xm and Y consists of the sequence of symbols y1y2 · · ·yn.

Consider the sets {1, 2, . . . , m} and {1, 2, . . . , n} as representing the different positions in

the strings X and Y , and consider a matching of these sets; recall that a matching is a

set of ordered pairs with the property that each item occurs in at most one pair. We

say that matching M of these two sets is an alignment if there are no “crossing” pairs: if

(i, j), (i′, j ′) ∈ M and i < i′, then j < j ′. Intuitively an alignment gives a way of “lining

up” the two strings, by telling us which pairs of positions will be lined up with one another.

Thus, for example,

stop-

-tops

corresponds to the alignment {(2, 1), (3, 2), (4, 3)}.
Our definition of similarity will be based on finding the optimal alignment between X

and Y , according to the following criteria. Suppose M is a given alignment between X and

Y .

• First, there is a parameter δ > 0 that defines a “gap penalty.” For each position that

is not matched in M — it is a “gap” — we incur a cost of δ.

• Second, for each pair of letters p, q in our alphabet, there is a “mismatch cost” of αpq

for lining up p with q. Thus, for each (i, j) ∈ M , we pay the appropriate mismatch

cost αxiyj
for lining up xi with yj. One generally assumes that αpp = 0 for each letter

p — there is no mismatch cost to line up a letter with another copy of itself — though

this will not be necessary in anything that follows.

5.5. SEQUENCE ALIGNMENT 141

• The cost of M is the sum of its gap and mismatch costs, and we seek an alignment of

minimum cost.

The process of minimizing this cost is often referred to as sequence alignment in the biology

literature. The quantities δ and {αpq} are external parameters that must be plugged into

software for sequence alignment; indeed, a lot of work goes into choosing the settings for

these parameters. From our point of view, in designing an algorithm for sequence alignment,

we will take them as given. To go back to our first example, notice how these parameters

determine which alignment of “ocurrance” and “occurrence” we should prefer: the first is

strictly better if and only if δ + αae < 3δ.

Computing an Optimal Alignment. We now have a concrete numerical definition for

the similarity between strings X and Y : it is the minimum cost of an alignment between X

and Y . Let’s denote this cost by σ(X, Y). The lower this cost is, the more similar we declare

the strings to be. We now turn to the problem of computing σ(X, Y), and the optimal

alignment that yields it, for a given pair of strings X and Y .

One of the approaches we could try for this problem is dynamic programming, and we

are motivated by the following basic dichotomy:

• In the optimal alignment M , either (m, n) ∈ M or (m, n) 6∈ M . (That is, either the

last symbols in the two strings are matched to each other, or they aren’t.)

By itself, this fact would be too weak to provide us with a dynamic programming solution.

Suppose, however, that we compound it with the following basic fact.

(5.12) Let M be any alignment of X and Y . If (m, n) 6∈M , then either the mth position

of X or the nth position of Y is not matched in M .

Proof. Suppose by way of contradiction that (m, n) 6∈M , but there are numbers i < m and

j < n so that (m, j) ∈ M and (i, n) ∈ M . But this contradicts our definition of alignment:

we have (i, n), (m, j) ∈M with i < m but n > i so the pairs (i, n) and (m, j) cross.

Given (5.12) , we can turn our original dichotomy into the following, slightly less trivial,

set of alternatives.

(5.13) In an optimal alignment M , at least one of the following is true:

(i) (m, n) ∈M ; or

(ii) the mth position of X is not matched; or

(iii) the nth position of Y is not matched.

142 CHAPTER 5. DYNAMIC PROGRAMMING

Now, let OPT (i, j) denote the minimum cost of an alignment between x1x2 · · ·xi and

y1y2 · · ·yj. If case (i) of (5.13) holds, we pay αxmyn
and then align x1x2 · · ·xm−1 as well

as possible with y1y2 · · · yn−1; we get OPT (m, n) = αxmyn
+ OPT (m − 1, n − 1). If case

(ii) holds, we pay a gap cost of δ since the mth position of X is not matched, and then we

align x1x2 · · ·xm−1 as well as possible with y1y2 · · · yn. In this way, we get OPT (m, n) =

δ + OPT (m− 1, n). Similarly, if case (iii) holds, we get OPT (m, n) = δ + OPT (m, n− 1).

Thus we get the following fact.

(5.14) The minimum alignment costs satisfy the following recurrence:

OPT (m, n) = min[αxmyn
+ OPT (m− 1, n− 1), δ + OPT (m− 1, n), δ + OPT (m, n− 1)].

Moreover, (m, n) is in an optimal alignment M if and only if the minimum is achieved by

the first of these values.

We have maneuvered ourselves into a position where the dynamic programming algorithm

has become clear: we build up the values of OPT (i, j) using the recurrence in (5.14). There

are only O(mn) sub-problems, and OPT (m, n) is the value we are seeking.

We now specify the algorithm to compute the value of the optimal alignment. For

purposes of initialization, we note that that OPT (i, 0) = OPT (0, i) = iδ for all i, since the

only way to line up an i-letter word with a 0-letter word is to use i gaps.

Alignment(X,Y)

Array A[0 . . . n, 0 . . .m]
For i = 0, . . . , m

A[i, 0] = iδ
Endfor

For j = 0, . . . , n
A[0, j] = jδ

Endfor

For j = 1, . . . , n
For i = 1, . . . , m

Use the recurrence (5.14) to compute A[i, j]
Endfor

Endfor

Return A[m, n]

As in previous dynamic programming algorithms, we can “trace back” through the array

A, using the second part of fact (5.14) , to construct the alignment itself. The correctness

of the algorithm follow directly from (5.14) . Their running time is O(mn), since the array

A has O(mn) entries, and at worst we spend constant time on each.

There is an appealing pictorial way in which people think about this sequence alignment

algorithm. Suppose we build a two-dimensional m×n grid graph GXY , with the rows labeled

5.5. SEQUENCE ALIGNMENT 143

by prefixes of the string X, the columns labeled by prefixes of Y , and directed edges as in

Figure 5.10.

- - --

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

~

~

~

~

~

~

~

~

~

~

~

~

ε

qqqqqqq

ε

x

x

x

y y y y

1

2

3

1 2 3 4

Figure 5.10: A graph-based picture of sequence alignment.

We number the rows from 0 to m and the columns from 0 to n; we denote the node in the

ith row and the jth column by the label (i, j). We put costs on the edges of GXY : the cost of

each horizontal and vertical edge is δ, and the cost of the diagonal edge from (i − 1, j − 1)

to (i, j) is αxiyj
.

The purpose of this picture now emerges: the recurrence in (5.14) for OPT (i, j) is

precisely the recurrence one gets for the minimum-cost path in GXY from (0, 0) to (i, j).

Thus we can show

(5.15) Let f(i, j) denote the minimum cost of a path from (0, 0) to (i, j) in GXY . Then

all for i, j, we have f(i, j) = OPT (i, j).

Proof. We can easily prove this by induction on i + j. When i + j = 0, we have i = j = 0,

and indeed f(i, j) = OPT (i, j) = 0.

Now consider arbitrary values of i and j, and suppose the statement is true for all pairs

(i′, j ′) with i′+j ′ < i+j. The last edge on the shortest path to (i, j) is either from (i−1, j−1),

(i− 1, j), or (i, j − 1). Thus we have

f(i, j) = min[αxiyj
+ f(i− 1, j − 1), δ + f(i− 1, j), δ + f(i, j − 1)]

= min[αxiyj
+ OPT (i− 1, j − 1), δ + OPT (i− 1, j), δ + OPT (i, j − 1)]

= OPT (i, j),

where we pass from the first line to the second using the induction hypothesis, and we pass

from the second to the third using (5.14) .

144 CHAPTER 5. DYNAMIC PROGRAMMING

Thus, the value of the optimal alignment is the length of the shortest path in GXY from

(0, 0) to (m, n). (We’ll call any path in GXY from (0, 0) to (m, n) a corner-to-corner path.)

Moreover, the diagonal edges used in a shortest path correspond precisely to the pairs used

in a minimum-cost alignment. These connections to the shortest path problem in the graph

GXY do not directly yield an improvement in the running time for the sequence alignment

problem; however, they do help one’s intuition for the problem, and have been useful in

suggesting algorithms for more complex variations on sequence alignment.

5.6 Sequence Alignment in Linear Space

We have discussed the running time requirements of the sequence alignment algorithm,

but — in keeping with our main focus in dynamic programming — we have not explicitly

tabulated the space requirements. This is not difficult to do: we need only maintain the

array A holding the values of OPT (·, ·), and hence the space required is O(mn).

The real question is: should we be happy with O(mn) as a space bound? If our application

is to compare English words, or even English sentences, it is quite reasonable. In biological

applications of sequence alignment, however, one often compares very long strings against one

another; and in these cases, the Θ(mn) space requirement can potentially be a more severe

problem than the Θ(mn) time requirement. Suppose, for example, that we are comparing

two strings of length 100, 000 each. Depending on the underlying processor, the prospect of

performing roughly ten billion primitive operations might be less cause for worry than the

prospect of working with a single ten-gigabyte array.

Fortunately, this is not the end of the story. In this section we describe a very clever

enhancement of the sequence alignment algorithm that makes it work in O(mn) time using

only O(m + n) space. For ease of description, we’ll describe various steps in terms of paths

in the graph GXY , with the natural equivalence back to the sequence alignment problem.

Thus, when we seek the pairs in an optimal alignment, we can equivalently ask for the edges

in a shortest corner-to-corner path in GXY .

A Space-Efficient Algorithm for the Optimal Value. We first show that if we only

care about the value of the optimal alignment, and not the alignment itself, it is easy to get

away with linear space. The crucial observation is that to fill in an entry of the array A, the

recurrence in (5.14) only needs information from the current column of A and the previous

column of A. Thus we will we “collapse” the array A to an m× 2 array B: as the algorithm

iterates through values of j, B[i, 0] will hold the “previous” column’s value A[i, j − 1], and

B[i, 1] will hold the “current” column’s value A[i, j].

Space-Efficient-Alignment(X,Y)

Array B[0 . . .m, 0 . . . 1]

5.6. SEQUENCE ALIGNMENT IN LINEAR SPACE 145

For i = 0, . . . , m
B[i, 0] = iδ

Endfor

For j = 1, . . . , n
B[0, 1] = jδ
For i = 1, . . . , m

B[i, 1] = min[αxiyj
+ B[i− 1, 0],
δ + B[i− 1, 1], δ + B[i, 0]].

Endfor

For i = 1, . . . , m
B[i, 0] = B[i, 1]

Endfor

Endfor

It is easy to verify that when this algorithm completes, the array entry B[i, 1] holds the

value of OPT (i, n) = f(i, n), for i = 0, 1, . . . , m. Moreover, it uses O(mn) time and O(m+n)

space. The problem is: where is the alignment itself? We haven’t left enough information

around to be able to run a procedure like Find-Alignment; and as we think about it, we see

that it would be very difficult to try “predicting” what the alignment is going to be as we run

our space-efficient procedure. In particular, as we compute the values in the j th column of

the (now implicit) array A, we could try hypothesizing that a certain entry has a very small

value, and hence that the alignment that passes through this entry is a promising candidate

to be the optimal one. But this promising alignment might run into big problems later on,

and a different alignment that currently looks much less attractive will turn out to be the

optimal one.

There is in fact a solution to this problem — we will be able to recover the alignment

itself using O(m + n) space — but it requires a genuinely new idea. The insight is based on

employing the divide-and-conquer technique that we’ve seen earlier in the course. We begin

with a simple alternative way to implement the basic dynamic programming solution.

A Backward Formulation of the Dynamic Program. Recall that we use f(i, j) to

denote the length of the shortest path from (0, 0) to (i, j) in the graph GXY . Let’s define

g(i, j) to be the length of the shortest path from (i, j) to (m, n) in GXY . The function g

provides an equally natural dynamic programming approach to sequence alignment, except

that we build it up in reverse: we start with g(m, n) = 0, and the answer we want is g(0, 0).

By strict analogy with (5.14) , we have the following recurrence for g.

(5.16) For i < m and j < n we have g(i, j) = min[αxi+1yj+1
+ g(i + 1, j + 1), δ + g(i, j +

1), δ + g(i + 1, j)].

This is just the recurrence one obtains by taking the graph GXY , “rotating” it so that the

node (m, n) is in the upper left corner, and using the previous approach. Using this picture,

146 CHAPTER 5. DYNAMIC PROGRAMMING

we can also work out the full dynamic programming algorithm to build up the values of g,

backwards starting from (m, n).

Combining the Forward and Backward Formulations. So now we have symmetric

algorithms which build up the values of the functions f and g. The idea will be to use these

two algorithms in concert to find the optimal alignment. First, here are two basic facts

summarizing some relationships between the functions f and g.

(5.17) The length of the shortest corner-to-corner path in GXY that passes through (i, j)

is f(i, j) + g(i, j).

Proof. Let `ij denote the length of the shortest corner-to-corner path in GXY that passes

through (i, j). Clearly any such path must get from (0, 0) to (i, j), and then from (i, j) to

(m, n). Thus its length is at least f(i, j)+g(i, j), and so we have `ij ≥ f(i, j)+g(i, j). On the

other hand, consider the corner-to-corner path that consists of a minimum-length path from

(0, 0) to (i, j), followed by a minimum-length path from (i, j) to (m, n). This path has length

f(i, j) + g(i, j), and so we have `ij ≤ f(i, j) + g(i, j). It follows that `ij = f(i, j) + g(i, j).

(5.18) Let k be any number in {0, . . . , n}, and let q be an index that minimizes the

quantity f(q, k) + g(q, k). Then there is a corner-to-corner path of minimum length that

passes through the node (q, k).

Proof. Let `∗ denote the length of the shortest corner-to-corner path in GXY . Now, fix a

value of k ∈ {0, . . . , n}. The shortest corner-to-corner path must use some node in the kth

column of GXY — let’s suppose it is node (p, k) — and thus by (5.17)

`∗ = f(p, k) + g(p, k) ≥ min
q

f(q, k) + g(q, k).

Now consider the index q that achieves the minimum in the right-hand-side of this expression;

we have

`∗ ≥ f(q, k) + g(q, k).

By (5.17) again, the shortest corner-to-corner path using the node (q, k) has length f(q, k)+

g(q, k), and since `∗ is the minimum length of any corner-to-corner path, we have

`∗ ≤ f(q, k) + g(q, k).

It follows that `∗ = f(q, k) + g(q, k). Thus the the shortest corner-to-corner path using the

node (q, k) has length `∗, and this proves (5.18) .

Using (5.18) and our space-efficient algorithms to compute the value of the optimal

alignment, we will proceed as follows. We divide GXY along its center column and compute

5.6. SEQUENCE ALIGNMENT IN LINEAR SPACE 147

the value of f(i, n/2) and g(i, n/2) for each value of i, using our two space-efficient algorithms.

We can then determine the minimum value of f(i, n/2) + g(i, n/2), and conclude via (5.18)

that there is a shortest corner-to-corner path passing through the node (i, n/2). Given this,

we can search for the shortest path recursively in the portion of GXY between (0, 0) and

(i, n/2), and in the portion between (i, n/2) and (m, n). The crucial point is that we apply

these recursive calls sequentially, and re-use the working space from one call to the next;

thus, since we only work on one recursive call at a time, the total space usage is O(m + n).

The key question we have to resolve is whether the running time of this algorithm remains

O(mn).

In running the algorithm, we maintain a globally accessible list P which will hold nodes

on the shortest corner-to-corner path as they are discovered. Initially, P is empty. P need

only have m + n entries, since no corner-to-corner path can use more than this many edges.

We also use the following notation: X[i : j], for 1 ≤ i ≤ j ≤ m, denotes the substring of X

consisting of xixi+1 · · ·xj; and we define Y [i : j] analogously. We will assume for simplicity

that n is a power of 2; this assumption makes the discussion much cleaner, although it can

be easily avoided.

Divide-and-Conquer-Alignment(X,Y)

Let m be the number of symbols in X.

Let n be the number of symbols in Y .

If m ≤ 2 or n ≤ 2 then

Compute optimal alignment using Alignment(X,Y).

Call Space-Efficient-Alignment(X,Y [1 : n/2]),
obtaining array B.

Call Backwards-Space-Efficient-Alignment(X,Y [n/2 + 1 : n]),
obtaining array B ′.

Let q be the index minimizing B[q, 1] + B ′[q, 1].
Add (q, n/2) to global list P.

Divide-and-Conquer-Alignment(X[1 : q],Y [1, n/2])
Divide-and-Conquer-Alignment(X[q + 1 : n],Y [n/2 + 1, n])
Return P.

As an example of the first level of recursion, consider the figure below. If the “minimizing

index” q turns out to be 1, we get the two sub-problems pictured.

The arguments above already establish that the algorithm returns the correct answer,

and that it uses O(m + n) space. Thus, we need only verify the following fact.

(5.19) The running time of Divide-and-Conquer-Alignment on strings of length m

and n is O(mn).

Proof. Let T (m, n) denote the maximum running time of the algorithm on strings of length

m and n. The algorithm performs O(mn) work to build up the arrays B and B ′; it then

148 CHAPTER 5. DYNAMIC PROGRAMMING

- - --

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

~

~

~

~

~

~

~

~

~

~

~

~

..

..

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

...

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

...

...

...

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.....

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.....

e

e

x

x

x

y y y y

1

2

3

1 2 3 4

runs recursively on strings of size q and n/2, and on string of size m− q and n/2. Thus, for

some constant c, we have

T (m, n) ≤ cmn + T (q, n/2) + T (m− q, n/2)

T (m, 2) ≤ cm

T (2, n) ≤ cn.

Now we claim that this recurrence implies T (m, n) ≤ 2cmn; in other words, our space-

efficient strategy has at worst doubled the running time. We prove this by induction, with

the case of m ≤ 2 and n ≤ 2 following immediately from the inequalities above. For general

m and n, we have

T (m, n) ≤ cmn + T (q, n/2) + T (m− q, n/2)

≤ cmn + 2cqn/2 + 2c(m− q)n/2

= cmn + cqn + cmn− cqn

= 2cnm.

5.7 Shortest Paths in a Graph

For the final two sections, we focus on the problem of finding shortest paths in a graph,

together with some closely related issues.

Let G = (V, E) be a directed graph. Assume that each edge (i, j) ∈ E has an associated

weight cij. The weights can be used to model a number of different things; we will picture

5.7. SHORTEST PATHS IN A GRAPH 149

here the interpretation in which the weight cij represents a cost for going directly from node

i to node j in the graph.

Earlier, we discussed Dijkstra’s algorithm for finding shortest paths in graphs with posi-

tive edge costs. Here we consider the more complex problem in which we seek shortest paths

when costs may be negative. Among the motivations for studying this problem, here are

two that particularly stand out. First, negative costs turn out to be crucial for modeling a

number of phenomena with shortest paths. For example, the nodes may represent agents in

a financial setting, and cij represents the cost of a transaction in which we buy from agent

i and then immediately sell to agent j. In this case, a path would represent a succession of

transactions, and edges with negative costs would represent transactions that result in prof-

its. Second, the algorithm that we develop for dealing with edges of negative cost turns out,

in certain crucial ways, to be more flexible and decentralized than Dijkstra’s algorithm. As a

consequence, it has important applications for the design of distributed routing algorithms

that determine the most efficient path in a communication network.

In this section and the next we will consider the following two related problems.

• Given a graph G with weights, as described above, decide if G has a negative cycle,

i.e., a directed cycle C such that
∑

ij∈C

cij < 0.

• If the graph has no negative cycles, find a path P from an origin node s to a destination

node t with minimum total cost:
∑

ij∈P

cij

should be as small as possible for any s-t path. This is called both the minimum-cost

path problem and the shortest path problem.

In terms of our financial motivation above, a negative cycle corresponds to a profitable

sequence of transactions that takes us back to our starting point: we buy from i1, sell to

i2, buy from i2, sell to i3, and so forth, finally arriving back at i1 with a net profit. Thus,

negative cycles in such a network can be viewed as good arbitrage opportunities.

It makes sense to consider the minimum-cost s-t path problem under the assumption

that there are no negative cycles. If there is a negative cycle C, a path Ps from s to the

cycle, and another path Pt from the cycle to t, then we can build an s-t path of arbitrarily

negative cost: we first use Ps to get to the negative cycle C, then we go around C as many

times as we want, and then use Pt to get from C to the destination t.

Let’s begin by recalling Dijkstra’s algorithm for the shortest path problem when there

are no negative costs. The method computes a shortest path from the origin s to every other

node v in the graph, essentially using a greedy algorithm. The basic idea is to maintain a

150 CHAPTER 5. DYNAMIC PROGRAMMING

set S with the property that the shortest path from s to each node in S is known. We start

with S = {s} — since we know the shortest path from s to s has cost 0 when there are

no negative edges — and we add elements greedily to this set S. As our first greedy step,

we consider the minimum cost edge leaving node s, i.e., min
i∈V

csi. Let v be a node on which

this minimum is obtained. The main observation underlying Dijkstra’s algorithm is that the

shortest path from s to v is the single-edge path {s, v}. Thus we can immediately add the

node v to the set S. The path {s, v} is clearly the shortest to v if there are no negative edge

costs: any other path from s to v would have to start on an edge out of s that is at least as

expensive as edge sv.

The above observation is no longer true if we can have negative edge costs. A path that

starts on an expensive edge, but then uses many edges with negative cost, can be cheaper than

a path that starts on a cheap edge. This suggests that the Dijkstra-style greedy approach

will not work here.

Another natural idea is to first modify the cost cij by adding some large constant M to

each, i.e., we let c′ij = cij + M for each edge (i, j) ∈ E. If the constant M is large enough,

then all modified costs are non-negative, and we can use Dijstra’s algorithm to find the

minimum-cost path subject to costs c′. However, this approach also fails. The problem here

is that changing the costs from c to c′ changes the minimum cost path. For example, if a

path P consisting of 3 edges is somewhat cheaper than another path P ′ that has 2 edges,

than after the change in costs, P ′ will be cheaper, since we only add 2M to the cost of P ′

while adding 3M to the cost of P .

We will try to use dynamic programming to solve the problem of finding a shortest path

from s to t when there are negative edge costs but no negative cycles. We could try an idea

that has worked for us so far: sub-problem i could be to find a shortest path using only the

first i nodes. This idea does not immediately work, but it can be made to work with some

effort. Here, however, we will discuss a simpler and more efficient solution, the Bellman-Ford

algorithm. The development of dynamic programming as a general algorithmic technique

is often credited to the work of Bellman in the 1950’s; and the Bellman-Ford shortest path

algorithm was one of the first applications.

The dynamic programming solution we develop will be based on the following crucial

observation.

(5.20) If G has no negative cycles, then there is a shortest path from s to t that is simple,

and hence has at most n− 1 edges.

Proof. Since every cycle has non-negative cost, the shortest path P from s to t with the

fewest number of edges does not repeat any vertex v. For if P did repeat a vertex v, we could

remove the portion of P between consecutive visits to v, resulting in a path of no greater

cost and fewer edges.

5.7. SHORTEST PATHS IN A GRAPH 151

Let’s use OPT (i, v) to denote the minimum cost of a v-t path using at most i edges.

By (5.20) , our original problem is to compute OPT (n − 1, s). We could instead design an

algorithm whose sub-problems correspond to the minimum cost of an s-v path using at most

i edges. This would form a more natural parallel with Dijkstra’s algorithm, but it would not

be as natural in the context of the routing protocols we discuss later.

We now need a simple way to express OPT (i, v) using smaller sub-problems. We will

see that the most natural approach involves the consideration of many different cases; this

is another example of the principle of “multi-way choices” that we saw in the algorithm for

the segmented least squares problem.

Let’s fix an optimal path P representing OPT (i, v) as depicted on Figure 5.11.

• If the path P uses at most i− 1 edges, then we have OPT (i, v) = OPT (i− 1, v)

• If the path P uses i edges, and the first edge is (v, w), then OPT (i, v) = cvw +OPT (i−
1, w).

t
w

v
P

Figure 5.11: The minimum cost path P from v to t using at most i edges.

This leads to the following recursive formula.

(5.21) If i > 0 then

OPT (i, v) = min(OPT (i− 1, v), min
w∈V

(OPT (i− 1, w) + cwv)).

Using this recurrence, we get the following dynamic programming algorithm to compute the

value OPT (n− 1, t).

Shortest-Path(G, s, t)
n = number of nodes in G
Array M [0 . . . n− 1, V]
For v ∈ V in any order

M [0, v] =∞
Endfor

M [0, t] = 0
For i = 1, . . . , n− 1

For v ∈ V in any order

152 CHAPTER 5. DYNAMIC PROGRAMMING

M = M [i − 1, v]
M ′ = min

w∈V
(cvw + M [i− 1, w])

M [i, v] = min(M, M ′)
Endfor

Endfor

Return M [n − 1, s]

The correctness of the method follows directly from the statement (5.21). We can bound

the running time as follows. The table M has n2 entries; and each entry can take O(n) time

to compute, as there are at most n nodes w we have to consider.

(5.22) The Shortest-Path method correctly computes the minimum cost of an s-t path

in any graph that has no negative cycles, and runs in O(n3) time.

Given the table M containing the optimal values of the sub-problems, the shortest path

using at most i edges can be obtained in O(in) time, by tracing back through smaller sub-

problems.

Improved Versions

A big problem with the above version of the Bellman-Ford algorithm (and in fact, with many

dynamic programming algorithms) is that it uses too much memory. For a graph with n

nodes, we used a table M of size n2. Our first change to the algorithm will be aimed at

decreasing the memory requirement. We will no longer record M [i, v] for each value i; instead

we will use and update a single value M [v] for each node v, the length of the shortest path

from v to t that we have found so far. One can change the above algorithm to proceed in

rounds; in each round we let M ′ = min
w∈V

(cvw + M [w]), and update M [v] to be min(M [v], M ′).

Just as before, the code will have a “For i = 1, . . . , n − 1” loop, but the only point of the

loop is to count the number of iterations. The following lemma is not hard to show.

(5.23) Throughout the algorithm M [v] is the length of some path from v to t, and after

i rounds of updates the value M [v] is no larger than the length of the shortest path from v to

t using at most i edges.

Now we can use (5.20) to show that after n− 1 iterations we are done.

Further, we can also improve the running time. A graph with n nodes can have close

to n2 directed edges. When we work with a graph for which the number of edges m is

significantly less than n2, it is often useful to write the running time in terms of both m and

n; this way, we can quantify our speed-up when we work with a graph that doesn’t have

very many edges.

If we are a little more careful in the analysis of the method above, we can improve the

running time bound to O(mn) without significantly changing the algorithm itself.

5.7. SHORTEST PATHS IN A GRAPH 153

(5.24) The Shortest-Path method can be implemented in O(mn) time, using O(n)

memory.

Proof. The improvement is obtained through two changes to the algorithm. The improve-

ment in memory usage has been discussed above. To obtain the improvement in the running

time, we consider the line that computes

M ′ = min
w∈V

(cvw + M [i − 1, w])

while building up the array entry M [i, v]. We assumed it could take up to O(n) time to

compute this minimum, since there are n possible nodes w. But of course, we need only

compute this minimum over all nodes w for which v has an edge to w; let us use nv to

denote this number. Then it takes time O(nv) to compute the array entry M [i, v]. We have

to compute an entry for every node v and every index 0 ≤ i ≤ n− 1, so this gives a running

time bound of O

(

n
∑

v∈V

nv

)

.

This bound can be written O(mn), as shown by the following fact.

(5.25)
∑

v∈V nv = m

Proof. Each edge enters exactly one node, which implies the statement.

Note that the path whose length is M [v] after i iterations, can have substantially more

edges than i. For example, if the graph is a single path, and we perform updates in the order

the edges appear on the path, then we get the final shortest path values in just one iteration.

To take advantage of the fact that the M [v] values may reach the length of the shortest path

in fewer than n − 1 iterations, we need to be able to terminate without reaching iteration

n− 1. This can be done using the following observation: if we reach an iteration i in which

no M [v] value changes, then the algorithm can terminate — since there will be no further

changes in any subsequent iteration. Note that it is not enough for a particular M [v] value

to remain the same; in order to safely terminate, we need for all these values to remain the

same for a single iteration.

Shortest Paths and Distance Vector Protocols

One important application of the shortest path problem is for routers in a communication

network to determine the most efficient path to a destination. We represent the network

using a graph in which the nodes correspond to routers, and there is an edge between v and

w if the two routers are connected by a direct communication link. We define a cost cvw

representing the delay on the link (v, w); the shortest path problem with these costs is to

determine the path with minimum delay from a source node s to a destination t. Delays are

154 CHAPTER 5. DYNAMIC PROGRAMMING

naturally non-negative, so one could use Dijkstra’s algorithm to compute the shortest path.

However, Dijkstra’s shortest path computation requires global knowledge of the network: we

need to maintain a set S of nodes for which shortest paths have been determined, and make

a global decision about which node to add next to S. While routers could be made to run

a protocol in the background that gathers enough global information to implement such an

algorithm, it is cleaner and more flexible to use algorithms that require only local knowledge

of neighboring nodes.

If we think about it, the Bellman-Ford algorithm discussed above has just such a “local”

property. Suppose we let each node v maintain its value M [v]; then to update this value, v

needs only obtain the value M [w] from each neighbor w, and then compute

min
w∈V

(cvw + M [i− 1, w])

based on the information obtained.

We now discuss two improvements to the Bellman-Ford algorithm that make it better

suited for routers, and at the same time also make it a faster algorithm in practice. First, our

current implementation of the Bellman-Ford algorithm can be thought of as a “pull”-based

algorithm. In each iteration i, each node v has to contact each neighbor w, and “pull” the

new value M [w] from it. If a node w has not changed its value, then there is no need for

v to get the value again — however, v has has no way of knowing this fact, and so it must

execute the “pull” anyway.

This wastefulness suggeests a symmetric “push”-based implementation, where values are

only transmitted when they change. Specifically, each node w whose distance value M [w]

changes in an iteration informs all its neighbors of the new value in the next iteration; this

allows them to update their values accordingly. If M [w] has not changed, then the neighbors

of w already have the current value, and there is no need to “push” it to them again. Here

is a concrete description of the push-based implementation:

Shortest-Path(G, s, t)
n = number of nodes in G
Array M [V]
For v ∈ V in any order

M [v] =∞
Endfor

M [t] = 0
For i = 1, . . . , n− 1 or While some value changes

For w ∈ V in any order

If M [w] has been updated in the previous iteration then

For all edges (v, w) in any order

M [v] = min(M [v], cvw + M [w])
Endfor

5.7. SHORTEST PATHS IN A GRAPH 155

Endfor

Endfor

Return M [s]

In this algorithm nodes are sent updates of their neighbors’ distance values in rounds,

and each node may send out updates in each iteration. This complete synchrony cannot be

enforced for nodes that are independently operating routers. However, even if nodes update

their distance values asynchronously, it is not hard to see the followng: the distances will

eventually converge to the correct values assuming only that the costs cvw remain constant

and each node whose value changes eventually sends out the required updates.

The algorithm we developed uses a single destination t, and all nodes v ∈ V compute their

shortest path to t. More generally, we are presumably interested in finding distances and

shortest paths between all pairs of nodes in a graph. To obtain such distances, we effectively

use n separate computations, one for each destination. Such an algorithm is referred to as a

distance vector protocol, since each node maintains a vector of distances to every other node

in the network.

Problems with the distance vector protocol. One of the major problems with the

distributed implementation of Bellman-Ford on routers — the protocol we have been dis-

cussing above — is that it does not deal well with cases in which edges are deleted, or edge

costs increase significantly. If an edge (v, w) is deleted (say the link goes down), it is natural

for node v to react as follows: it should check whether its shortest path to some node t used

the edge (v, w), and, if so, it should increase the distance using other neighbors. Notice

that this increase in distance from v can now trigger increases at v’s neighbors, if they were

relying on a path through v, and these changes can cascade through the network. Consider

an example in which the original (undirected) graph has two edges (s, v) and (v, t) of cost 1

each as shown on Figure 5.12.

s v t

1 1

Figure 5.12: The problem of counting to infinity.

Now, suppose the edge (v, t) in Figure 5.12 is deleted. How does node v react? Unfortu-

nately, it does not have a global map of the network; it only knows the shortest-path distances

of each of its neighbors to t. Thus, it does not know that the deletion of (v, t) has eliminated

all paths from s to t. Instead, it sees that M [s] = 2, and so it updates M [v] = cvs +M [s] = 3

156 CHAPTER 5. DYNAMIC PROGRAMMING

— assuming that it will use its cost-1 edge to s, followed by the supposed cost-2 path from

s to t. Seeing this change, node s will update M [s] = csv + M [v] = 4 — based on its cost-1

edge to v, followed by the supposed cost-3 path from v to t. Nodes s and v will continue

updating their distance to t until one of them finds an alternate route; in the case, as here,

that the network is truly disconnected, these updates will continue indefinitely — a behavior

known as the problem of counting to infinity.

To avoid this problem, the designers of routing algorithms have tended to move from

distance vector protocols to more expressive path vector protocols, in which each node stores

not just the distance and first hop of their path to a destination, but a representation of

the entire path. Given knowledge of the paths, nodes can avoid updating their paths to use

edges they know to be deleted; at the same time, they require significantly more storage to

keep track of the full paths. The path-vector approach is used in the border gateway protocol

(BGP) in the Internet core.

5.8 Negative Cycles in a Graph

In this section, we consider graphs that have negative cycles. There are two natural questions

we will consider.

• How do we decide if a graph contains a negative cycle?

• How do we actually construct a negative cycle in a graph that contains one?

The algorithm developed for finding negative cycles will also lead to an improved practical

implementation of the Bellman-Ford algorithm from the previous section.

It turns out that the ideas we’ve seen so far will allow us to find negative cycles that have

a path reaching a sink t. Before we develop the details of this, let’s compare the problem of

finding a negative cycle that can reach a given t with the seemingly more natural problem of

finding a negative cycle anywhere in the graph, regardless of its position related to a sink. It

turns out that if we develop a solution to the first problem, we’ll be able to obtain a solution

to the second problem as well, in the following way. Suppose we start with a graph G, add

a new node t to it, and connect each other node v in the graph to node t via an edge of cost

0 as shown on Figure 5.13. Let us call the new “augmented graph” G′.

(5.26) The augmented graph G′ has a negative cycle reachable C such that there is a

path from C to the sink t, if and only if the original graph has a negative cycle.

Proof. Assume G has a negative cycle. Then this cycle C clearly has an edge to t in G′,

since all nodes have an edge to t.

5.8. NEGATIVE CYCLES IN A GRAPH 157

t

G

Figure 5.13: The augmented graph.

Now suppose G′ has a negative cycle with a path to t. Since no edge leaves t in G′, this

cycle cannot contain t. Since G′ is the same as G aside from the node t, it follows that this

cycle is also a negative cycle of G.

So it is really enough to solve the problem of deciding whether G has a negative cycle

that has a path to a given sink node t, and we do this now. To solve this problem, we first

extend our definitions of OPT (i, v) for values i ≥ n. With the presence of a negative cycle

in the graph, (5.20) no longer applies, and indeed the shortest path may get shorter and

shorter as we go around a negative cycle. In fact, for any node v on a negative cycle that

has a path to t, we have the following.

(5.27) If node v can reach node t and is contained in a negative cycle, then

lim
i→∞

OPT (i, v) = −∞.

If the graph has no negative cycles, then (5.20) implies following statement.

(5.28) If there are no negative negative cycles in G, then OPT (i, v) = OPT (n − 1, v)

for all nodes v and all i ≥ n.

But for how large an i do we have to compute the values OPT (i, v) before concluding

that the graph has no negative cycles? For example, a node v may satisfy the equation

OPT (n, v) = OPT (n − 1, v), and yet still lie on a negative cycle. (Do you see why?)

However, it turns out that we will be in good shape if this equation holds for all nodes.

(5.29) There is no negative cycle reachable from s if and only if OPT (n, v) = OPT (n−
1, v) for all nodes v.

158 CHAPTER 5. DYNAMIC PROGRAMMING

Proof. (5.28) has already proved the forward direction of this statement. Now, suppose

OPT (n, v) = OPT (n− 1, v) for all nodes v. The values of OPT (n + 1, v) can be computed

from OPT (n, v); but all these values are the same as the corresponding OPT (n − 1, v). It

follows that we will have OPT (n + 1, v) = OPT (n − 1, v). Extending this reasoning to

future iterations, we see that none of the values will ever change again, i.e., OPT (i, v) =

OPT (n− 1, v) for all nodes v and all i ≥ n. Thus, there cannot be a negative cycle C that

has a path to t; such a cycle C would contain a node w, and by (5.27) the values OPT (i, w)

would have to become arbitrarily negative as i increased.

(5.29) gives an O(mn) method to decide if G has a negative cycle reachable from s. We

compute values of OPT (i, v) for nodes of G and for values of i up to n. By (5.29) , there is

no negative cycle if and only if there is some value of i at which OPT (i, v) = OPT (i− 1, v)

for all nodes v.

So far we have determined whether or not the graph has a negative cycle with a path

from the cycle to t, but we have not actually found the cycle. To find a negative cycle, we

consider a node v such that OPT (n, v) 6= OPT (n− 1, v): for this node, a path P from v to

t of cost OPT (n, v) must use exactly n edges. We find this minimum-cost path P from v to

t by tracing back through the sub-problems. As in our proof of (5.20) , a simple path can

only have n−1 edges, so P must contain a cycle C. We claim that this cycle C has negative

cost.

(5.30) If G has n nodes, and OPT (n, v) 6= OPT (n− 1, v), then a path P from v to t of

cost OPT (n, v) contains a cycle C, and C has negative cost.

Proof. First observe that the path P must have n edges, as OPT (n, v) 6= OPT (n−1, v), and

so every path using n − 1 edges has cost greater than that of the path P. In a graph with

n nodes, a path consisting of n edges must repeat a node somewhere; let w be a node that

occurs on P more than once. Let C be the cycle on P between two consecutive occurrence

of node w. If C were not a negative cycle, then deleting C from P would give us an v-t

path with fewer than n edges, and no greater cost. This contradicts our assumption that

OPT (n, v) 6= OPT (n− 1, v), and hence C must be a negative cycle.

(5.31) The algorithm above finds a negative cycle in G, if such a cycle exists, and runs

in O(mn) time.

An Improved Version

Earlier we saw that if a graph G has no negative cycles, the algorithm can often be stopped

early: if for some value of i ≤ n, we have OPT (i, v) = OPT (i − 1, v) for all nodes v,

then the values will not change on any further iteration either. Is there an analogous early

5.8. NEGATIVE CYCLES IN A GRAPH 159

termination rule for graphs that have negative cycles, so that we can sometimes avoid running

all n iterations?

We can use Statement (5.20) to detect the presence of negative cycles, but to do this

we need to “count to n − 1”. This problem is analogous to the problem of counting to

infinity discussed in relation to the distance vector protocol. In fact, the two problems have

similar underlying causes: the repeated change in the distance values is caused by using

cycles repeatedly in a single path. One could adapt the path vector solution to solve this

problem, by maintaining paths explicitly and terminating whenever a path has a negative

cycle; but maintaining path vectors can take as much as O(n) extra time and memory.

In the case of Internet routing one resorts to maintaining paths so as to keep the protocol

distributed. However, if we’re thinking about finding negative cycles using a traditional al-

gorithm, then allowing simple global computations will make it possible to solve the problem

without having to maintain complete paths. Here we will discuss a solution to this problem

where each node v maintains the first node f [v] after v on the shortest path to the destina-

tion t. To maintain f [v] we must update this value whenever the distance M [v] is updated.

In other words, we add the line

If M [v] > M [w] + cvw

then F [v] = w

before updating the M [v] value. Note that once the final distance values are computed, we

can now find the shortest path by simply following the selected edges: v to f [v] = v1, to

f [v1] = v2, and so forth.

Let P denote the directed “pointer” graph whose nodes are V , and whose edges are

{(v, f [v])}. The main observation is the following:

(5.32) If the pointer graph P contains a cycle C, then this cycle must have negative cost.

Proof. Notice that if f [v] = w at any time, then we must have M [v] ≥ cvw + M [w]. Indeed,

the left- and right-hand sides are equal when f [v] is set to w; and since M [w] may decrease,

this equation may turn into an inequality.

Let v1, v2, . . . , vk be the nodes along the cycle C in the pointer graph, and assume that

(vk, v1) is the last edge to have been added. Now, consider the values right before this last

update. At this time we have M [vi] ≥ cvivi+1
+ M [vi+1] for all i = 1, . . . , k − 1, and we

also have M [vk] > cvkv1 + M [v1] since we are about to update M [vk] and change f [vk] to v1.

Adding all these inequalities, the M [vi] values cancel, and we get 0 >
∑k−1

i=1 cvivi+1
+ cvkv1 : a

negative cycle, as claimed.

To take advantage of this observation, we would like to determine whether a cycle is

created in the pointer graph P every time we add a new edge (v, w) with f [v] = w. (Consider

Figure 5.14 for an example.) The most natural way to do this is to follow the current path

160 CHAPTER 5. DYNAMIC PROGRAMMING

from w to the terminal t in time proportional to the length of this path. If we encounter v

along this path, then a cycle has been formed, and hence by (5.32) the graph has a negative

cycle. However, if we do this, then we could spend as much as O(n) time following the path

to t and still not find a cycle. Next we discuss a method that works does not require an

O(n) blow-up in the running time.

t

w

v

Figure 5.14: The pointer graph P with new edge (v, w) being added.

We know that before the new edge (v, w) was added, the pointer graph was a directed

tree. Another way to test whether the addition of (v, w) creates a cycle is to consider all

nodes in the subtree directed towards v. If w is in this subtree then (v, w) forms a cycle;

otherwise it does not. To be able to find all nodes in the subtree directed towards v, we

need to have each node v maintain a list of all other nodes whose selected edges point to

v. Given these pointers we can find the subtree in time proportional to the time size of

the subtree pointing to v, at most O(n) as before. However, here we will be able to make

additional use of the work done. Notice that the current distance value M [x] for all nodes x

in the subtree was derived from node v’s old value. We have just updated v’s distance, and

hence we know that the distance values of all these node will be updated again. We’ll mark

each ofthese nodes x as “inactive”, delete the edge (x, f [x]) from the pointer graph, and

not use x for future updates until its distance value changes. This can save a lot of future

work in updates, but what is the effect on the worst case running time? We can spend as

much as O(n) extra time marking nodes inactive after every update in distances. However,

a node can be marked inactive only if it was active before, so the time spent on marking

nodes inactive is at most as much at the time the algorithm spends updating distances. The

time spent by the algorithm on operations other than marking nodes inactive is O(mn) by

Statement (5.31) , and hence we see that the new implementation of the algorithm still

runs in O(mn) time, using O(n) space. In fact, this new version is in practice the fastest

implementation of the algorithm even for graphs that do not have negative cycles, or even

negative-cost edges.

5.9. EXERCISES 161

5.9 Exercises

1. Suppose you’re running a lightweight consulting business — just you, two associates,

and some rented equipment. Your clients are distributed between the East Coast and

the West Coast, and this leads to the following question.

Each month, you can either run your business from an office in New York (NY), or

from an office in San Francisco (SF). In month i, you’ll incur an operating cost of Ni

if you run the business out of NY; you’ll incur an operating cost of Si if you run the

business out of SF. (It depends on the distribution of client demands for that month.)

However, if you run the business out of one city in month i, and then out of the other

city in month i + 1, then you incur a fixed moving cost of M to switch base offices.

Given a sequence of n months, a plan is a sequence of n locations — each one equal to

either NY or SF — such that the ith location indicates the city in which you will be

based in the ith month. The cost of a plan is the sum of the operating costs for each of

the n months, plus a moving cost of M for each time you switch cities. The plan can

begin in either city.

The problem is: Given a value for the moving cost M , and sequences of operating

costs N1, . . . , Nn and S1, . . . , Sn, find a plan of minimum cost. (Such a plan will be

called optimal.)

Example. Suppose n = 4, M = 10, and the operating costs are given by the following

table.

Month 1 Month 2 Month 3 Month 4
NY 1 3 20 30
SF 50 20 2 4

Then the plan of minimum cost would be the sequence of locations

[NY, NY, SF, SF],

with a total cost of 1 + 3 + 2 + 4 + 10 = 20, where the final term of 10 arises because

you change locations once.

(a) Show that the following algorithm does not correctly solve this problem, by giving

an instance on which it does not return the correct answer.

For i = 1 to n
If Ni < Si then

Output "NY in Month i"

162 CHAPTER 5. DYNAMIC PROGRAMMING

Else

Output "SF in Month i"
End

In your example, say what the correct answer is and also what the above algorithm

finds.

(b) Give an example of an instance in which every optimal plan must move (i.e. change

locations) at least three times.

Provide an explanation, of at most three sentences, saying why your example has this

property.

(c) Give an algorithm that takes values for n, M , and sequences of operating costs

N1, . . . , Nn and S1, . . . , Sn, and returns the cost of an optimal plan.

The running time of your algorithm should be polynomial in n. You should prove that

your algorithm works correctly, and include a brief analysis of the running time.

2. Let G = (V, E) be an undirected graph with n nodes. Recall that a subset of the nodes

is called an independent set if no two of them are joined by an edge. Finding large

independent sets is difficult in general; but here we’ll see that it can be done efficiently

if the graph is “simple” enough.

Call a graph G = (V, E) a path if its nodes can be written as v1, v2, . . . , vn, with an

edge between vi and vj if and only if the numbers i and j differ by exactly 1. With

each node vi, we associate a positive integer weight wi.

Consider, for example, the 5-node path drawn in the figure below. The weights are the

numbers drawn next to the nodes.

The goal in this question is to solve the following algorithmic problem:

(*) Find an independent set in a path G whose total weight is as large as

possible.

(a) Give an example to show that the following algorithm does not always find an

independent set of maximum total weight.

The "heaviest-first" greedy algorithm:

Start with S equal to the empty set.

While some node remains in G
Pick a node vi of maximum weight.

Add vi to S.
Delete vi and its neighbors from G.

end while

Return S

5.9. EXERCISES 163

(b) Give an example to show that the following algorithm also does not always find

an independent set of maximum total weight.

Let S1 be the set of all vi where i is an odd number.

Let S2 be the set of all vi where i is an even number.

/* Note that S1 and S2 are both independent sets. */

Determine which of S1 or S2 has greater total weight,

and return this one.

(c) Give an algorithm that takes an n-node path G with weights and returns an

independent set of maximum total weight. The running time should be polynomial in

n, independent of the values of the weights.

3. Let G = (V, E) be a directed graph with nodes v1, . . . , vn. We say that G is a line-graph

if it has the following properties:

(i) Each edge goes from a node with a lower index to a node with a higher index. That

is, every directed edge has the form (vi, vj) with i < j.

(ii) Each node except vn has at least one edge leaving it. That is, for every node vi,

i = 1, 2, . . . , n− 1, there is at least one edge of the form (vi, vj).

The length of a path is the number of edges in it. The goal in this question is to solve

the following algorithmic problem:

Given a line-graph G, find the length of the longest path that begins at v1 and

ends at vn.

Thus, a correct answer for the line-graph in the figure would be 3: the longest path

from v1 to vn uses the three edges (v1, v2),(v2, v4), and (v4, v5).

(a) Show that the following algorithm does not correctly solve this problem, by giving

an example of a line-graph on which it does not return the correct answer.

Set w = v1.

Set L = 0
While there is an edge out of the node w

Choose the edge (w, vj)
for which j is as small as possible.

Set w = vj

Increase L by 1.
end while

Return L as the length of the longest path.

164 CHAPTER 5. DYNAMIC PROGRAMMING

In your example, say what the correct answer is and also what the above algorithm

finds.

(b) Give an algorithm that takes a line graph G and returns the length of the longest

path that begins at v1 and ends at vn. (Again, the length of a path is the number of

edges in the path.)

The running time of your algorithm should be polynomial in n. You should prove that

your algorithm works correctly, and include a brief analysis of the running time.

4. Suppose you’re managing a consulting team of expert computer hackers, and each week

you have to choose a job for them to undertake. Now, as you can well imagine, the

set of possible jobs is divided into those that are low-stress (e.g. setting up a Web

site for a class of fifth-graders at the local elementary school) and those that are high-

stress (e.g. protecting America’s most valuable secrets, or helping a desperate group of

Cornell students finish a project that has something to do with compilers.) The basic

question, each week, is whether to take on a low-stress job or a high-stress job.

If you select a low-stress job for your team in week i, then you get a revenue of `i > 0

dollars; if you select a high-stress job, you get a revenue of hi > 0 dollars. The catch,

however, is that in order for the team to take on a high-stress job in week i, it’s required

that they do no job (of either type) in week i−1; they need a full week of prep time to

get ready for the crushing stress level. On the other hand, it’s okay for them to take

a low-stress job in week i even if they have done a job (of either type) in week i− 1.

So given a sequence of n weeks, a plan is specified by a choice of “low-stress”, “high-

stress”, or “none” for each of the n weeks — with the property that if “high-stress”

is chosen for week i > 1, then “none” has to be chosen for week i − 1. (It’s okay to

choose a high-stress job in week 1.) The value of the plan is determined in the natural

way: for each i, you add `i to the value if you choose “low-stress” in week i, and you

add hi to the value if you choose “high-stress” in week i. (You add 0 if you choose

“none” in week i.)

The problem is: Given sets of values `1, `2, . . . , `n and h1, h2, . . . , hn, find a plan of

maximum value. (Such a plan will be called optimal.)

Example. Suppose n = 4, and the values of `i and hi are given by the following table.

Then the plan of maximum value would be to choose “none” in week 1, a high-stress

job in week 2, and low-stress jobs in weeks 3 and 4. The value of this plan would be

0 + 50 + 10 + 10 = 70.

(a) Show that the following algorithm does not correctly solve this problem, by giving

an instance on which it does not return the correct answer.

5.9. EXERCISES 165

Week 1 Week 2 Week 3 Week 4
` 10 1 10 10
h 5 50 5 1

For iterations i = 1 to n
If hi+1 > `i + `i+1 then

Output "Choose no job in week i"
Output "Choose a high-stress job in week i + 1"
Continue with iteration i + 2

Else

Output "Choose a low-stress job in week i"
Continue with iteration i + 1

Endif

End

To avoid problems with overflowing array bounds, we define hi = `i = 0 when i > n.

In your example, say what the correct answer is and also what the above algorithm

finds.

(b) Give an algorithm that takes values for `1, `2, . . . , `n and h1, h2, . . . , hn, and returns

the value of an optimal plan.

The running time of your algorithm should be polynomial in n. You should prove that

your algorithm works correctly, and include a brief analysis of the running time.

5. Suppose you are managing the construction of billboards on the Stephen Daedalus

Memorial Highway, a heavily-traveled stretch of road that runs west-east for M miles.

The possible sites for billboards are given by numbers x1, x2, . . . , xn, each in the interval

[0, M] (specifying their position along the highway, measured in miles from its western

end). If you place a billboard at location xi, you receive a revenue of ri > 0.

You want to place billboards at a subset of the sites in {x1, . . . , xn} so as to maximize

your total revenue, subject to the following restrictions.

(i) (The environmental constraint.) You cannot build two billboards within less than

5 miles of one another on the highway.

(ii) (The boundary constraint.) You cannot build a billboard within less than 5 miles

of the western or eastern ends of the highway.

A subset of sites satisfying these two restrictions will be called valid.

Example. Suppose M = 20, n = 4,

{x1, x2, x3, x4} = {6, 7, 12, 14},

166 CHAPTER 5. DYNAMIC PROGRAMMING

and

{r1, r2, r3, r4} = {5, 6, 5, 1}.

Then the optimal solution would be to place billboards at x1 and x3, for a total revenue

of 10.

Give an algorithm that takes an instance of this problem as input, and returns the

maximum total revenue that can be obtained from any valid subset of sites.

The running time of the algorithm should be polynomial in n. Include a brief analysis

of the running time of your algorithm, and a proof that it is correct.

6. You’re trying to run a large computing job, in which you need to simulate a physical

system for as many discrete steps as you can. The lab you’re working in has two large

supercomputers (which we’ll call A and B) which are capable of processing this job.

However, you’re not one of the high-priority users of these supercomputers, so at any

given point in time, you’re only able to use as many spare cycles as these machines

have available.

Here’s the problem you’re faced with. Your job can only run on one of the machines

in any given minute. Over each of the next n minutes you have a “profile” of how

much processing power is available on each machine. In minute i, you would be able

to run ai > 0 steps of the simulation if your job is on machine A, and bi > 0 steps of

the simulation if your job is on machine B. You also have the ability to move your job

from one machine to the other; but doing this costs you a minute of time in which no

processing is done on your job.

So given a sequence of n minutes, a plan is specified by a choice of A, B, or “move” for

each minute — with the property that choices A and B cannot appear in consecutive

minutes. E.g. if your job is on machine A in minute i, and you want to switch to

machine B, then your choice for minute i + 1 must be move, and then your choice

for minute i + 2 can be B. The value of a plan is the total number of steps that you

manage to execute over the n minutes: so it’s the sum of ai over all minutes in which

the job is on A, plus the sum of bi over all minutes in which the job is on B.

The problem is: Given values a1, a2, . . . , an and b1, b2, . . . , bn, find a plan of maximum

value. (Such a strategy will be called optimal.) Note that your plan can start with

either of the machines A or B in minute 1.

Example. Suppose n = 4, and the values of ai and bi are given by the following table.

5.9. EXERCISES 167

Minute 1 Minute 2 Minute 3 Minute 4
A 10 1 1 10
B 5 1 20 20

Then the plan of maximum value would be to choose A for minute 1, then move

for minute 2, and then B for minutes 3 and 4. The value of this plan would be

10 + 0 + 20 + 20 = 50.

(a) Show that the following algorithm does not correctly solve this problem, by giving

an instance on which it does not return the correct answer.

In minute 1, choose machine achieving the larger of a1, b1.

Set i = 2
While i ≤ n

What was the choice in minute i− 1?
If A:

If bi+1 > ai + ai+1 then

Choose move in minute i and B in minute i + 1
Proceed to iteration i + 2

Else

Choose A in minute i
Proceed to iteration i + 1

Endif

If B: behave as above with roles of A and B reversed.

EndWhile

In your example, say what the correct answer is and also what the above algorithm

finds.

(b) Give an algorithm that takes values for a1, a2, . . . , an and b1, b2, . . . , bn and returns

the value of an optimal plan.

The running time of your algorithm should be polynomial in n. You should prove that

your algorithm works correctly, and include a brief analysis of the running time.

7. Suppose you’re consulting for a small computation-intensive investment company, and

they have the following type of problem that they want to solve over and over. A

typical instance of the problem is: they’re doing a simulation in which they look at n

consecutive days of a given stock, at some point in the past. Let’s number the days

i = 1, 2, . . . , n; for each day i, they have a price p(i) per share for the stock on that

day. (We’ll assume for simplicity that the price was fixed during each day.) Suppose

168 CHAPTER 5. DYNAMIC PROGRAMMING

during this time period, they wanted to buy 1000 shares on some day, and sell all these

shares on some (later) day. They want to know: when should they have bought and

when should they have sold in order to have made as much money as possible? (If

there was no way to make money during the n days, you should report this instead.)

Example: Suppose n = 3, p(1) = 9, p(2) = 1, p(3) = 5. Then you should return “buy

on 2, sell on 3”; i.e. buying on day 2 and selling on day 3 means they would have made

$4 per share, the maximum possible for that period.

Clearly, there’s a simple algorithm that takes time O(n2): try all possible pairs of

buy/sell days and see which makes them the most money. Your investment friends

were hoping for something a little better.

Show how to find the correct numbers i and j in time O(n).

8. Eventually your friends from the previous problem move up to more elaborate simula-

tions, and they’re hoping you can still help them out. As before, they’re looking at n

consecutive days of a given stock, at some point in the past. The days are numbered

i = 1, 2, . . . , n; for each day i, they have a price p(i) per share for the stock on that

day.

For certain (possibly large) values of k, they want to study what they call k-shot

strategies. A k-shot strategy is a collection of m pairs of days (b1, s1), . . . , (bm, sm),

where 0 ≤ m ≤ k and

1 ≤ b1 < s1 < b2 < s2 · · · < bm < sm ≤ n.

We view these as a set of up to k non-overlapping intervals, during each of which the

investors buy 1000 shares of the stock (on day bi) and then sell it (on day si). The

return of a given k-shot strategy is simply the profit obtained from the m buy-sell

transactions, namely

1000
m
∑

i=1

p(si)− p(bi).

The investors want to assess the value of k-shot strategies by running simulations on

their n-day trace of the stock price. Your goal is to design an efficient algorithm

that determines, given the sequence of prices, the k-shot strategy with the maximum

possible return. Since k may be relatively large in these simulations, your running time

should be polynomial in both n and k; it should not contain k in the exponent.

9. Suppose you’re consulting for a company that manufactures PC equipment, and ships

it to distributors all over the country. For each of the next n weeks they have a

projected supply si of equipment (measured in pounds), which has to be shipped by

an air freight carrier.

5.9. EXERCISES 169

Each week’s supply can be carried by one of two air freight companies, A or B.

• Company A charges a fixed rate r per pound (so it costs r · si to ship a week’s

supply si).

• Company B makes contracts for a fixed amount c per week, independent of the

weight. However, contracts with company B must be made in blocks of 4 consec-

utive weeks at a time.

A schedule, for the PC company, is a choice of air freight company (A or B) for each

of the n weeks, with the restriction that company B, whenever it is chosen, must be

chosen for blocks of 4 contiguous weeks at a time. The cost of the schedule is the total

amount paid to A and B, according to the description above.

Give a polynomial-time algorithm that takes a sequence of supply values s1, s2, . . . , sn,

and returns a schedule of minimum cost.

Example: Suppose r = 1, c = 10, and the sequence of values is

11, 9, 9, 12, 12, 12, 12, 9, 9, 11.

Then the optimal schedule would be to choose company A for the first three weeks,

then company B for a blocks of 4 consecutive weeks, and then company A for the final

three weeks.

10. Suppose it’s nearing the end of the semester and you’re taking n courses, each with

a final project that still has to be done. Each project will be graded on the following

scale: it will be assigned an integer number on a scale of 1 to g > 1, higher numbers

being better grades. Your goal, of course, is to maximize your average grade on the n

projects.

Now, you have a total of H > n hours in which to work on the n projects cumulatively,

and you want to decide how to divide up this time. For simplicity, assume H is a

positive integer, and you’ll spend an integer number of hours on each project. So as

to figure out how best to divide up your time, you’ve come up with a set of functions

{fi : i = 1, 2, . . . , n} (rough estimates, of course) for each of your n courses; if you

spend h ≤ H hours on the project for course i, you’ll get a grade of fi(h). (You may

assume that the functions fi are non-decreasing: if h < h′ then fi(h) ≤ fi(h
′).)

So the problem is: given these functions {fi}, decide how many hours to spend on each

project (in integer values only) so that your average grade, as computed according

to the fi, is as large as possible. In order to be efficient, the running time of your

170 CHAPTER 5. DYNAMIC PROGRAMMING

algorithm should be polynomial in n, g, and H; none of these quantities should appear

as an exponent in your running time.

11. A large collection of mobile wireless devices can naturally form a network in which the

devices are the nodes, and two devices x and y are connected by an edge if they are

able to directly communicate with one another (e.g. by a short-range radio link). Such

a network of wireless devices is a highly dynamic object, in which edges can appear

and disappear over time as the devices move around. For instance, an edge (x, y)

might disappear as x and y move far apart from one another and lose the ability to

communicate directly.

In a network that changes over time, it is natural to look for efficient ways of main-

taining a path between certain designated nodes. There are two opposing concerns in

maintaining such a path: we want paths that are short, but we also do not want to

have to change the path frequently as the network structure changes. (I.e. we’d like a

single path to continue working, if possible, even as the network gains and loses edges.)

Here is a way we might model this problem.

Suppose we have a set of mobile nodes V , and at a particular point in time there is a

set E0 of edges among these nodes. As the nodes move, the set of edges changes from

E0 to E1, then to E2, then to E3, and so on to an edge set Eb. For i = 0, 1, 2, . . . , b,

let Gi denote the graph (V, Ei). So if we were to watch the structure of the network

on the nodes V as a “time lapse”, it would look precisely like the sequence of graphs

G0, G1, G2, . . . , Gb−1, Gb. We will assume that each of these graphs Gi is connected.

Now, consider two particular nodes s, t ∈ V . For an s-t path P in one of the graphs Gi,

we define the length of P to be simply the number of edges in P , and denote this `(P).

Our goal is to produce a sequence of paths P0, P1, . . . , Pb so that for each i, Pi is an s-t

path in Gi. We want the paths to be relatively short. We also do not want there to be

too many changes — points at which the identity of the path switches. Formally, we

define changes(P0, P1, . . . , Pb) to be the number of indices i (0 ≤ i ≤ b− 1) for which

Pi 6= Pi+1

Fix a constant K > 0. We define the cost of the sequence of paths P0, P1, . . . , Pb to be

cost(P0, P1, . . . , Pb) =
b
∑

i=0

`(Pi) + K · changes(P0, P1, . . . , Pb).

(a) Suppose it is possible to choose a single path P that is an s-t path in each of

the graphs G0, G1, . . . , Gb. Give a polynomial-time algorithm to find the shortest such

path.

(b) Give a polynomial-time algorithm to find a sequence of paths P0, P1, . . . , Pb of

minimum cost, where Pi is an s-t path in Gi for i = 0, 1, . . . , b.

5.9. EXERCISES 171

12. Recall the scheduling problem from the text in which we sought to minimize the max-

imum lateness. There are n jobs, each with a deadline di and a required processing

time ti, and all jobs are available to be scheduled starting at time s. For a job i to be

done it needs to be assigned a period from si ≥ s to fi = si + ti, and different jobs

should be assigned non-overlapping intervals. As usual, an assignment of times in this

way will be called a schedule.

In this problem, we consider the same set-up, but want to optimize a different objective.

In particular, we consider the case in which each job must either be done by its deadline

or not at all. We’ll say that a subset J of the jobs is schedulable if there is a schedule

for the jobs in J so that each of them finishes by its deadline. Your problem is to select

a schedulable subset of maximum possible size, and give a schedule for this subset that

allows each job to finish by its deadline.

(a) Prove that there is an optimal solution J (i.e. a schedulable set of maximum size)

in which the jobs in J are scheduled in increasing order of their deadlines.

(b) Assume that all deadlines di and required times ti are integers. Give an algorithm

to find an optimal solution. Your algorithm should run in time polynomial in the

number of jobs n, and the maximum deadline D = maxi di.

13. Consider the sequence alignment problem over a four-letter alphabet {z1, z2, z3, z4},
with a cost δ for each insertion or deletion, and a cost αij for a substitution of zi by zj

(for each pair i 6= j). Assume that δ and each αij is a positive integer.

Suppose you are given two strings A = a1a2 · · ·am and B = b1b2 · · · bn, and a proposed

alignment between them. Give an O(mn) algorithm to decide whether this alignment

is the unique minimum-cost alignment between A and B.

14. Consider the following inventory problem. You are running a store that sells some

large product (let’s assume you sell trucks), and predictions tell you the quantity of

sales to expect over the next n months. Let di denote the number of sales you expect

in month i. We’ll assume that all sales happen at the beginning of the month, and

trucks that are not sold are stored until the beginning of the next month. You can

store at most S trucks, and it costs C to store a single truck for a month. You receive

shipments of trucks by placing orders for them, and there is a fixed ordering fee of K

each time you place an order (regardless of the number of trucks you order). You start

out with no trucks. The problem is to design an algorithm that decides how to place

orders so that you satisfy all the demands {di}, and minimize the costs. In summary:

• There are two parts to the cost. First, storage: it costs C for every truck on hand

that is not needed that month. Scecond, ordering fees: it costs K for every order

placed.

172 CHAPTER 5. DYNAMIC PROGRAMMING

• In each month you need enough trucks to satisfy the demand di, but the amount

left over after satisfying the demand for the month should not exceed the inventory

limit S.

Give an algorithm that solves this problem in time that is polynomial in n and S.

15. You are consulting for an independently operated gas-station, and it faced with the

following situation. They have a large underground tank in which they store gas; the

tank can hold up to L gallons at one time. Ordering gas is quite expensive, so they

want to order relatively rarely. For each order they need to pay a fix price P for

delivery in addition to the cost of the gas ordered. However, it cost c to store a gallon

of gas for an extra day, so ordering too much ahead increases the storage cost. They

are planning to close for winder break, and want their tank to be empty, as they are

afraid that any gas left in the tank would freeze over during break. Luckily, years

of experience gives them accurate projections for how much gas they will need each

day until winter break. Assume that there are n days left till break, and they need gi

gallons of gas for each of day i = 1, ..., n. Assume that the tank is empty at the end

of day 0. Give an algorithm to decide which days they should place orders, and how

much to order to minimize their total cost.

The following two observations might help.

• If g1 > 0 then the first order has to arrive the morning of day 1.

• If the next order is due to arrive on day i, then the amount ordered should be
∑i−1

j=1 gj.

16. Through some friends of friends, you end up on a consulting visit to the cutting-edge

biotech firm Clones ’R’ Us. At first you’re not sure how your algorithmic background

will be of any help to them, but you soon find yourself called upon to help two identical-

looking software engineers tackle a perplexing problem.

The problem they are currently working on is based on the concatenation of sequences of

genetic material. If X and Y are each strings over a fixed alphabet Σ, then XY denotes

the string obtained by concatenating them — writing X followed by Y . CRU has

identified a “target sequence” A of genetic material, consisting of m symbols, and they

want to produce a sequence that is as similar to A as possible. For this purpose, they

have a set of (shorter) sequences B1, B2, . . . , Bk, consisting of n1, n2, . . . , nk symbols

respectively. They can cheaply produce any sequence consisting of copies of the strings

in {Bi} concatenated together (with repetitions allowed).

Thus, we say that a concatenation over {Bi} is any sequence of the form Bi1Bi2 · · ·Bi`,

where each ij ∈ {1, 2, . . . , k}. So B1, B1B1B1, and B3B2B1 are all concatenations

5.9. EXERCISES 173

over {Bi}. The problem is to find a concatenation over {Bi} for which the sequence

alignment cost is as small as possible. (For the purpose of computing the sequence

alignment cost, you may assume that you are given a cost δ for each insertion or

deletion, and a substitution cost αij for each pair i, j ∈ Σ.)

Give a polynomial-time algorithm for this problem.

17. Suppose we want to replicate a file over a collection of n servers, labeled S1, S2, . . . , Sn.

To place a copy of the file at server Si results in a placement cost of ci, for an integer

ci > 0.

Now, if a user requests the file from server Si, and no copy of the file is present at

Si, then the servers Si+1, Si+2, Si+3 . . . are searched in order until a copy of the file is

finally found, say at server Sj, where j > i. This results in an access cost of j − i.

(Note that the lower-indexed servers Si−1, Si−2, . . . are not consulted in this search.)

The access cost is 0 if Si holds a copy of the file. We will require that a copy of the file

be placed at server Sn, so that all such searches will terminate, at the latest, at Sn.

We’d like to place copies of the files at the servers so as to minimize the sum of

placement and access costs. Formally, we say that a configuration is a choice, for each

server Si with i = 1, 2, . . . , n − 1, of whether to place a copy of the file at Si or not.

(Recall that a copy is always placed at Sn.) The total cost of a configuration is the

sum of all placement costs for servers with a copy of the file, plus the sum of all access

costs associated with all n servers.

Give a polynomial-time algorithm to find a configuration of minimum total cost.

18. (∗) Let G = (V, E) be a graph with n nodes in which each pair of nodes is joined by

an edge. There is a positive weight wij on each edge (i, j); and we will assume these

weights satisfy the triangle inequality wik ≤ wij + wjk. For a subset V ′ ⊆ V , we will

use G[V ′] to denote the subgraph (with edge weights) induced on the nodes in V ′.

We are given a set X ⊆ V of k terminals that must be connected by edges. We say

that a Steiner tree on X is a set Z so that X ⊆ Z ⊆ V , together with a sub-tree T of

G[Z]. The weight of the Steiner tree is the weight of the tree T .

Show that there is function f(·) and a polynomial function p(·) so that the problem of

finding a minimum-weight Steiner tree on X can be solved in time O(f(k) · p(n)).

19. Your friends have been studying the closing prices of tech stocks, looking for interesting

patterns. They’ve defined something called a rising trend as follows.

They have the closing price for a given stock recorded for n days in succession; let these

prices be denoted P [1], P [2], . . . , P [n]. A rising trend in these prices is a subsequence

of the prices P [i1], P [i2], . . . , P [ik], for days i1 < i2 < . . . < ik, so that

174 CHAPTER 5. DYNAMIC PROGRAMMING

• i1 = 1, and

• P [ij] < P [ij+1] for each j = 1, 2, . . . , k − 1.

Thus a rising trend is a subsequence of the days — beginning on the first day and

not necessarily contiguous — so that the price strictly increases over the days in this

subsequence.

They are interested in finding the longest rising trend in a given sequence of prices.

Example. Suppose n = 7, and the sequence of prices is

10, 1, 2, 11, 3, 4, 12.

Then the longest rising trend is given by the prices on days 1, 4, and 7. Note that days

2, 3, 5, and 6 consist of increasing prices; but because this subsequence does not begin

on day 1, it does not fit the definition of a rising trend.

(a) Show that the following algorithm does not correctly return the length of the longest

rising trend, by giving an instance on which it fails to return the correct answer.

Define i = 1.
L = 1.

For j = 2 to n
If P [j] > P [i] then

Set i = j.
Add 1 to L.

Endif

Endfor

In your example, give the actual length of the longest rising trend, and say what the

above algorithm returns.

(b) Give an algorithm that takes a sequence of prices P [1], P [2], . . . , P [n] and returns

the length of the longest rising trend.

The running time of your algorithm should be polynomial in the length of the input.

You should prove that your algorithm works correctly, and include a brief analysis of

the running time.

20. Consider the Bellman-Ford minimum-cost path algorithm from the text, assuming

that the graph has no negative cost cycles. This algorithm is both fairly slow and also

memory-intensive. In many applications of dynamic programming, the large mem-

ory requirements can become a bigger problem than the running time. The goal of

5.9. EXERCISES 175

this problem is to decrease the memory requirement. The pseudo-code Shortest-

Path(G, s, t) in the text maintains an array M [0...n − 1; V] of size n2, where n = |V |
is the number of nodes on the graph.

Notice that the values of M [i, v] are computed only using M [i − 1, w] for some nodes

w ∈ V . This suggests he following idea: can we decrease the memory needs of the

algorithm to O(n) by maintaining only two columns of the M matrix at any time?

Thus we will “collapse” the array M to an 2 × n array B: as the algorithm iterates

through values of i, B[0, v] will hold the “previous” column’s value M [i − 1, v], and

B[1, v] will hold the “current” column’s value M [i, v].

Space-Efficient-Shortest-Path(G, s, t)
n = number of nodes in G
Array B[0 . . . 1, V]
For v ∈ V in any order

B[0, v] =∞
Endfor

B[0, s] = 0
For i = 1, . . . , n− 1

For v ∈ V in any order

M = B[0, v]
M ′ = min

w∈V :(w,v)∈E
(B[0, w] + cwv)

B[1, v] = min(M, M ′)
Endfor

For v ∈ V in any order

B[0, v] = B[1, v]
Endfor

Endfor

Return B[1, t]

It is easy to verify that when this algorithm completes, the array entry B[1, v] holds

the value of OPT (n − 1, v), the minimum-cost of a path from s to v using at most

n− 1 edges, for all v ∈ V . Moreover, it uses O(n3) time and only O(n) space. You do

not need to prove these facts.

The problem is: where is the shortest path? The usual way to find the path involves

tracing back through the M [i, v] values, using the whole matrix M , and we no longer

have that. The goal of this problem is to show that if the graph has no negative cycles,

then there is enough information saved in the last column of the matrix M , to recover

the shortest path in O(n2) time.

Assume G has no negative or even zero length cycles. Give an algorithm Find-

Path(t, G, B) that uses only the array B (and the graph G) to find the the minimum-

176 CHAPTER 5. DYNAMIC PROGRAMMING

cost path from s to t in O(n2) time.

21. The problem of searching for cycles in graphs arises naturally in financial trading

applications. Consider a firm trades shares in n different companies. For each pair

i 6= j they maintain a trade ratio rij meaning that one share of i trades for rij shares

of j. Here we allow the rate r to be fractional, i.e., rij = 2
3

means that you can trade

3 shares of i to get a 2 shares of j.

A trading cycle for a sequence of shares i1, i2, . . . , ik consists of successively trading

shares in company i1 for shares in company i2, then shares in company i2 for shares

i3, and so on, finally trading shares in ik back to shares in company i1. After such a

sequence of trades, one ends up with shares in the same company i1 that one starts

with. Trading around a cycle is usually a bad idea, as you tend to end up with fewer

shares than what you started with. But occasionally, for short periods of time, there

are opportunities to increase shares. We will call such a cycle an opportunity cycle, if

trading along the cycle increases the number of shares. This happens exactly if the

product of the ratios along the cycle is above 1. In analyzing the state of the market,

a firm engaged in trading would like to know if there are any opportunity cycles.

Give a polynomial time algorithm that finds such an opportunity cycle, if one exists.

Hint: a useful construction not covered in lecture is the augmented graph used in the

statement (4.4.7).

22. As we all know, there are many sunny days in Ithaca, NY; but this year, as it happens,

the spring ROTC picnic at Cornell has fallen on rainy day. The ranking officer decides

to postpone the picnic, and must notify everyone by phone. Here is the mechanism

she uses to do this.

Each ROTC person on campus except the ranking officer reports to a unique superior

officer. Thus, the reporting hierarchy can be described by a tree T , rooted at the

ranking officer, in which each other node v has as a parent node u equal to his or her

superior officer. Conversely, we will call v a direct subordinate of u. See Figure 1, in

which A is the ranking officer, B and D are the direct subordinates of A, and C is the

direct subordinate of B.

To notify everyone of the postponement, the ranking officer first calls each of her direct

subordinates, one at a time. As soon as each subordinate gets the phone call, he or she

must notify each of his or her direct subordinates one at a time. The process continues

this way, until everyone has been notified. Note that each person in this process can

only call direct subordinates on the phone; for example, in Figure 1, A would not be

allowed to call C.

Now, we can picture this process as being divided into rounds: In one round, each

5.9. EXERCISES 177

person who has already learned of the postponement can call one of his or her direct

subordinates on the phone. The number of rounds it takes for everyone to be notified

depends on the sequence in which each person calls their direct subordinates. For

example, in Figure 1, it will take only two rounds if A starts by calling B, but it will

take three rounds if A starts by calling D.

Give an efficient algorithm that determines the minimum number of rounds needed

for everyone to be notified, and outputs a sequence of phone calls that achieves this

minimum number of rounds.

A

B D

C

Figure 5.15: A hierarchy with four people. The fastest broadcast scheme is for A to call B
in the first round. In the second round, A calls D and B calls C. If A were to call D first,
then C could not learn the news until the third round.

23. In a word processor, the goal of “pretty-printing” is to take text with a ragged right

margin — like this:

Call me Ishmael.

Some years ago,

never mind how long precisely,

having little or no money in my purse,

and nothing particular to interest me on shore,

I thought I would sail about a little

and see the watery part of the world.

— and turn it into text whose right margin is as “even” as possible — like this:

Call me Ishmael. Some years ago, never

mind how long precisely, having little

or no money in my purse, and nothing

particular to interest me on shore, I

thought I would sail about a little

and see the watery part of the world.

To make this precise enough for us to start thinking about how to write a pretty-printer

for text, we need to figure out what it means for the right margins to be “even.” So

178 CHAPTER 5. DYNAMIC PROGRAMMING

suppose our text consists of a sequence of words, W = {w1, w2, . . . , wn}, where wi

consists of ci characters. We have a maximum line length of L. We will assume we

have a fixed-width font, and ignore issues of punctuation or hyphenation.

A formatting of W consists of a partition of the words in W into lines. In the words

assigned to a single line, there should be a space after each word but the last; and so

if wj, wj+1, . . . , wk are assigned to one line, then we should have





k−1
∑

i=j

(ci + 1)



 + ck ≤ L.

We will call an assignment of words to a line valid if it satisfies this inequality. The

difference between the left-hand side and the right-hand side will be called the slack of

the line — it’s the number of spaces left at the right margin.

Give an efficient to find a partition of a set of words W into valid lines, so that the

sum of the squares of the slacks of all lines (including the last line) is minimized.

24. You’re consulting for a group of people, who would prefer not be mentioned here by

name, whose jobs consist of monitoring and analyzing electronic signals coming from

ships in coastal Atlantic waters. They want a fast algorithm for a basic primitive

that arises frequently: “untangling” a superposition of two known signals. Specifically,

they’re picturing a situation in which each of two ships is emitting a short sequence of

0’s and 1’s over and over, and they want to make sure that the signal they’re hearing

is simply an interleaving of these two emissions, with nothing extra added in.

This describes the whole problem; we can make it a little more explicit as follows. Given

a string x consisting of 0’s and 1’s, we write xk to denote k copies of x concatenated

together. We say that a string x′ is a repetition of x if it is a prefix of xk for some

number k. So x′ = 10110110110 is a prefix of x = 101.

We say that a string s is an interleaving of x and y if its symbols can be partitioned

into two (not necessarily contiguous) subsequences s′ and s′′, so that s′ is a repetition

of x and s′′ is a repetition of y. (So each symbol in s must belong to exactly one of

s′ or s′′.) For example, if x = 101 and y = 00, then s = 100010101 is an interleaving

of x and y, since characters 1,2,5,7,8,9 form 101101 — a repetition of x — and the

remaining characters 3,4,6 form 000 — a repetition of y.

In terms of our application, x and y are the repeating sequences from the two ships,

and s is the signal we’re listening to: we want to make sure it “unravels” into simple

repetitions of x and y. Give an efficient algorithm that takes strings s, x, and y, and

decides if s is an interleaving of x and y.

Chapter 6

Network Flow

In this chapter, we focus on a rich set of algorithmic problems that grow, in a sense, out of

one of the original problems we formulated at the beginning of the course: bipartite matching.

Recall the set-up of the bipartite matching problem. A bipartite graph G = (V, E) is an

undirected graph whose node set can be partitioned as V = X ∪ Y , with the property that

every edge e ∈ E has one end in X and the other end in Y . We often draw bipartite graphs

as in the figure below, with the nodes in X in a column on the left, the nodes in Y in a

column on the right, and each edge crossing from the left column to the right column.

x

x

x

x

y

y

y

y

1

2

3

4

1

2

3

4

Now, we’ve already seen the notion of a matching at several points in the course: we’ve

used the term to describe collections of pairs over a set, with the property that no element

of the set appears in more than one pair. (Think of men (X) matched to women (Y) in the

stable matching problem, or characters in a sequence alignment problem.) In the case of a

graph, the edges constitute pairs of nodes, and we consequently say that a matching in a

graph G = (V, E) is a set of edges M ⊆ E with the property that each node appears in at

most one edge of M . M is a perfect matching if every node appears in exactly one edge of

M .

179

180 CHAPTER 6. NETWORK FLOW

Matchings in bipartite graphs can model situations in which objects are being assigned to

other objects. Many such situations were mentioned earlier in the course when we introduced

graphs, and bipartite graphs. One natural example arises when the nodes in X represent

jobs, the nodes in Y represent machines, and an edge (xi, yj) indicates that machine yj is

capable of processing job xi. A perfect matching is then a way of assigning each job to a

machine that can process it, with the property that each machine is assigned exactly one

job. Bipartite graphs can represent many other relations that arise between two distinct

sets of objects, such as the relation between customers and stores; or houses and nearby fire

stations; and so forth.

One of the oldest problems in combinatorial algorithms is that of determining the size of

the largest matching in a bipartite graph G. (As a special case, note that G has a perfect

matching if and only if |X| = |Y | and it has a matching of size |X|.) This problem turns out

to be solvable by an algorithm that runs in polynomial time, but the development of this

algorithm needs ideas fundamentally different from the techniques that we’ve seen so far.

Rather than developing the algorithm directly, we begin by formulating a general class

of problems — network flow problems — that includes bipartite matching as a special case.

We then develop a polynomial-time algorithm for a general problem in this class — the

maximum flow problem — and show how this provides an efficient algorithm for maximum

bipartite matching as well.

6.1 The Maximum Flow Problem

One often uses graphs to model transportation networks — networks whose edges carry

some sort of traffic, and whose nodes act as “switches” passing traffic between different

edges. Consider, for example, a highway system in which the edges are highways and the

nodes are interchanges; or a computer network, in which the edges are links that can carry

packets, and the nodes are switches; or a fluid network, in which edges are pipes that carry

water, and the nodes are junctures where pipes are plugged together. Network models of this

type have several ingredients: capacities on the edges, indicating how much they can carry;

source nodes in the graph, which generate traffic; sink (or destination) nodes in the graph,

which can “absorb” traffic as it arrives; and finally, the traffic itself, which is transmitted

across the edges.

We’ll be considering graphs of this form, and refer to the traffic as flow — an abstract

entity that is generated at source nodes, transmitted across edges, and absorbed at sink

nodes. Formally, we’ll say that a flow network is a directed graph G = (V, E) with the

following features.

• Associated with each edge e is a capacity, which is a non-negative number that we

denote ce.

6.1. THE MAXIMUM FLOW PROBLEM 181

• There is a single source node s ∈ V .

• There is a single sink node t ∈ V .

Nodes other than s and t will be called internal nodes.

We will make two assumptions about the flow networks we deal with — first, that no

edge enters the source s and no edge leaves the sink t; and second, that that all capacity

values are integers. These assumptions make things cleaner to think about, and while they

eliminate a few pathologies, they preserve essentially all the issues we want to think about.

Figure 6.1 gives a picture of a flow network with 4 nodes and 5 edges, and capacity values

given next to each edge.

s

~

>

?

>

s

u

v

t
20

20

20

10

10

Figure 6.1: A flow network.

Next we define what it means for our network to carry traffic, or flow. We say that an

s-t flow is a function f that maps each edge e to a non-negative real number, f : E → R+;

the value f(e) intuitively represents the amount of flow carried by edge e. A flow f must

satisfy the following two properties.

(i) (Capacity conditions.) For each e ∈ E, 0 ≤ f(e) ≤ ce.

(ii) (Conservation conditions.) For each node v other than s and t, we have

∑

e into v

f(e) =
∑

e out of v

f(e).

Here
∑

e into v

f(e) sums the flow value f(e) over all edges entering node v, while
∑

e out of v

f(e)

is the sum of flow values over all edges leaving node v.

Thus, the flow on an edge cannot exceed the capacity of the edge. For every node other

than the source and the sink, the amount of flow entering must equal the amount of flow

182 CHAPTER 6. NETWORK FLOW

leaving. The source has no entering edges (by our assumption), but it is allowed to have

flow going out; in other words, it can generate flow. Symmetrically, the sink is allowed to

have flow coming in, even though it has no edges leaving it. The value of a flow f , denoted

ν(f), is defined to be the amount of flow generated at the source:

ν(f) =
∑

e out of s

f(e).

To make the notation a little more compact, we define f out(v) =
∑

e out of v

f(e) and

f in(v) =
∑

e into v

f(e). We can extend this to sets of vertices; if S ⊆ V , we define f out(S) =
∑

e out of S

f(e) and f in(S) =
∑

e into S

f(e). In this terminology, the conservation condition for

nodes v 6= s, t becomes f in(v) = f out(v); and we can write ν(f) = f out(s).

Given a flow network, a natural goal is to arrange the traffic so as to make as efficient use

of the available capacity as possible. Thus, the basic algorithmic problem we will consider

is the following: given a flow network, find a flow of maximum possible value.

As we think about designing algorithms for this problem, it’s useful to consider how the

structure of the flow network places upper bounds on the maximum value of an s-t flow. Here

is a basic “obstacle” to the existence of large flows. Suppose we divide the nodes of the graph

into two sets, A and B, so that s ∈ A and t ∈ B. Then, intuitively, any quantum of flow that

goes from s to t must cross from A into B at some point, and thereby use up some of the

edge capacity from A to B. This suggests that each such “cut” of the graph puts a bound

on the maximum possible flow value. The maximum flow algorithm that we develop here

will be intertwined with a proof that the maximum flow value equals the minimum capacity

of any such division, called the minimum cut. As a bonus, our algorithm will also compute

the minimum cut. We will see that the problem of finding cuts of minimum capacity in a

flow network turns out to be at least as valuable, from the point of view of applications, as

that of finding a maximum flow.

6.2 Computing Maximum Flows

Suppose we wanted to find a maximum flow in a network; how should we go about doing

this? It takes some testing out to decide that an approach such as dynamic programming

doesn’t seem to work — at least, there is no algorithm known for the maximum flow problem

that could really be viewed as naturally belonging to the dynamic programming paradigm.

In the absence of other ideas, we could go back and think about simple greedy approaches,

to see where they break down.

Suppose we start with zero flow: f(e) = 0 for all e. Clearly this respects the capacity

and conservation conditions; the problem is that its value is 0. We now try to increase the

6.2. COMPUTING MAXIMUM FLOWS 183

value of f by “pushing” flow along a path from s to t, up to the limits imposed by the

edge capacities. Thus, in the figure above, we might choose the path consisting of the edges

{(s, u), (u, v), (v, t)} and increase the flow on each of these edges to 20, and f(e) = 0 for the

other two. In this way, we still respect the capacity conditions — since we only set the flow

as high as the edge capacities would allow — and the conservation conditions — since when

we increase flow on an edge entering an internal node, we also increase it on an edge leaving

the node. Now the value of our flow is 20, and we can ask: is this the maximum possible

for the graph in the figure? If we think about it, we see that the answer is “no,” since it is

possible to construct a flow of value 30. The problem is that we’re now stuck — there is

no s-t path on which we can directly push flow without exceeding some capacity — and yet

we do not have a maximum flow. What we need is a more general way of pushing flow from

s to t, so that in a situation such as this, we have a way to increase the value of the current

flow.

Essentially, we’d like to perform the following operation. We push 10 units of flow along

(s, v); this now results in too much flow coming into v. So we “undo” 10 units of flow on

(u, v); this restores the conservation condition at v, but results in too little flow leaving u. So,

finally, we push 10 units of flow along (u, t), restoring the conservation condition at u. We

now have a valid flow, and its value is 30. See Figure 6.2 where the dark edges are carrying

flow before the operation, and the dashed edges form the new kind of augmentation.

u

v

ts

20

20

10

10

20

Figure 6.2: Augmenting flow using the edge (u, v) backwards.

This is a more general way of pushing flow: we can push forward on edges with leftover

capacity, and we can push backward on edges that are already carrying flow, to divert it in

a different direction. We now define the residual graph, which provides a systematic way to

search for forward-backward operations such as this.

Given a flow network G, and a flow f on G, we define the residual graph Gf of G with

respect to f as follows.

• The node set of Gf is the same as that of G.

184 CHAPTER 6. NETWORK FLOW

• For each edge e = (u, v) of G on which f(e) < ce, there are ce−f(e) “leftover” units of

capacity on which we could try pushing flow forwards. So we include the edge e = (u, v)

in Gf , with a capacity of ce− f(e). We will call edges included this way forward edges.

• For each edge e = (u, v) of G on which f(e) > 0, there are f(e) units of flow that we

can “undo” if we want to, by pushing flow backward. So we include the edge e′ = (v, u)

in Gf , with a capacity of f(e). Note that e′ has the same ends as e, but its direction

is reversed; we will call edges included this way backward edges.

This completes the definition of the residual graph Gf . Note that each edge e in G can give

rise to one or two edges in Gf : if 0 < f(e) < ce it results in both a forward edge and a

backward edge being included in Gf . Thus, Gf has at most twice as many edges as G. We

will sometimes refer to the capacity of an edge in the residual graph as a residual capacity, to

help distinguish it from the capacity of the corresponding edge in the original flow network

G.

Now we want to make precise the way in which we “push” flow from s to t in Gf . Let

P be a simple s-t path in Gf — i.e. P does not visit any node more than once. We define

bottleneck(P) to be the minimum residual capacity of any edge on P . We now define the

following operation augment(f, P), which yields a new flow f ′ in G.

augment(f, P)
Let b = bottleneck(P).
For each edge e ∈ P

If e is a forward edge then

increase f(e) in G by b.
Else (e is a backward edge)

decrease f(e) in G by b.
Endif

Endfor

Return(f)

It was purely to be able to perform this operation that we defined the residual graph; to

reflect the importance of augment, one often refers to any s-t path in the residual graph as

an augmenting path.

The result of augment(f, P) is a new flow f ′ in G, obtained by increasing and decreasing

the flow values on edges of P . Let us first verify that f ′ is indeed a flow.

(6.1) f ′ is a flow in G.

Proof. We must verify the capacity and conservation conditions.

Since f ′ differs from f only on edges of P , so we need check the capacity conditions only

on these edges. Thus, let e be an edge of P . Informally, the capacity condition continues to

6.2. COMPUTING MAXIMUM FLOWS 185

hold because if e is a forward edge, we specifically avoided increasing the flow on e above ce;

and if e is a backward edge, we specifically avoided decreasing the flow on e below 0. More

concretely, note that bottleneck(P) is no larger than the residual capacity of e. If e is a

forward edge, then its residual capacity is ce − f(e); thus we have

0 ≤ f(e) ≤ f ′(e) = f(e) + bottleneck(P) ≤ f(e) + (ce − f(e)) = ce,

so the capacity condition holds. If e is a backward edge, then its residual capacity is f(e),

so we have

ce ≥ f(e) ≥ f ′(e) = f(e)− bottleneck(P) ≥ f(e)− f(e) = 0,

and again the capacity condition holds.

We need to check the conservation condition at each internal node that lies on the path

P . Let v be such a node; we can verify that the change in the amount of flow entering v is

the same as the change in the amount of flow exiting v; since f satisfied the conservation

condition at v, so must f ′. Technically there are four cases to check, depending on whether

the edge of P that enters v is a forward or backward edge, and whether the edge of P that

exits v is a forward or backward edge. However, each of these cases is easily worked out,

and we leave them to the reader.

This augmentation operation captures the type of forward and backward pushing of flow

that we discussed earlier. Let’s now consider the following algorithm to compute an s-t flow

in G.

Max-Flow (G, s, t, c)
Initially f(e) = 0 for all e in G.

While there is an s-t path in the residual graph Gf

Let P be a simple s-t path in Gf

f ′ = augment(f, P)
Update f to be f ′

Update the residual graph Gf to be Gf ′

Endwhile

Return f

We’ll call this the Ford-Fulkerson algorithm (or, briefly, the F-F algorithm), since it was

developed by Ford and Fulkerson in 1956. The F-F algorithm is really quite simple. What is

not at all clear is whether its central While loop terminates, and whether the flow returned

is a maximum flow. The answers to both of these questions turn out to be a little subtle.

First, consider some properties that the algorithm maintains by induction on the number

of iterations of the While loop, relying on our assumption that all capacities are integers.

(6.2) At every intermediate stage of the F-F algorithm, the flow values {f(e)} and the

residual capacities in Gf are integers.

186 CHAPTER 6. NETWORK FLOW

Proof. The statement is clearly true before any iterations of the While loop. Now suppose

it is true after j iterations. Then since all residual capacities in Gf are integers, the value

bottleneck(P) for the augmenting path found in iteration j+1 will be an integer. Thus the

flow f ′ will have integer values, and hence so will the capacities of the new residual graph.

We can use this property to prove that the F-F algorithm terminates. As at previous

points in the course, we will look for a measure of progress that will imply termination.

First, we show that the flow value strictly increases when we apply an augmentation.

(6.3) Let f be a flow in G, and let P be a simple s-t path in Gf . Then ν(f ′) =

ν(f) + bottleneck(P); and since bottleneck(P) > 0, we have ν(f ′) > ν(f).

Proof. The first edge e of P must be an edge out of s in the residual graph Gf ; and since

the path is simple, it does not visit s again. Since G has no edges entering s, the edge e

must be a forward edge. We increase the flow on this edge by bottleneck(P), and we do

not change the flow on any other edge incident to s. Therefore the value of f ′ exceeds the

value of f by bottleneck(P).

We need one more observation to prove termination: we need to be able to bound the

maximum possible flow value. Here’s one upper bound: even if all the edges out of s could

be completely saturated with flow, the value of the flow would be
∑

e out of s

ce. Let C denote

this sum. Thus we have ν(f) ≤ C for all s-t flows f . Using statement (6.3) , we can now

prove termination.

(6.4) Suppose, as above, that all capacities in the flow network G are integers. Then the

F-F algorithm terminates in at most C iterations of the While loop.

Proof. Note that C is the value of the cut where A = {s} and B = V − {s} has all other

nodes. By the capacity condition, we know that no flow in G can have a value greater than

C. (C may be a huge overestimate of the maximum value of a flow in G, but it’s handy for

us as a finite, simply stated bound.)

Now, by (6.3) , the value of the flow maintained by the F-F algorithm increases in each

iteration; so by (6.2) , it increases by at least 1 in each iteration. Since it starts with the

value 0, and cannot go higher than C, the While loop in the F-F algorithm can run for at

most C iterations.

Next, we consider the running time of the F-F algorithm. Let n denote the number of

nodes in G, m denote the number of edges in G. We will assume that m ≥ n − 1; this

assumption is true, for example, if there are paths in G from s to every other node.

(6.5) Suppose, as above, that all capacities in the flow network G are integers. Then the

F-F algorithm can be implemented to run in O(mC) time.

6.3. CUTS IN A FLOW NETWORK 187

Proof. We know from (6.4) that the algorithm terminates in at most C iterations of the

While loop. We therefore consider the amount of work involved in one iteration, when the

current flow is f .

The residual graph Gf has at most 2m edges, since each edge of G gives rise to at most

two edges in the residual graph. We will maintain it using two linked lists for each node v,

one containing the edges entering v, and one containing the edges exiting v. To find an s-t

path in Gf , we can use breadth-first search or depth-first search, which run in O(m + n)

time; by our assumption that m ≥ n − 1, O(m + n) is the same as O(m). The procedure

augment(f, P) takes time O(n), as the path P has at most n− 1 edges. Given the new flow

f ′, we can build the new residual graph in O(m) time: For each edge e of G, we construct

the correct forward and backwards edges in Gf ′.

A somewhat more efficient version of the algorithm would maintain the linked lists of

edges in the residual graph Gf as part of the augment procedure that changes the flow f via

augmentation.

6.3 Cuts in a Flow Network

Our next goal is to show that the flow that is returned by the F-F algorithm has the maximum

possible value of any flow in G. To make progress towards this goal, we return to an issue

that we raised in Section 6.1 — the way in which the structure of the flow network places

upper bounds on the maximum value of an s-t flow. We have already seen one upper bound:

the value ν(f), of any s-t-flow f , is at most C =
∑

e out of s

ce. Sometimes this bound is useful,

but sometimes it is very weak. We now use the notion of a cut to develop a much more

general means of placing upper bounds on the maximum flow value.

Consider dividing the nodes of the graph into two sets, A and B, so that s ∈ A and t ∈ B.

As in our discussion at the end of Section 6.1, any such division places an upper bound on

the maximum possible flow value, since all the flow must cross from A to B somewhere.

Formally, we say that an s-t cut is a partition (A, B) of the vertex set V , so that s ∈ A and

t ∈ B. The capacity of a cut (A, B), which we will denote c(A, B), is simply the sum of the

capacities of all edges out of A: c(A, B) =
∑

e out of A

ce.

Cuts turn out to provide very natural upper bounds on the values of flows, as expressed

by our intuition above. We make this precise via a sequence of facts.

(6.6) Let f be any s-t flow, and (A, B) any s-t cut. Then ν(f) = f out(A)− f in(A).

This statement is actually much stronger than a simple upper bound: it says that by watching

the amount of flow f sends across a cut, we can exactly measure the flow value: it is the

188 CHAPTER 6. NETWORK FLOW

total amount that leaves A, minus the amount that “swirls back” into A. This makes sense

intuitively, although the proof requires a little manipulation of sums.

Proof of (6.6) . We know that ν(f) = f out(s). By assumption we have the f in(s) = 0, as

the source s has no entering edges, so we can write ν(f) = f out(s)−f in(s). Since every node

v in A other than s is internal, we know that f out(v)− f in(v) = 0 for all such nodes. Thus,

ν(f) =
∑

v∈A

f out(v)− f in(v),

since the only term in this sum that is non-zero is the one in which v is set to s.

Let’s try to rewrite the sum on the right as follows. If an edge e has both ends in A, then

f(e) appears once in the sum with a “+” and once with a “−”, and hence these two terms

cancel out. If e has only its tail in A, then f(e) appears just once in the sum, with a “+”. If

e has only its head in A, then f(e) also appears just once in the sum, with a “−”. Finally, if

e has neither end in A, then f(e) doesn’t appear in the sum at all. In view of this, we have

∑

v∈A

f out(v)− f in(v) =
∑

e out of A

f(e)−
∑

e into A

f(e) = f out(A)− f in(A).

Putting together these two equations, we have the statement of (6.6) .

If A = {s} then f out(A) = f out(s), and f in(A) = 0 as there are no edges entering the

source by assumption. So the statement for this set A = {s} is exactly the definition of the

flow value ν(f).

Note that if (A, B) is a cut, then the edges into B are precisely the edges out of A.

Similarly the edges out of B are precisely the edges into A. Thus we have f out(A) = f in(B)

and f in(A) = f out(B), just by comparing the definitions for these two expressions. So we

can rephrase (6.7) in the following way.

(6.7) Let f be any s-t flow, and (A, B) any s-t cut. Then ν(f) = f in(B)− f out(B).

If we set A = V − {t} and B = {t} in (6.7) , we have ν(f) = f in(B) − f out(B) =

f in(t)−f out(t). By our assumption the sink t has no leaving edges, so we have that f out(t) = 0.

This says that we could have originally defined the value of a flow equally well in terms of

the sink t: it is the amount of flow arriving at the sink.

A very useful consequence of (6.6) is the following upper bound.

(6.8) Let f be any s-t flow, and (A, B) any s-t cut. Then ν(f) ≤ c(A, B).

Proof.

ν(f) = f out(A)− f in(A)

≤ f out(A)

6.4. MAX-FLOW EQUALS MIN-CUT 189

=
∑

e out of A

f(e)

≤
∑

e out of A

ce

= c(A, B).

Here, the first line is simply (6.6) ; we pass from the first to the second since f in(A) ≥ 0,

and we pass from the third to the fourth by applying the capacity conditions to each term

of the sum.

In a sense, (6.8) looks weaker than (6.6) , since it is only an inequality rather than an

equality. However, it will be extremely useful for us, since its right-hand-side is independent

of any particular flow f . What (6.8) says is that the value of every flow is upper-bounded by

the capacity of every cut. In other words, if we exhibit any s-t cut in G of some value c∗, we

know immediately by (6.8) that there cannot be an s-t flow in G of value greater than c∗.

Conversely, if we exhibit any s-t flow in G of some value ν∗, we know immediately by (6.8)

that there cannot be an s-t cut in G of value less than ν∗.

6.4 Max-Flow Equals Min-Cut

Let f denote the flow that is returned by the F-F algorithm. We want to show that f has

the maximum possible value of any flow in G, and we do this by the method discussed at

the end of the previous section: we exhibit an s-t cut (A∗, B∗) for which ν(f) = c(A∗, B∗).

This immediately establishes that f has the maximum value of any flow, and that (A∗, B∗)

has the minimum capacity of any s-t cut.

The F-F algorithm terminates when the flow f has no s-t path in the residual graph Gf .

This turns out to be the only property needed for proving its maximality.

(6.9) If f is an s-t-flow such that there is no s-t path in the residual graph Gf , then there

is an s-t cut (A∗, B∗) in G for which ν(f) = c(A∗, B∗). Consequently, f has the maximum

value of any flow in G.

Proof. The statement claims the existence of a cut satisfying a certain desirable property;

thus, we must now identify such a cut. To this end, let A∗ denote the set of all nodes v in G

for which there is an s-v path in Gf . Let B∗ denote the set of all other nodes: B∗ = V −A∗.

First, we establish that (A∗, B∗) is indeed an s-t cut. It is clearly a partition of V . s ∈ A∗

since there is always a path from s to s. Moreover, t 6∈ A∗ by the assumption that there is

no s-t path in the residual graph; hence t ∈ B∗ as desired.

Next, suppose that e = (u, v) is an edge in G for which u ∈ A∗ and v ∈ B∗. We claim

that f(e) = ce. For if not, e would be a forward edge in the residual graph Gf . Since u ∈ A∗,

190 CHAPTER 6. NETWORK FLOW

there is an s-u path in Gf ; appending e to this path, we would obtain an s-v path in Gf ,

contradicting our assumption that v ∈ B∗.

Now suppose that e′ = (u′, v′) is an edge in G for which u′ ∈ B∗ and v′ ∈ A∗. We claim

that f(e′) = 0. For if not, e′ would give rise to a backward edge e′′ = (v′, u′) in the residual

graph Gf . Since v′ ∈ A∗, there is an s-v′ path in Gf ; appending e′′ to this path, we would

obtain an s-u′ path in Gf , contradicting our assumption that u′ ∈ B∗.

So all edges out of A∗ are completely saturated with flow, while all edges into A∗ are

completely unused. We can now use (6.6) to reach the desired conclusion:

ν(f) = f
out

(A∗)− f
in
(A)

=
∑

e out of A∗

f(e)−
∑

e into A∗

f(e)

=
∑

e out of A∗

ce − 0

= c(A∗, B∗).

Note how, in retrospect, we can see why the two types of residual edges — forward and

backward — are crucial in analyzing the two terms in the expression from (6.6) , which we

use to establish that the flow f , obtained by the F-F algorithm, is a maximum flow.

As a bonus, we have obtained the following amazing fact through the analysis of the

algorithm.

(6.10) In every flow network, there is a flow f ∗ and a cut (A∗, B∗) so that ν(f ∗) =

c(A∗, B∗).

The point is that f ∗ in (6.10) must be a maximum s-t-flow; for if there were a flow

f ′ of greater value, the value of f ′ would exceed the capacity of (A∗, B∗), and this would

contradict (6.8) . Similarly, it follows that (A∗, B∗) in (6.10) is a minimum cut — no

other cut can have smaller capacity — for if there were a cut (A′, B′) of smaller capacity,

it would be less than the value of f ∗, and this again would contradict (6.8) . Due to these

implications, (6.10) is often called the Max-Flow Min-Cut Theorem, and phrased as follows.

(6.11) In every flow network, the maximum value of an s-t flow is equal to the minimum

capacity of an s-t.

We also observe that our algorithm can easily be extended to compute a minimum s-t-cut

(A∗, B∗), as follows.

(6.12) Given a flow f of maximum value, we can compute an s-t cut of minimum capacity

in O(m) time.

6.4. MAX-FLOW EQUALS MIN-CUT 191

Proof. We simply follow the construction in the proof of (6.9) . We construct the residual

graph Gf , and perform breadth-first search or depth-first search to determine the set A∗ of

all nodes that s can reach. We then define B∗ = V − A∗, and return the cut (A∗, B∗).

Note that there can be many minimum-capacity cuts in a graph G; the procedure in the

proof (6.5) is simply finding a particular one of these cuts, starting from a maximum flow

f .

Integer-Valued Flows. Among the many corollaries emerging from our analysis of the

F-F algorithm, here is another extremely important one. By (6.2) , we maintain an integer-

valued flow at all times, and by (6.9) , we conclude with a maximum flow. Thus we have

(6.13) If all capacities in the flow network are integers, then there is a maximum flow f

for which every flow value f(e) is an integer.

Note that (6.13) does not claim that every maximum flow is integer-valued; only that

some maximum flow has this property. Curiously, although (6.13) makes no reference to

the F-F algorithm, our algorithmic approach here provides what is probably the easiest way

to prove it.

Real numbers as capacities? Finally, before moving on, we can ask how crucial our

assumption of integer capacities was. (Ignoring (6.13) and (6.5) , which clearly needed

it.) First, we notice that allowing capacities to be equal to rational numbers does not make

the situation any more general, since we always determine the least common multiple of all

capacities, and multiply them all by this value to obtain an equivalent problem with integer

capacities.

But what if we have real numbers as capacities? Where in the the proof did we rely on the

capacities being integers? In fact, we relied on it quite crucially: we used (6.2) to establish,

in (6.4) , that the value of the flow increased by at least 1 in every step. With real numbers

as capacities, we should be concerned that the value of our flow keeps increasing, but in

increments that become arbitrarily smaller and smaller; and hence we have no guarantee

that the number of iterations of the loop is finite. And this turns out to be an extremely

real worry, for the following reason: With pathological choices for the augmenting path, the

F-F algorithm with real-valued capacities can run forever.

However, one can still prove that the Max-Flow Min-Cut Theorem (6.10) is true even if

the capacities may be real numbers. Note that (6.9) assumed only that the flow f has no

s-t-path in its residual graph Gf , in order to conclude that there is an s-t-cut of equal value.

Clearly, for any flow f of maximum value, the residual graph has no s-t-path — otherwise

there would be a way to increase the value of the flow. So one can prove (6.10) in the case

192 CHAPTER 6. NETWORK FLOW

of real-valued capacities by simply establishing that for every flow network, there exists a

maximum flow.

Capacities in any real application are integers or rational numbers. However, the prob-

lem of pathological choices for the augmenting paths can manifest itself even with integer

capacities: it can make the F-F algorithm take a gigantic number of iterations. In the next

section, we discuss how to select augmenting paths so as to avoid the potential bad behavior

of the algorithm.

6.5 Choosing Good Augmenting Paths

In the previous section, we saw that any way of choosing an augmenting path increases the

value of the flow, and this led to an O(C) bound on the number of augmentations, where

C =
∑

e out of s

ce. When C is not very large, this can be a reasonable bound; however, in

general it is very weak.

To get a sense for how bad this bound can be, consider the example graph in the beginning

of this chapter; but this time assume the capacities are as follows: the edges (s, v), (s, u),

(v, t) and (u, t) have capacity 100, and the edge (u, v) has capacity 1. It is easy to see that the

maximum flow has value 200, and has f(e) = 100 for the edges (s, v), (s, u), (v, t) and (u, t)

and value 0 on the edge (u, v). This flow can be obtained by a sequence of 2 augmentations,

using the paths of nodes s, u, t and path s, v, t. But consider how bad the F-F algorithm can

be with pathological choices for the augmenting paths. Suppose we start with augmenting

path P1 of nodes s, u, v, t in this order. This path has bottleneck(P1) = 1. After this

augmentation we have f(e) = 1 on the edge e = (u, v), so the reverse edge is in the residual

graph. For the next augmenting path we choose the path P2 of the nodes s, v, u, t in this

order. In this second augmentation we get bottleneck(P2) = 1 as well. After this second

augmentation we have f(e) = 0 for the edge e = (u, v), so the edge is again in the residual

graph. Suppose we alternate between choosing P1 and P2 for augmentation. In this case

each augmentation will have 1 as the bottleneck capacity, and it will take 200 augmentations

to get the desired flow of value 200. This is exactly the bound we proved in (6.4) .

The goal of this section is to show that with a better choice of paths we can improve

this bound significantly. A large amount of work has been devoted to finding good ways

of choosing augmenting paths in the maximum flow problem, so as terminate in as few

iterations as possible. We focus here on one of the most natural approaches. Recall that

augmentation increases the value of the maximum flow by the bottleneck capacity of the

selected path; so if we choose paths with large bottleneck capacity, we will be making a lot

of progress. A natural idea is to select the path that has the largest bottleneck capacity.

Selecting such a path at each iteration can slow down the iterations by quite a bit. We will

avoid this slowdown by not worrying about selecting the path that has exactly the largest

6.5. CHOOSING GOOD AUGMENTING PATHS 193

bottleneck capacity. Instead, we will maintain a so-called scaling parameter ∆, and we will

look for paths that have bottleneck capacity at least ∆.

Let Gf (∆) be the subset of the residual graph consisting only of edges with residual

capacity at least ∆. We will work with values of ∆ that are powers of 2. The algorithm is

as follows.

Scaling Max-Flow(G, c)
Initially f(e) = 0 for all e in G.

Initially set ∆ to be the largest power of 2
that is no larger than the maximum capacity out of s:
∆ ≤ max

e out of s
ce.

While ∆ ≥ 1
While there is an s-t path in the graph Gf(∆)

Let P be a simple s-t path in Gf (∆)
f ′ = augment(f, P)
Update f to be f ′

Endwhile

∆ = ∆/2
Endwhile

Return f

First observe that the new Scaling Max-Flow algorithm is really just an implementation

of the original Ford-Fulkerson algorithm. The new loops, the value ∆, and the restricted

residual graph Gf (∆) is only used to guide the selection of residual path — with the goal

of using edges with large residual capacity for as long as possible. Hence, all the properties

that we proved about the original Max-Flow algorithm are also true for this new version: the

flow remains integer-valued throughout the algorithm, and hence all residual capacities are

integer-valued.

(6.14) If the capacities are integer-valued, then throughout the Scaling Max-Flow al-

gorithm the flow and the residual capacities remain integer-valued. This implies that when

∆ = 1, Gf (∆) is the same as Gf , hence when the algorithm terminates the flow f is of

maximum value.

Next we consider the running time. We call an iteration of the outside While loop —

with a fixed value of ∆ — the ∆-scaling phase. It is easy to give an upper bound on the

number of different ∆-scaling phases, in terms of the value C =
∑

e out of s

ce that we also used

in the previous section. The initial value of ∆ is at most C, it drops by factors of 2, and it

never gets below 1. Thus,

(6.15) The number of iterations of the outside While loop is at most dlog2 Ce.

194 CHAPTER 6. NETWORK FLOW

The harder part is to bound the number of augmentations done in each scaling phase.

The idea here is that we are using paths that augment the flow by a lot, and so there should

be relatively few augmentations. During the ∆-scaling phase we only use edges with residual

capacity at least ∆. Using (6.3) , we have

(6.16) During the ∆-scaling phase, each augmentation increases the flow value by at

least ∆.

The key insight is that at the end of the ∆-scaling phase, the flow f cannot be not too far

from the maximum possible value.

(6.17) Let f be the flow at the end of the ∆-scaling phase. There is an s-t cut (A∗, B∗)

in G for which c(A∗, B∗) ≤ ν(f) + m∆, where m is the number of edges in the graph G.

Consequently, the maximum flow in the network has value at most ν(f) + m∆.

Proof. This proof is analogous to our proof of (6.9), which established that the flow returned

by the original Max-Flow algorithm is of maximum value.

As in that proof, we must identify the cut promised in the first statement above. Let A∗

denote the set of all nodes v in G for which there is an s-v path in Gf (∆). Let B∗ denote

the set of all other nodes: B∗ = V − A∗. We can see that (A∗, B∗) is indeed an s-t cut as

otherwise the phase would not have ended.

Now consider an edge e = (u, v) in G for which u ∈ A∗ and v ∈ B∗. We claim that

ce < f(e)+∆, for if not, e would be a forward edge in the graph Gf(∆). Since u ∈ A∗, there

is an s-u path in Gf(∆); appending e to this path, we would obtain an s-v path in Gf (∆),

contradicting our assumption that v ∈ B∗. Similarly, we get that for any edge e′ = (u′, v′) in

G for which u′ ∈ B∗ and v′ ∈ A∗, f(e′) < ∆. For if not, e′ would give rise to a backward edge

e′′ = (v′, u′) in the graph Gf (∆). Since v′ ∈ A∗, there is an s-v′ path in Gf(∆); appending

e′′ to this path, we would obtain an s-u′ path in Gf(∆), contradicting our assumption that

u′ ∈ B∗.

So all edges e out of A∗ are almost saturated — they satisfy ce < f(e) + ∆ — and all

edges into A∗ are almost empty — they satisfy f(e) < ∆. We can now use (6.6) to reach

the desired conclusion:

ν(f) =
∑

e out of A∗

f(e)−
∑

e into A∗

f(e)

≥
∑

e out of A∗

(ce −∆)−
∑

e into A∗

∆

=
∑

e out of A∗

ce −
∑

e out of A∗

∆−
∑

e into A∗

∆

≥ c(A∗, B∗)−m∆.

6.5. CHOOSING GOOD AUGMENTING PATHS 195

Here the first inequality follows from our bounds on the flow values of edges across the cut,

and the second inequality follows from the simple fact that the graph only contains m edges

total.

The maximum flow value is bounded by the capacity of any cut. We use the cut (A∗, B∗)

to obtain the bound claimed in the second statement.

(6.18) The number of augmentations in a scaling phase is at most 2m.

Proof. The statement is clearly true in the first scaling phase — we can use each of the edges

out of s only for at most one augmentation in that phase. Now consider a later scaling phase

∆, and let f0 be the flow at the end of the previous scaling phase. In that phase we used

∆′ = 2∆ as our parameter. By (6.17) the maximum flow is at most ν(f)+m∆′ = ν(f)+2m∆.

In the ∆-scaling phase, each augmentation increases the flow by at least ∆, and hence there

can be at most 2m augmentations.

An augmentation takes O(m) time, including the time required to set up the graph

and find the appropriate path. We have at most dlog2 Ce scaling phases, and at most 2m

augmentations in each scaling phase. Thus we have the following result.

(6.19) The Scaling Max-Flow algorithm in a graph with m edges and integer capacities

finds a maximum flow in at most 2mdlog2 Ce augmentations. It can be implemented to run

in at most O(m2 log2 C) time.

When C is large, this time bound is much better than the O(mC) bound that applied

to an arbitrary implementation of the F-F algorithm. Consider that in our example at the

beginning of this section, we had capacities of size 100; but we could just as well have used

capacities of size 2100; in this case, the generic F-F algorithm could take time proportional

to 2100, while the scaling algorithm will take time proportional to log2(2
100) = 100. One way

to view this distinction is as follows: the generic F-F algorithm requires time proportional to

the magnitude of the capacities, while the scaling algorithm only requires time proportional

to the number of bits needed to specify the capacities in the input to the problem. As a

result, the scaling algorithm is running in time polynomial in the size of the input — i.e. the

number of edges and the numerical representation of the capacities — and so it meets our

traditional goal of achieving a polynomial-time algorithm. Bad implementations of the F-F

algorithm, which require time Ω(mC), do not meet this standard of polynomiality.

Could we ask for something qualitatively better than what the scaling algorithm guar-

antees? Here is one thing we could hope for: our example graph had 4 nodes and 5 edges;

so it would be nice to run in time polynomial in the numbers 4 and 5, completely indepen-

dently of the values of the capacities (except for having to do arithmetic operations using

these numbers). Such an algorithm, which is polynomial in |V | and |E| independent of the

196 CHAPTER 6. NETWORK FLOW

numerical values assigned to the edges, is called a strongly polynomial algorithm. In fact,

the first polynomial algorithms for the maximum flow problem, discovered independently by

Dinitz and by Edmonds and Karp, were also strongly polynomial; and had running times

of O(mn2) and O(m2n) respectively. Both algorithms were based on the F-F algorithm

and used in each iteration the augmenting paths with fewest edges. There has since been

a huge amount of work devoted to improving the running times of maximum flow algo-

rithms; there are currently algorithms that achieve running times of O(mn log n), O(n3),

and O(min(n2/3m1/2)m log n log C), where the last bound assumes that all capacities are

integral and at most C.

6.6 The Preflow-Push Maximum Flow Algorithm

From the very beginning, our discussion of the maximum flow problem has been centered

around the idea of an augmenting path in the residual graph — but in fact, there are some

very powerful techniques for maximum flow that are not explicitly based on augmenting

paths. In this section we study one such technique, the Preflow-Push algorithm.

Algorithms based on augmenting paths maintain a flow f , and use the augment procedure

to increase the value of the flow. By way of contrast, the Preflow-Push algorithm will, in

essence, increase the flow on an edge-by-edge basis. Changing the flow on a single edge is

will typically violate the conservation condition, and so the algorithm will have to maintain

something less well-behaved than a flow — something that does not obey conservation — as

it operates.

We say that an s-t preflow (preflow, for short) is a function f that maps each edge e to

a non-negative real number, f : E → R+. A preflow f must satisfy the capacity conditions:

(i) For each e ∈ E, 0 ≤ f(e) ≤ ce.

In place of the conservation conditions, we require only inequalities: each node other than s

must have at least as much flow entering as leaving:

(ii) For each node v other than the source s, we have

∑

e into v

f(e) ≥
∑

e out of v

f(e).

We will call the difference

ef (v) =
∑

e into v

f(e)−
∑

e out of v

f(e)

the excess of preflow at node v. Notice, that a preflow where all nodes other than s and t

have zero excess is a flow, and the value of the flow is exactly ef (t). We can still define the

6.6. THE PREFLOW-PUSH MAXIMUM FLOW ALGORITHM 197

concept of a residual graph Gf for a preflow f , just as we did for a flow. The algorithm will

“push” flow along edges of the residual graph (using both forward and backward edges).

The Preflow-Push algorithm will maintain a preflow and work on converting the preflow

into an flow. There is a nice physical intuition behind the algorithm. We will also assign

each node v a label h(v) that we will think of as the height of that node, and will push flow

from nodes with higher label to those with lower labels, following the intuition that fluid

flows downhill. To make this precise, a labeling is a function h : V → Z≥0 from the nodes to

the non-negative integers. We will also refer to the labels as heights of the nodes. We will

say that a labeling h and a s-t-preflow f are compatible, if

(i) (Source and sink conditions.) h(t) = 0 and h(s) = n,

(ii) (Steepness conditions.) For all edges (v, w) ∈ Ef in the residual graph h(v) ≤ h(w)+1.

Intuitively, the height difference n between the source and the sink is meant to ensure that

the flow starts high enough to flow from s towards the sink t, while the steepness condition

will help by making the descent of the flow gradual enough to make it to the sink.

The key property of a compatible labeling preflow and labeling is that there can be no

s-t path in the residual graph.

(6.20) If s-t-preflow f is compatible with a labeling h, than there is no s-t-path in the

residual graph Gf .

Proof. We prove the statement by contradiction. Let P be a simple s-t-path in the residual

graph G. Assume that the nodes along P are s, v1, . . . , vk = t. By definition of a labeling

compatible with preflow f we have that h(s) = n. The edge (s, v1) is in the residual graph,

hence h(v1) ≥ h(s)− 1 = n− 1. Using induction i and using the steepness condition for the

edge (vi−1, vi), we get that for all nodes vi in path P the height is at least h(vi) ≥ n − i.

Notice that the last node of the path is vk = t, hence we get that h(t) ≥ n − k. However,

h(t) = 0 by definition; and k < n as the path P is simple. This contradiction proves the

claim.

Recall from (6.9) that if there is no s-t path in the residual graph Gf of a flow f than

the flow has maximum value. This implies the following corollary.

(6.21) If s-t-flow f is compatible with a labeling h, than f is a flow of maximum value.

Note that (6.20) applies to preflows, while (6.21) is more restrictive in that it applies

only to flows. Thus Preflow-Push algorithm will maintain a preflow f and a labeling h

compatible with f , and it will work on modifying f and h so as to move f toward being a

flow. Once f actually becomes a flow, we can invoke (6.21) to conclude that it is maximum.

In light of this, we can view the Preflow-Push algorithm as being in a way orthogonal to

198 CHAPTER 6. NETWORK FLOW

the Ford-Fulkerson algorithm. The Ford-Fulkerson algorithm maintains a feasible flow while

changing it gradually towards optimality. The Preflow-Push algorithm, on the other hand,

maintains a condition that would imply the optimality of a preflow f , if it were to be a

feasible flow, and the algorithm gradually transforms the preflow f into a flow.

To start the algorithm we will need to define an initial preflow f and labeling h that are

compatible. We will use h(v) = 0 for all v 6= s, and h(s) = n, as our initial labeling. To

make a preflow f compatible with this labeling, we need to make sure that no edges leaving

s are in the residual graph (as these edges do not satisfy the steepness condition). To this

end we define the initial preflow as f(e) = ce for all edges e = (s, v) leaving the source, and

define f(e) = 0 for all other edges.

(6.22) The initial preflow f and labeling h are compatible.

Next we will discuss the steps the algorithm makes towards turning the preflow f into a

feasible flow, while keeping it compatible with some labeling h. Consider any node v that

has excess — i.e., ef (v) > 0. If there is any edge e in the residual graph Gf that leaves v

and goes to a node w at a lower height (note that h(w) is at most 1 less than h(v) due to

the steepness condition), then we can modify f by pushing some of the excess flow from v

to w. Will will call this a push operation.

push(f, h, v, w)
Applicable if ef (v) > 0, h(w) < h(v) and (v, w) ∈ Ef.

If e = (v, w) is a forward edge then

let δ = min(ef(v), ce − f(e)) and

increase f(e) by δ.
If e = (v, w) is a backwards edge then

let δ = min(ef(v), f(e)) and

decrease f(e) by δ.
Return(f, h)

If we cannot push the excess of v along any edge leaving v then we will need to raise v’s

height. We will call this a relabel operation.

relabel(f, h, v)
Applicable if ef (v) > 0, and

for all edges (v, w) ∈ Ef we have h(w) ≥ h(v).
Increase h(v) by 1.

Return(f, h)

So in summary the Preflow-Push algorithm is as follows.

Preflow-Push(G, s, t, c)

6.6. THE PREFLOW-PUSH MAXIMUM FLOW ALGORITHM 199

Initially h(v) = 0 for all v 6= s and h(s) = n and

f(e) = ce for all e = (s, v) and f(e) = 0 for all other edges.

While there is a node v 6= t with excess ef(v) > 0
Let v be a node with excess

If there is w such that push(f, h, v, w) can be applied then

push(f, h, v, w)
Else

relabel(f, h, v)
Endwhile

Return(f)

As usual this algorithm is somewhat under-specified. For an implementation of the

algorithm we will have to specify which node with excess to choose, and how to efficiently

select an edge on which to push. However, it is clear that each iteration of this algorithm

can be implemented in polynomial time. (We’ll discuss later how to implement it reasonably

efficiently.). Further, it is not hard to see that the preflow f and the labeling h are compatible

throughout the algorithm. If the algorithm terminates — something that is far from obvious

based on its description — then there are no non-sinks with positive excess, and hence the

preflow f is in fact a flow. It then follows from (6.21) that f would be a maximum flow at

termination.

We summarize these observations as follows.

(6.23) Throughout the Preflow-Push algorithm:

(i) the labels are non-negative integers;

(ii) f is a preflow, and if the capacities are integral then the preflow f is integral; and

(iii) the preflow f and labeling h are compatible.

If the algorithm returns a preflow f , then f is a flow of maximum value.

Proof. By (6.22) the initial preflow f and labeling h are compatible. We will show using

induction on the number of push and relabel operations that f and h satisfy the properties

of the statement. The push operation modifies the preflow f , but the bounds on δ guarantee

that the the f returned satisfies the capacity constraints, and the all excesses remain non-

negative, so f is a preflow. To see that preflow f and the labeling h are compatible, note

that push(f, h, v, w) can add one edge to the residual graph, the reverse edge (v, w), and

this edge does satisfy the steepness condition. The relabel operation increases the label of

v, and hence increases the steepness of all edges leaving v. However, it only applies when no

edge leaving v in the residual graph is going downwards, and hence the preflow f and the

labeling h are compatible after relabeling.

200 CHAPTER 6. NETWORK FLOW

The algorithm terminates if no node other than s or t has excess. In this case, f is a flow

by definition; and since the preflow f and the labeling h remain compatible throughout the

algorithm, (6.21) implies that f is a flow of maximum value.

Next, we will consider the number of push and relabel operations. First, we will prove

a limit on the relabel operations, and this will help prove a limit on the maximum number

of push operations possible. We only consider a node v for either push or relabel when

v has excess. The only source of flow in the network is the source s, hence intuitively the

excess at v must have originated at s. The following consequence of this fact will be key to

the analysis.

(6.24) Let f be a preflow. If the node v has excess, then there is a path in Gf from v to

the source s.

Proof. Let A denote all the nodes w such that there is a path from w to s in the residual

graph Gf , and let B = V−A. We need to show that all nodes with excess are in A.

Notice that s ∈ A. Further, no edges e = (x, y) leaving A can have positive flow, as an

edge with f(e) > 0 would give rise to a reverse edge (y, x) in the residual graph, and then y

would have been in A. Now consider the sum of excesses in the set B, and recall that each

node in B has non-negative excess, as s 6∈ B.

0 ≤
∑

v∈B

ef (v) =
∑

v∈B

(f in(v)− f out(v))

Now let’s rewrite the sum on the right as follows. If an edge e has both ends in B, then

f(e) appears once in the sum with a “+” and once with a “−”, and hence these two terms

cancel out. If e has only its head in B, then e leaves A and we know that all edges leaving

A have f(e) = 0. If e has only its tail in B, then f(e) appears just once in the sum, with a

“−”. So we get

0 ≤
∑

v∈B

ef(v) = −f out(B).

Since flows are non-negative, we see that the sum of the excesses in B is zero; since individual

excess in B is non-negative, they must therefore all be 0.

Now we are ready to prove that the labels do not change too much. The algorithm never

changes the label of s (as the source never has positive excess). Each other node v starts

with h(v) = 0, and its label increases by 1 every time it changes. So we simply need to give

a limit on how high a label can get. Recall that n denotes the number of nodes in V .

(6.25) Throughout the algorithm all nodes have h(v) ≤ 2n− 1.

6.6. THE PREFLOW-PUSH MAXIMUM FLOW ALGORITHM 201

Proof. The initial labels h(t) = 0 and h(s) = n do not change during the algorithm.

Consider some other node v 6= s, t. The algorithm changes v’s label only when applying the

relabel operation, so let f and h be the preflow and labeling returned by a relabel(f, h, v)

operation. By Statement (6.24) there is a path P in the residual graph Gf from v to s. Let

|P | denote the number of edges in P , and note that |P | ≤ n − 1. The steepness condition

implies that heights of the nodes can decrease by at most 1 along each edge in P , and hence

h(v)− h(s) ≤ |P |, which proves the statement.

Labels are monotone increasing throughout the algorithm, so this statement immediately

implies a limit on the number of relabeling operations.

(6.26) Throughout the algorithm each node is relabeled at most 2n − 1 times, and the

total number of relabeling operation is less than 2n2.

Next we will bound the number of push operations. We will distinguish two kinds of push

operations. A push(f, h, v, w) is saturating if either e = (v, w) is a forward edge in Ef and

δ = ce − f(e), or (v, w) is a backwards edge with e = (w, v) and δ = f(e). I.e., the push is

saturating if after the push the edge (v, w) is no longer in the residual graph. All other push

operations will be referred to as non-saturating.

(6.27) Throughout the algorithm the number of saturating push operations is at most

2nm.

Proof. Consider an edge (v, w) in the residual graph. After a saturating push(f, h, v, w) we

have that h(v) = h(w)+ 1, and the edge (v, w) is no longer in the residual graph Gf . Before

we can push again along this edge, first we have to push from w to v to make the edge (v, w)

appear in the residual graph. However, in order to push from w to v, we first need for w’s

label to increase by at least 2 (so that w is above v). The label of w can increase by 2 at

most n − 1 times, so a saturating push from v to w can occur at most n times. Each edge

e ∈ E can give rise to two edges in the residual graph, so overall we can have at most 2nm

saturating pushes.

The hardest part of the analysis is proving a bound on the number of non-saturating

pushes, and this also will be the bottleneck for the theoretical bound on the running time.

(6.28) Throughout the algorithm the number of non-saturating push operations is at

most 2n2m.

Proof. For this proof we will use a so-called potential function method. For a preflow f and

a compatible labeling h, we define

Φ(f, h) =
∑

v:ef (v)>0

h(v)

202 CHAPTER 6. NETWORK FLOW

to be the sum of the heights of all nodes with positive excess. (Φ is often called a potential

since it resembles the “potential energy” of all nodes with positive excess.)

In the initial preflow and labeling all nodes with positive excess are at height 0, so

Φ(f, h) = 0. Φ(f, h) remains non-negative throughout the algorithm. A non-saturating

push(f, h, v, w) decreases Φ(f, h) by at least 1, as after the push the node v will have no

excess, and w, the only node that gets new excess from the operation, is at a height one less

than v. However, each saturating push and each relabel operation can increase Φ(f, h). A

relabel operation increases Φ(f, h) by exactly 1. There are at most 2n2 relabel operations,

so the total increase in Φ(f, h) due to relabel operations is 2n2. A saturating push(f, h, v, w)

operation does not change labels, but can increase Φ(f, h) since the node w may suddenly

acquire positive excess after the push. This would increase Φ(f, h) by the height of w, which

is at most 2n− 1. There are at most 2nm saturating push operations, so the total increase

in Φ(f, h) due to push operations is at most 2mn(2n−1). So between the two causes Φ(f, h)

can increase by at most 4mn2 during the algorithm.

But since Φ remains non-negative throughout, and it decreases by at least one on each

non-saturating push, it follows that there can be at most 4mn2 non-saturating push opera-

tions.

There has been a lot of work devoted to choosing node selection rules for this algorithm

to improve the worst case running time. Next we show that if one always selects the node

with positive excess at the maximum height, then there will be at most O(n3) non-saturating

push operations.

(6.29) If at each step we choose the node with excess at maximum height than the number

of non-saturating push operations through the algorithm is at most 2n3.

Proof. The algorithm selects a node with excess at maximum height. Consider this height

H = maxv:ef (v)>0 h(v) as the algorithm proceeds. This maximum height H can only increase

due to relabeling (as flow is always pushed to nodes at less height), and so the total increase

in H throughout the algorithm is at most 2n2 by (6.25) . H starts out 0 and remains

non-negative, so the number of times H changes is at most 4n2.

Now consider the behavior of the algorithm over a phase of time in which H remains

constant. We claim that each node can have at most one non-saturating push during this

phase. Indeed, during this phase, flow is being pushed from nodes at height H to nodes at

height H − 1; and after a non-saturating push from v, it must receive flow from a node at

height H + 1 before we can push from it again.

Since there are at most n non-saturating push operations between each change to H, and

H changes at most 4n2 times, the total number of non-saturating push operations is at most

4n3.

6.6. THE PREFLOW-PUSH MAXIMUM FLOW ALGORITHM 203

As a follow-up to (6.29) , it is interesting to note that experimentally the computational

bottleneck of the method is the number of relabeling operations, and better experimental

running time is obtained by variants that work on increasing labels faster than one-by-one.

This is a point that we pursue further in some of the exercises.

Finally, we need to briefly discuss how to implement this algorithm efficiently. Maintain-

ing a few simple data structures will allow us to effectively implement the operations of the

algorithm in constant time each, and overall implement the algorithm in time O(mn) plus

the number of non-saturating push operations. Hence the above generic algorithm will run

in O(mn2) time, while the version that always selects the node at maximum height will run

in O(n3) time.

We can maintain all nodes with excess on a simple list and so we will be able to select

a node with excess in constant time. One has to be a bit more careful to be able to select

a node with maximum height H in constant time. In order to do this we will maintain a

linked list of all nodes with excess at every possible height. Note that whenever a node v gets

relabeled, or continues to have positive excess after a push, it remains a node with maximum

height H. Thus, we only have to select a new node after a push when the current node v

no longer has positive excess. If node v was at height H, then the new node at maximum

height will also be at height H or, if no node at height H has excess, then the maximum

height will be H − 1 — since the previous push out of v pushed flow to a node at height

H − 1.

Now assume we have selected a node v, and we need to select an edge (v, w) on which to

apply push(f, h, v, w) (or relabel(f, h, v) if no such w exists). To be able to select an edge

quickly we will use the adjacency list representation of the graph. More precisely, we will

maintain, for each node v, all possible edges leaving v in the residual graph (both forwards

and backwards edges) in a linked list, and with each edge we keep its capacity and flow value.

Note that this way we have two copies of each edge in our data structure: a forwards and a

backwards copy. These two copies will each have pointers to one another, so that updates

done at one copy can be carried over to the other one in O(1) time. We will select edges

leaving a node v for push operations in the order they appear on node v’s list. To facilitate

this selection we will maintain a pointer current(v) for each node v to the last edge on the

list that has been considered for a push operation. So, if node v no longer has excess after

a non-saturating push out of node v, the pointer current(v) will stay at this edge, and we

will use the same edge for the next push operation out of v. After a saturating push out of

node v, we advance current(v) to the next edge on the list.

The key observation is that after advancing the pointer current(v) from an edge (v, w),

we will not want to apply push to this edge again until relabel v.

(6.30) After the current(v) pointer is advanced from an edge (v, w) we cannot apply

push to this edge till v gets relabeled.

204 CHAPTER 6. NETWORK FLOW

Proof. At the moment current(v) is advanced from the edge (v, w) there is some reason

push cannot be applied to this edge. Either h(w) ≥ h(v), or the edge is not in the residual

graph. In the first case, we clearly need to relabel v before applying a push on this edge.

In the later case, one needs to apply push to the reverse edge (w, v) to make (v, w) re-enter

the residual graph. However, when we apply push to edge (w, v) then w is above v, and so

v needs to be relabeled before one can push flow from v to w again.

Since edges do not have to be considered again for push before relabeling, we get the

following.

(6.31) When the current(v) pointer reaches the end of the edge list for v, the relabel

operation can be applied to node v.

After relabeling node v we reset current(v) to the first edge on the list, and start considering

edges again in the order they appear on v’s list.

(6.32) The running time of the Preflow-Push algorithm, implemented using the above

data structures is O(mn) plus O(1) for each non-saturating push operation. In particular,

the generic Preflow-Push algorithm runs in O(n2m) time, while the version when we always

select the node at maximum height runs in O(n3) time.

Proof. The initial flow and relabeling is set up on O(m) time. Both push and relabel

operations can be implemented in O(1) time, once the operation has been selected. Consider

a node v. We know that v can be relabeled at most 2n times throughout the algorithm.

We will consider the total time the algorithm spends on finding the right edge to push flow

on out of node v between two times that node v gets relabeled. If node v has dv out-going

edges, then by (6.31) we spend O(dv) time on advancing the current(v) pointer between

consecutive relabelings of v. Thus, the total time spent on advancing the current pointers

throughout the algorithm is O(
∑

v∈V ndv) = O(mn), as claimed.

6.7 Applications: Disjoint Paths and Bipartite Match-

ings

Next we develop two simple applications of maximum flow and minimum cuts in graphs.

Much before the work of Ford and Fulkerson, Menger in 1927 studied the closely related

disjoint paths problem. A set of paths is edge-disjoint if their edge sets are disjoint, i.e., no

two paths share an edge, though multiple paths may go through some of the same nodes.

Given a graph G = (V, E) with two distinguished nodes s, t ∈ V , the edge-disjoint paths

problem is to find the maximum number of edge-disjoint s-t paths in G. This problem can

be solved naturally using flows. Let the capacity of each edge e = (v, w) be 1. We claim

6.7. APPLICATIONS: DISJOINT PATHS AND BIPARTITE MATCHINGS 205

that the maximum flow has value k if and only if there are k edge-disjoint paths in G from

s to t.

(6.33) There are k edge-disjoint paths in G from s to t if and only if the value of the

maximum value of an s-t-flow in G is at least k.

Proof. First suppose there are k edge-disjoint paths. We can make each of these paths carry

one unit of flow: we set the flow as f(v, w) = 1 for all edges on the paths, and f(v, w) = 0

on all other edges, to define a feasible flow of value k.

Conversely, consider a flow in the network G of value k. By (6.43) , we know that there

is a feasible flow with integer flow values. Since all edges have a capacity bound of 1, and

the flow is integer-valued, each edge that carries flow has exactly one unit of flow on it.

Consider an edge (s, u) that carries one unit of flow. It follows by conservation that there

is some edge (u, v) carries one unit of flow. If we continue in this way, we construct a path

P from s to t, so that each edge on this path carries one unit of flow. We can apply this

construction to each edge of the form (s, u) carrying one unit of flow; in this way, we produce

k paths from s to t, each consisting of edges that carry one unit of flow. We can make these

k paths are edge-disjoint: if there are multiple edges carrying flow into a node v, than, by

conservation, there are at least as many edge carrying flow out of v, so each path entering v

can use a different edge to leave the node.

For this flow problem, we discover that C =
∑

e out of s

ce ≤ |V | = n, as there are at most

|V | edges out of s, each of which has capacity 1. Thus, by using the O(mC) bound in (6.5)

we get an integer maximum flow in O(mn) time. To obtain the edge-disjoint paths, we

decompose the flow into paths as was done in the proof of (6.33). It is not hard to find such

a decomposition also in O(mn) time. The number of edges in the paths is at most m, so we

get an O(mn) running time by adding each new edge to the current path in O(n) time.

(6.34) The F-F algorithm can be used to find a maximum set of edge-disjoint s-t paths

in directed graph G in O(mn) time.

It’s interesting that if we were to use the “better” bound of O(m2 log2 C) that we de-

veloped in the previous section, we’d get the inferior running time of O(m2 log n) for this

problem. There is nothing contradictory in this — the O(m2 log2 C) bound was designed to

be good for instances in which C is very large relative to m and n; whereas in the bipartite

matching problem, C = n.

The Max-Flow Min-Cut Theorem (6.11) can be used to give the following characteri-

zation of the maximum number of edge-disjoint paths. This characterization was originally

discovered by Menger in 1927. We say that a set F ⊆ E of edges disconnects t from s if after

removing the edges F from the graph G no s-t paths remain in the graph.

206 CHAPTER 6. NETWORK FLOW

w

-

s
-

-

3

3
�

*

q

R

Rq
1
�

s t

(6.35) In every directed graph with nodes s and t, the maximum number of edge-disjoint

s-t paths is equal to the minimum number of edges whose removal disconnects t from s.

Proof. If the removal of a set F ⊆ E of edges disconnects t from s, then all s-t-paths must

use at least one edge from F , and hence the number of edge-disjoint s-t paths is at most |F |.
To prove the other direction we will use the Max-Flow Min-Cut Theorem (6.11) . By

(6.33) the maximum number of edge-disjoint paths is the value ν of the maximum s-t flow.

Now (6.11) states that there is an s-t-cut (A, B) with capacity ν. Let F be the set of edges

that go from A to B. Each edge has capacity 1, so |F | = ν, and by the definition of an s-t

cut removing these ν edges from G disconnects t from s.

The Bipartite Matching Problem

One of our original goals in developing the maximum flow problem was to be able to solve the

bipartite matching problem, and we now show how to do this. Recall that a bipartite graph

G = (V, E) is an undirected graph whose node set can be partitioned as V = X ∪ Y , with

the property that every edge e ∈ E has one end in X and the other end in Y . A matching

M in G is a subset of the edges M ⊆ E such that each node appears in at most one edge in

M . The maximum matching problem is that of finding a matching in M of largest possible

size.

Note that the graph defining a matching problem is undirected, while flow networks are

directed. Yet, the idea of using the maximum flow algorithm to find a maximum matching

will be quite simple. Beginning with the graph G in a bipartite matching problem, we

construct a flow network G′ as follows. First, we direct all edges in G from X to Y . We

then add a node s, and an edge (s, x) from s to each node in X. We add a node t, and an

edge (y, t) from each node in Y to t. Finally, we give each edge in G′ a capacity of 1.

We can now show that integer-valued flows in G′ encode matchings in G in a fairly trans-

parent fashion. First, suppose there is a matching in G consisting of k edges (xi1 , yi1), . . . , (xik , yik).

6.7. APPLICATIONS: DISJOINT PATHS AND BIPARTITE MATCHINGS 207

Then consider the flow f that sends one unit along each path of the form s, xij , yij , t — that

is, f(e) = 1 for each edge on one of these paths. One can verify easily that the capacity and

conservation conditions are indeed met, and that f is an s-t flow of value k.

Conversely, suppose there is a flow f ′ in G′ of value k. By the integrality theorem for

maximum flows (6.13), we know there is an integer-valued flow f of value k — and since all

capacities are 1, this means that f(e) is equal to either 0 or 1 for each edge e. Now, consider

the set M ′ of edges of the form (x, y) on which the flow value is 1.

Here are three simple facts about the set M ′

• M ′ contains k edges.

To see this, consider the cut (A, B) in G′ with A = {s} ∪ X. The value of the flow is the

total flow leaving A, minus the total flow entering A. The first of these terms is simply

the cardinality of M ′, since these are the edges leaving A that carry flow, and each carries

exactly one unit of flow. The second of these terms is 0, since there are no edges entering A.

Thus, M ′ contains k edges.

• Each node in X is the tail of at most one edge in M ′.

To see this, suppose x ∈ X were the tail of at least two edges in M ′. Since our flow is

integer-valued, this means that at least two units of flow leave from x. By conservation of

flow, at least two units of flow would have to come into x — but this is not possible, since

only a single edge of capacity 1 enters x. Thus x is the tail of at most one edge in M ′. By

the same reasoning, we can show

• Each node in Y is the head of at most one edge in M ′.

Combining these facts, we see that if we view M ′ as a set of edges in the original bipartite

graph G, we get a matching of size k. In summary, we have proved the following fact.

(6.36) The size of the maximum matching in G is equal to the value of the maximum

flow in G′; and the edges in such a matching in G are the edges that carry flow from X to

Y in G′.

Note the crucial way in which the integrality theorem (6.13) figured in this construction

— we needed to know there is a maximum flow in G′ that takes only the values 0 and 1.

Now let’s consider how quickly we can compute a maximum matching in G. Let n =

|X| = |Y |, and let m be the number of edges of G. We’ll tacitly assume that m ≥ n — since

we may as well assume that there is at least one edge incident to each node in the original

problem. The time to compute a maximum matching is dominated by the time to compute

an integer-valued maximum flow in G′, since converting this to a matching in G is simple.

For this flow problem, we have that C =
∑

e out of s

ce = |X| = n, as s has an edge of capacity

1 to each node of X. Thus, by using the O(mC) bound in (6.5) , we get the following.

208 CHAPTER 6. NETWORK FLOW

(6.37) The F-F algorithm can be used to find a maximum matching in a bipartite graph

in O(mn) time.

It is worthwhile to consider what the augmenting paths mean in the network G′. Consider

the matching M consisting of edges (x1, y1), (x2, y2) and (x4, y4) in the bipartite graph at

the beginning of this chapter. Let f be the corresponding flow in G′. This matching is not

maximum, so f is not a maximum s-t flow, and hence there is an augmenting path in the

residual graph G′
f . There is only one edge in Gf leaving node s: the edge (s, x3). Similarly

the only edge entering t in Gf is edge (y3, t). The augmenting path in the residual graph

Gf goes through the nodes s, x3, y2, x2, y1, x1, y3, t in this order. Note that the edges (x2, y2)

and (x1, y1) are used backwards, and all other edges were used forwards. The effect of this

augmentation is to take the edges used backwards out of the matching, and replace them

with the edges going forwards. Because the augmenting path goes from s to t, there is one

more forward edge than backward edge; thus, the size of the matching increases by one.

Before we conclude this section, we consider the structure of perfect matchings in bipartite

graphs. Algorithmically, we’ve seen how to find perfect matchings: we use the algorithm

above to find a maximum matching, and then check if this matching is perfect.

But let’s ask a slightly less algorithmic question. Not all bipartite graphs have perfect

matchings. What does a bipartite graph without a perfect matching look like? Is there an

easy way to see that a bipartite graph does not have a perfect matching — or at least an easy

way to convince someone the graph has no perfect matching, after we run the algorithm?

More concretely, it would be nice if the algorithm, upon concluding that there is no perfect

matching, could produce a short “certificate” of this fact. The certificate could allow someone

to be quickly convinced that there is no perfect matching, without having to pore over a

trace of the entire execution of the algorithm.

What might such a certificate look like? For example, if there are nodes x1, x2 ∈ X that

have only one incident edge each, and the other end of each edge is the same node y, then

clearly the graph has no perfect matching: both x1 and x2 would need to get matched to the

same node y. More generally, consider a subset of nodes A ⊆ X, and let Γ(A) ⊆ Y denote

the set of all nodes that are adjacent to nodes in A. If the graph has a perfect matching,

then each node is A has to be matched to a different node in Γ(A), so Γ(A) has to be at

least as large as A. This gives us the following fact.

(6.38) If a bipartite graph G = (V, E) with two sides X and Y has a perfect matching,

then for all A ⊆ X we must have |Γ(A)| ≥ |A|.

This statement suggests a type of certificate that a graph does not have a perfect match-

ing: a set A ⊆ X such that |Γ(A)| < |A|. But is the converse of (6.38) also true? Is is

the case that whenever there is no perfect matching, there is a set A like this that proves

6.7. APPLICATIONS: DISJOINT PATHS AND BIPARTITE MATCHINGS 209

it? The answer turns out to be yes, provided we add the obvious condition that |X| = |Y |
(without which there could certainly not be a perfect matching). This statement is known

in the literature as Hall’s theorem, though versions of it were discovered independently by

a number of different people — perhaps first by König — in the early part of this century.

The proof of the statement also provides a way to find such a subset A in polynomial time.

(6.39) Assume that the bipartite graph G = (V, E) has two sides X and Y such that

|X| = |Y |. Then the graph G either has a perfect matching, or there is a subset A ⊆ X such

that |Γ(A)| < |A|. A perfect matching or an appropriate subset A can be found in O(mn)

time.

Proof. We will use the same graph G′ as in the proof of the (6.36) . Assume that |X| =
|Y | = n. By (6.36) the graph G has a maximum matching if and only if the value of the

maximum flow in G′ is n.

We need to show that if the value of the maximum flow is less than n, then there is a

subset A as claimed in the statement. By the Max-Flow Min-Cut theorem (6.10) , if the

maximum flow value is less than n, then there is a cut (A′, B′) with capacity less than n in

G′. We claim that the set A = X ∩ A′ has the claimed property. This will prove both parts

of the statement, as we’ve seen in (6.5) that a minimum cut (A′, B′) can also be found by

running the F-F algorithm.

First we claim that one can modify the minimum cut so as to ensure that Γ(A) ⊆ A′. To

do this, consider a node y ∈ Γ(A)) that belongs to B ′. We claim that by moving y from B ′

to A′ we do not increase the capacity of the cut. For what happens when we move y from B ′

to A′? The edge (y, t) now crosses the cut, increasing the capacity by one. But previously

there was at least one edge (x, y) with x ∈ A, since y ∈ Γ(A); all these edges used to cross

the cut, and don’t anymore. Thus, overall, the capacity of the cut cannot increase. (Note

that we don’t have to be concerned about nodes x ∈ X that are not in A. The two ends of

the edge (x, y) will be on different sides of the cut, but this edge does not add to the capacity

of the cut, as it goes from B ′ to A′.)

Next consider the capacity of this minimum cut (A′, B′) that has Γ(A) ⊆ A′. Since all

the neighbors of A belong to A′, we see that the only edges out of A′ are either edges that

leave the sink s or that enter the sink t. Thus the capacity of the cut is exactly

c(A′, B′) = |X ∩B′|+ |Y ∩ A′|.

Notice that |X∩B′| = n−|A|, and |Y ∩A′| ≥ |Γ(A)|. Now the assumption that c(A′, B′) < n

implies that

n− |A|+ |Γ(A)| ≤ |X ∩B′|+ |Y ∩ A′| = c(A′, B′) < n.

Comparing the first and the last terms, we get the claimed inequality |A| < |Γ(A)|.

210 CHAPTER 6. NETWORK FLOW

One way to understand the idea of Hall’s theorem is as follows. We can decide if the

graph G has a perfect matching by checking if the maximum flow in a related graph G′ has

value at least n. By the Max-Flow Min-Cut theorem, there will be an s-t cut of capacity

less than n if the maximum flow value in G′ has value less than n. The condition in Hall

theorem provides a natural meaning for cuts in G′ of capacity less than n, in terms of the

original graph G.

6.8 Extensions to the Maximum Flow Problem

Much of the power of the maximum flow problem has essentially nothing to do with the fact

that it models traffic in a network — rather, it lies in the fact that many problems with a

non-trivial combinatorial search component can be solved in polynomial time because they

can be reduced to the problem of finding a maximum flow or a minimum cut in a directed

graph.

Bipartite matching is a natural first application in this vein; in the next section, we

investigate a range of further applications. To begin with, we stay with the picture of flow

as an abstract kind of “traffic,” and look for more general conditions we might impose on

this traffic. These more general conditions will turn out to be useful for some of our further

applications.

In particular, we focus on two generalizations of maximum flow; we will see that they

can all be reduced to the basic maximum flow problem.

Circulations with Demands

One simplifying aspect of our initial formulation of the maximum flow problem is that we

had only a single source s and a single sink t. Now suppose that there can be a set S of

sources generating flow, and a set T of sinks that can absorb flow. As before, there is an

integer capacity on each edge.

With multiple sources and sinks it is a bit unclear how to decide which source or sink to

favor in a maximization problem. So instead of maximizing the flow value we will consider a

problem where sources have fixed supply values and sinks have fixed demand values, and our

goal is to ship flow from nodes with available supply to those with given demands. Picture,

for example, that the network represents a system of highways in which we want to ship

products from factories (which have supply) to retail outlets (which have demand). In this

type of problem, we will not be seeking to maximize a particular value; rather, we simply

want to satisfy all the demand using the available supply.

Thus, we are given a flow network G = (V, E) with capacities on the edges. Now,

associated with each node v ∈ V is a demand dv. If dv > 0, this indicates that the node v

has a demand of dv for flow — the node is a sink in T , and it wishes to receive dv units more

6.8. EXTENSIONS TO THE MAXIMUM FLOW PROBLEM 211

flow than it sends out. If dv < 0, this indicates that v has a supply of −dv — the node is a

source in S and it wishes to send out −dv units more flow than it receives. If dv = 0 than

the node v is neither a source nor a sink. We will assume that all capacities and demands

are integers.

In this setting, we say that a circulation with demands {dv} is a function f that assigns

a non-negative real number to each edge, and satisfies the following two conditions.

(i) (Capacity conditions.) For each e ∈ E, 0 ≤ f(e) ≤ ce.

(ii) (Demand conditions.) For every v, f in(v)− f out(v) = dv.

Now, instead of considering a maximization problem, we are concerned with a feasibility

problem — we want to know whether there exists a circulation that meets conditions (i) and

(ii).

Here is a simple condition that must hold in order for a feasible circulation to exist —

the total supply must equal the total demand.

(6.40) If there exists a feasible circulation with demands {dv}, then
∑

v dv = 0.

Proof. Suppose there exists a feasible circulation f in this setting. Then
∑

v dv =
∑

v f in(v)−
f out(v). Now, in this latter expression, the value f(e) for each edge e = (u, v) is counted

exactly twice: once in f out(u), and once in f in(v). These two terms cancel out; and since

this holds for all values f(e), the overall sum is 0.

Thanks to (6.40) , we know that

∑

v:dv>0

dv =
∑

v:dv<0

−dv.

Let D denote this common value.

It turns out that we can reduce the problem of finding a feasible circulation with demands

{dv} to the problem of finding a maximum s-t flow in a different network. The reduction

looks very much like the one we used for bipartite matching: we attach a “super-source” s∗

to each node in S, and a “super-sink” t∗ to each node in T . More specifically, we create a

graph G′ from G by adding new nodes s∗ and t∗ to G. For each node v ∈ T — i.e., each

node v with dv > 0 — we add an edge (v, t) with capacity dv. For each node v ∈ S — i.e.,

each node with dv < 0 — we add an edge (s, v) with capacity −dv. We carry the remaining

structure of G over to G′ unchanged. In this graph G′, we will be seeking a maximum s∗-t∗

flow.

Note that there cannot be an s∗-t∗ flow in G′ of value greater than D, since the cut (A, B)

with A = {s∗} only has capacity D. Now, if there is a feasible circulation f with demands

{dv} in G, then by sending a flow value of −dv on each edge (s∗, v), and a flow value of dv

212 CHAPTER 6. NETWORK FLOW

on each edge (v, t∗), we obtain an s∗-t∗ flow in G′ of value D, and so this is a maximum

flow. Conversely, suppose there is a (maximum) s∗-t∗ flow in G′ of value D. It must be that

every edge out of s∗, and every edge into t∗, is completely saturated with flow. Thus, if we

delete these edges, we obtain a circulation f in G with f in(v)− f out(v) = dv for each node

v. Further, if there is a flow of value D in G′, then there is such a flow that takes integer

values.

In summary, we have proved the following.

(6.41) There is a feasible circulation with demands {dv} in G if and only if the maximum

s∗-t∗ flow in G′ has value D. If all capacities and demands in G are integers, and there is a

feasible circulation, then there is a feasible circulation that is integer-valued.

At the end of the previous section we used the Max-Flow Min-Cut theorem to derive the

characterization (6.39) of bipartite graphs that do not have perfect matchings. We can

give an analogous characterization for graphs that do not have a feasible circulation. The

characterization uses the notion of a cut, adapted to the present setting. In the context of

circulation problems with demands, a cut (A, B) is any partition of the nodes set V into two

sets, with no restriction on which side of the partition the sources and sinks fall. We include

the characterization here without a proof.

(6.42) The graph G has a feasible circulation with demands {dv} if and only if for all

cuts (A, B)
∑

v∈B

dv ≤ c(A, B).

It is important to note that our network has only a single “kind” of flow. Although

the flow is supplied from multiple sources, and absorbed at multiple sinks, we cannot place

restrictions on which source will supply the flow to which sink; we have to let our maximum

flow algorithm decide this. A harder problem, which we may address briefly at the end of

the course, is multicommodity flow — here sink ti must be supplied with flow that originated

at source si, for each i.

Circulations with Demands and Lower Bounds

Finally, let us generalize the previous problem a little. In many applications, we not only

want to satisfy demands at various nodes; we also want to force the flow to make use of

certain edges. This can be enforced by placing lower bounds on edges, as well as the usual

upper bounds imposed by edge capacities.

Consider a flow network G = (V, E) with a capacity ce and a lower bound `e on each edge

e. We will assume 0 ≤ `e ≤ ce for each e. As before, each node v will also have a demand

dv, which can be either positive or negative. We will assume that all demands, capacities,

and lower bounds are integers.

6.8. EXTENSIONS TO THE MAXIMUM FLOW PROBLEM 213

The given quantities have the same meaning as usual; a lower bound `e means that the

flow value on e must be at least `e. Thus, a circulation in our flow network must satisfy the

following two conditions.

(i) (Capacity conditions.) For each e ∈ E, `e ≤ f(e) ≤ ce.

(ii) (Demand conditions.) For every v, f in(v)− f out(v) = dv.

As before, we wish to decide whether there exists a feasible circulation — one that satisfies

these conditions.

Our strategy will be to reduce this to the problem of finding a circulation with demands,

but no lower bounds. (We’ve seen that this latter problem, in turn, can be reduced to a

standard maximum flow problem.) The idea is as follows. We know that on each edge e, we

need to send at least `e units of flow — so suppose that we define an initial circulation f0

simply by f0(e) = `e. f ′ satisfies all the capacity conditions (both lower and upper bounds);

but it presumably does not satisfy all the demand conditions. In particular,

f0
in(v)− f0

out(v) =
∑

e into v

`e −
∑

e out of v

`e.

Let us denote this quantity by Lv. If Lv = dv, then we have satisfied the demand condition

at v; but if not, then we need to superimpose a circulation f1 on top of f0 which will clear

the remaining “imbalance” at v: so we need f1
in(v) − f1

out(v) = dv − Lv. And how much

capacity do we have with which to do this? Having already sent `e units of flow on each

edge e, we have ce − `e more units to work with.

These considerations directly motivate the following construction. Let the graph G′ have

the same nodes and edges, with capacities and demands, but no lower bounds. The capacity

of edge e will be ce − `e. The demand of node v will be dv − Lv. Now we claim

(6.43) There is a feasible circulation in G if and only if there is a feasible circulation

in G′. If all demands, capacities, and lower bounds in G are integers, and there is a feasible

circulation, then there is a feasible circulation that is integer-valued.

Proof. First suppose there is a circulation f ′ in G′. Define a circulation f in G by f(e) =

f ′(e) + `e. Then f satisfies the capacity conditions in G, and

f in(v)− f out(v) =
∑

e into v

(`e + f ′(e))−
∑

e out of v

(`e + f ′(e)) = Lv + (dv − Lv) = dv,

so it satisfies the demand conditions in G as well.

Conversely, suppose there is a circulation f in G, and define a circulation f ′ in G′ by

f ′(e) = f(e)− `e. Then f ′ satisfies the capacity conditions in G′, and

(f ′)
in
(v)− (f ′)

out
(v) =

∑

e into v

(f(e)− `e)−
∑

e out of v

(f(e)− `e) = dv − Lv,

so it satisfies the demand conditions in G′ as well.

214 CHAPTER 6. NETWORK FLOW

6.9 Applications of Maximum Flows and Minimum Cuts

Many problems that arise in applications can in fact be solved efficiently by a reduction to

maximum flow, but it is often difficult to discover when such a reduction is possible. In this

section, we give several paradigmatic examples of such problems; the goal is to indicate what

such reductions tend to look like, and to illustrate some of the most common uses of flows

and cuts in the design of efficient combinatorial algorithms. One point that will emerge is

the following: sometimes the solution one wants involves the computation of a maximum

flow, and sometimes it involves the computation of a minimum cut — both flows and cuts

are very useful algorithmic tools.

Survey Design

A major issue in the burgeoning field of data mining is the study of consumer preference

patterns. The following survey design problem is a simple version of a task faced by many

companies wanting to measure customer satisfaction. Consider a company that sells k prod-

ucts, and has a database containing the purchase histories of a large number of customers.

(Those of you with “Shopper’s Club” cards may be able to guess how this this data gets

collected.) The company wishes to conduct a survey, sending customized questionnaires to a

particular group of n of its customers, to try determining which products people like overall.

Here are the guidelines for designing the survey.

• Each customer will receive questions about certain of the products.

• A customer can only be asked about products that he or she has purchased.

• To make each questionnaire informative, but not too long so as to discourage partici-

pation, each customer i should be asked about a number of products between ci and

c′i.

• Finally, to collect sufficient data about each product, there must be between pj and p′j
distinct customers asked about each product j.

More formally, the input to the survey problem consists of a bipartite graph G whose nodes

are the customers and the products, and there is an edge between customer i and product j

if he or she has ever purchased product j. Further, for each customer i = 1, . . . , n, we have

limits ci ≤ c′i on the number of products he or she can be asked about; for each product

j = 1, . . . , k we have limits pj ≤ p′j on the number of distinct customers that have to be asked

it. The problem is to decide if there is a way to design a questionnaire for each customer so

as to satisfy all these conditions.

6.9. APPLICATIONS OF MAXIMUM FLOWS AND MINIMUM CUTS 215

We will solve this problem by reducing it to a circulation problem on a flow network G′

with demands and lower bounds. To obtain graph G′ from G, we orient the edges of G from

customers to products, add nodes s and t with edges (s, i) for each customer i = 1, . . . , n,

edges (j, t) for each product j = 1, . . . , k, and an edge (t, s). The circulation in this network

will correspond to the way in which questions are asked. The flow on the edge (s, i) is the

number of products surveyed on the questionnaire for customer i, so this edges will have a

capacity of c′i and a lower bound of ci. The flow on the edge (j, t) will correspond to the

number of customers who were asked about product j, so this edges will have a capacity of

p′j and a lower bound of pj. Each edges (i, j) going from a customer to a product he or she

bought has capacity 1, and 0 as lower bound. The flow carried by the edge (t, s) corresponds

to the overall number of questions asked. We can give this edge a capacity of
∑

i c
′
i and a

lower bound of
∑

i ci. All nodes have demand 0.

(6.44) The graph G′ with 0 demand, and the capacities and lower bounds given above,

has a feasible circulation if and only if there is a feasible way to design the survey.

Proof. The above construction immediately suggest a way to turn a survey design into the

corresponding flow. The edge (i, j) will carry 1 unit of flow if customer i is asked about

product j in the survey, and will carry no flow otherwise. The flow on the edges (s, i) is

the number of questions asked from customer i, the flow on the edge (j, t) is the number of

customers who were asked about product j, and finally, the flow on edge (t, s) is the overall

number of questions asked. This flow satisfies the 0 demand, i.e., there is flow conservation

at every node. If the survey satisfies the rules above, than the corresponding flow satisfies

the capacities and lower bounds.

Conversely, if the circulation problem is feasible, then by (6.43) there is a feasible circu-

lation that is integer-valued, and such an integral valued circulation naturally corresponds

to a feasible survey design. Customer i will be surveyed about product j if and only if the

edge (i, j) carries a unit of flow.

Airline Scheduling

The computational problems faced by the nation’s large airline carriers are almost too com-

plex to even imagine — they have to produce schedules for thousands of routes each day that

are efficient in terms of equipment usage, crew allocation, customer satisfaction, and a host

of other factors; all in the face of unpredictable issues like weather and breakdowns. It’s not

surprising that they’re one of the largest consumers of high-powered algorithmic techniques.

Covering these computational problems in any realistic level of detail would take us much

too far afield; instead, we’ll discuss a “toy” problem that captures in a very clean way some

of the resource allocation issues that arise in a context like this. And, as is common in this

course, the toy problem will be much more useful for our purposes than the “real” problem;

216 CHAPTER 6. NETWORK FLOW

s t

u v

u v

u v

u v

demand -2 demand +2

33

11

2 2

4 4

for the solution to the toy problem involves a very general technique that can be applied in

a wide range of situations.

So suppose you’re in charge of managing a fleet of aircraft, together with flight crews

(i.e. pilots and flight attendants) to staff the flights. You have a list of cities P and a table

that tells you the travel time t(p, p′) between cities p, p′ ∈ P . On a given day, you have a list

of k flights that need to be completed; the ith flight is specified by the data (oi, di, ti), where

oi ∈ P is the origin, di ∈ P is the destination, and ti is the departure time. (The arrival time

of the flight is then ti + t(oi, di).)

It is possible to use the same flight crew (i.e. pilots and flight attendants) for more than

one flight during the day. For example, if flight i arrives in San Jose at 1 pm, and flight j

departs from San Francisco at 4 pm, and there is a way to transport people from San Jose to

San Francisco in the intervening three hours, then a single flight crew could perform flight i,

be moved up to San Francisco, and be there in time to perform flight j as well. Generally,

for each pair of flights i and j, we will designate j as being reachable from i if the arrival

time of i is before the departure time of j, and it is possible to transport a single flight crew

from the destination of i to the origin of j in the intervening time.

Your goal is to use as few flight crews as possible to perform all the flights; to do this,

you want to re-use crews over multiple flights as efficiently as possible.

It turns out that this problem can be solved very naturally by flow techniques. First of

all, we will consider a “decision” version of the problem: can all flights be performed using

at most c flight crews, for a given value of c? By searching over the possible values of c from

1 to k, we will then be able to find the minimum necessary number of crews.

The solution is based on the following idea. Units of flow will correspond to flight crews.

We will have an edge for each flight, and have a lower bound of 1 on these edges to require

that at least one unit of flow crosses this edge. In other words, each flight must actually be

6.9. APPLICATIONS OF MAXIMUM FLOWS AND MINIMUM CUTS 217

completed by some crew. If (ui, vi) is the edge representing flight i, and (uj, vj) is the edge

representing flight j, and flight j is reachable from flight i, then we will have an edge from

vi to uj — in this way, a unit of flow can traverse (ui, vi) and then move directly to (uj, vj).

Let us give the construction more precisely, in terms of the following graph G = (V, E).

The node set of G is defined as follows.

• For each flight i, G will have the two nodes ui and vi.

• G will also have a distinct source node s and sink node t.

The edge set of G is defined as follows.

• For each i, there is an edge (ui, vi) with a lower bound of 1 and a capacity of 1. (Each

flight must be performed.)

• For each i and j so that flight j is reachable from flight i, there is an edge (vi, uj) with

a lower bound of 0 and a capacity of 1. (The same crew can perform flights i and j.)

• For each i, there is an edge (s, ui) with a lower bound of 0 and a capacity of 1. (Any

crew can begin the day with flight i.)

• For each j, there is an edge (vj, t) with a lower bound of 0 and a capacity of 1. (Any

crew can end the day with flight j.)

• There is an edge (s, t) with lower bound 0 and capacity c. (If we have extra flight

crews, we don’t need to use them for any of the flights.)

Finally, the node s will have a demand of −c, and the node t will have a demand of c. All

other nodes will have a demand of 0.

We now have the following fact.

(6.45) There is a way to perform all flights using at most c crews if and only if there is

a feasible circulation in the network G.

Proof. First, suppose there is a way to perform all flights using c′ ≤ c crews. The set of

flights performed by each individual crew defines a path P in the network G, and we send

one unit of flow on each such path P . To satisfy the full demands at s and t, we send c− c′

units of flow on the edge (s, t). The resulting circulation satisfies all demand, capacity, and

lower bound conditions.

Conversely, consider a feasible circulation in the network G. By (6.43) , we know that

there is a feasible circulation with integer flow values. Suppose that c′ units of flow are

sent on edges other than (s, t). Since all other edges have a capacity bound of 1, and the

circulation is integer-valued, each such edge that carries flow has exactly one unit of flow on

it.

218 CHAPTER 6. NETWORK FLOW

Consider an edge (s, ui) that carries one unit of flow. It follows by conservation that

(ui, vi) carries one unit of flow, and that there is a unique edge out of vi that carries one unit

of flow. If we continue in this way, we construct a path P from s to t, so that each edge on

this path carries one unit of flow. We can apply this construction to each edge of the form

(s, uj) carrying one unit of flow; in this way, we produce c′ paths from s to t, each consisting

of edges that carry one unit of flow.

Now, for each path P we create in this way, we can assign a single crew to perform all

the flights contained in this path. In this way, we perform all the flights using only c′ ≤ c

flight crews.

Flight crew scheduling consumes countless hours of CPU time in real life. We mentioned

at the beginning, however, that our formulation here is really a toy problem; it ignores

several obvious factors that would have to be taken into account in applications. First of

all, it ignores the fact that a given flight crew can only fly a certain number of hours in a

given interval of time — this is in accordance with union regulations, and the common-sense

fact that we don’t want exhausted pilots to be flying planes. Second, we are making up an

optimal schedule for a single day as though there were no yesterday or tomorrow; in fact we

also need the flight crews to be optimally positioned for the start of day N + 1 at the end

of day N . Third, while flight crews really do migrate between different cities as passengers

— many of you have presumably seen pilots sometimes sitting in coach class — this comes

at a cost; these are seats that cannot be sold at regular fares. And these issues don’t even

begin to cover the fact that we have the option of re-working our flight schedules to improve

the efficiency of our operation; that we are simultaneously trying to plan a fare structure to

optimize revenue; and so forth.

Ultimately, the message is probably this: flow techniques are useful for solving problems

of this type, and they are genuinely used in practice. Indeed, our solution above is a general

approach to the efficient re-use of a limited set of resources. At the same time, running an

airline efficiently in real life a very difficult problem.

Image Segmentation

As some of you know from other classes here, a central problem in image processing is the

segmentation of an image into various coherent regions. For example, you may have an image

representing a picture of three people standing in front of a complex background scene; a

natural but difficult goal is to identify each of the three people as coherent objects in the

scene.

One of the most basic problems to be considered along these lines is that of fore-

ground/background segmentation — we wish to label each pixel in an image as either be-

longing to the foreground of the scene or the background. It turns out that a very natural

model here leads to a problem that can be solved efficiently by a minimum cut computation.

6.9. APPLICATIONS OF MAXIMUM FLOWS AND MINIMUM CUTS 219

Let V be the set of pixels in the underlying image that we’re analyzing. We will declare

certain pairs of pixels to be neighbors, and use E to denote the set of all pairs of neighboring

pixels. In this way, we obtain an undirected graph G = (V, E). We will be deliberately vague

on what exactly we mean by a “pixel,” or what we mean by the “neighbor” relation — in fact

any graph G will yield an efficiently solvable problem, so we are free to define these notions

in any way that we want. Of course, it is natural to picture the pixels as constituting a grid

of dots, and the neighbors of a pixel to be those that are directly adjacent to it in this grid.

For each pixel i, we have a likelihood ai that it belongs to the foreground, and a likelihood

bi that it belongs to the background. For our purposes, we will assume that these likelihood

values are arbitrary non-negative numbers provided as part of the problem, and that they

specify how desirable it is to have pixel i in the background or foreground; beyond this, it is

not crucial precisely what physical properties of the image they are measuring, or how they

were determined.

So in isolation, we would want to label pixel i as belonging to the foreground if ai > bi,

and to the background otherwise. However, decisions that we make about the neighbors

of i should affect our decision about i. If many of i’s neighbors are labeled “background,”

for example, we should be more inclined to label i as “background” too; for this makes the

labeling “smoother” by minimizing the amount of foreground/background boundary. Thus

for each pair (i, j) of neighboring pixels, there is a separation penalty pij ≥ 0 for placing one

of i or j in the foreground and the other in the background.

We can now specify our segmentation problem precisely, in terms of the likelihood and

separation parameters — it is to find a partition of the set of pixels into sets A and B

(foreground and background respectively) so as to maximize

q(A, B) =
∑

i∈A

ai +
∑

j∈B

bj −
∑

(i,j)∈E

|A∩{i,j}=1|

pij.

Thus, we are rewarded for having high likelihood values, and penalized for having neighboring

pairs (i, j) with one pixel in A and the other in B.

We can find an optimal labeling — a partition (A, B) that maximizes q(A, B) — as follows.

We notice right away that there is clearly a resemblance to the minimum cut problem, with

three significant differences. First, we are seeking to maximize an objective function rather

than minimizing one. Second, it is not clear what should correspond to the source and the

sink. Third, we have an undirected graph G, whereas for the minimum cut problem we want

to work with a directed graph. Let’s deal with problems in order.

We deal with the first issue through the following observation. Let Q =
∑

i(ai + bi). The

sum
∑

i∈A ai +
∑

j∈B bj is the same as the sum Q−∑i∈A bi −
∑

j∈B aj, so we can write

q(A, B) = Q−
∑

i∈A

bi −
∑

j∈B

aj −
∑

(i,j)∈E

|A∩{i,j}=1|

pij.

220 CHAPTER 6. NETWORK FLOW

Thus we see that the maximization of q(A, B) is the same problem as the minimization of

the quantity

q′(A, B) =
∑

i∈A

bi +
∑

j∈B

aj +
∑

(i,j)∈E

|A∩{i,j}=1|

pij.

As for the source and the sink, we work by analogy with our constructions of the previous

section: we create a new “super-source” s to represent the foreground, and a new “super-

sink” t to represent the background. To take care of the undirected edges, we do something

very simple: we model each neighboring pair (i, j) with two directed edges, (i, j) and (j, i).

We will see that this works very well, since in any s-t cut, at most one of these two oppositely

directed edges can cross from the s-side to the t-side of the cut. (For if one does, then the

other must go from the t-side to the s-side.)

Specifically, we define the following flow network G′ = (V ′, E ′). The node set V ′ consists

of the set V of pixels, together with two additional nodes s and t. For each neighboring pair

of pixels i and j, we add directed edges (i, j) and (j, i), each with capacity pij. For each

pixel i, we add an edge (s, i) with capacity ai and an edge (i, t) with capacity bi.

Now, an s-t cut (A, B) corresponds to a partition of the pixels into sets A and B. The

capacity of such a cut can be written as

c(A, B) =
∑

i6∈B

bi +
∑

i6∈A

ai +
∑

i∈A,j∈B

pij

=
∑

i∈A

bi +
∑

i∈B

ai +
∑

(i,j)∈E

|A∩{i,j}=1|

pij

= q′(A, B).

So finding a cut of minimum capacity is the same as minimizing the quantity q ′(A, B); and

we have already argued that this allows us to solve the problem of maximizing q(A, B).

Thus, through solving this minimum cut problem, we have an optimal algorithm in our

model of foreground/background segmentation.

Project Selection

Say that some of your friends have formed a start-up company, and they have to decide on a

set of initial projects to take on. Some of these projects can generate revenue (e.g. creating

an interactive e-commerce interface for a potential client, or designing a new Web site for

the Cornell CS Department); others of these projects will cost money (e.g. upgrading their

computers, or getting site licenses for some useful encryption software). Of course, being

able to do certain projects may depend on having completed others — perhaps they can’t

start on the e-commerce opportunity until they’ve got the encryption software. The question

is: which projects should they pursue, and which should they allow to pass them by? It’s

an issue of balancing costs incurred with profitable opportunities that are made possible.

6.9. APPLICATIONS OF MAXIMUM FLOWS AND MINIMUM CUTS 221

Here’s a very general framework for modeling a set of decisions like this. There is an

underlying set P of projects, and each project i ∈ P has an associated revenue pi, which

can either be positive or negative. Certain projects are prerequisites for other projects, and

we model this by an underlying directed acyclic graph G = (P, E). The nodes of G are the

projects, and there is an edge (i, j) to indicate that project i can only be selected if project

j is selected as well. Note that a project i can have many prerequisites; the graph can have

many directed edges whose tails are all equal to i. A set of projects A ⊆ P is feasible if the

prerequisite of every project in A also belongs to A: for each i ∈ A, and each edge (i, j) ∈ E,

we also have j ∈ A. We will refer to requirements of this form as precedence constraints.

The profit of a set of project is defined to be

profit(A) =
∑

i∈A

pi.

The project selection problem is to select a feasible set of projects with maximum profit.

This problem has been studied in the mining literature since the early 1960’s; here it has

been the called the open-pit mining problem.1 Open-pit mining is a surface mining operation

in which blocks of earth are extracted from the surface to retrieve the ore contained in

them. Before the mining operation begins, the entire area is divided into a set P of blocks,

and the net value pi of each block is estimated — this is the value of the ore minus the

processing costs, for this block considered in isolation. Some of these net values will be

positive, others negative. The full set of blocks has precedence constraints that essentially

prevent blocks from being extracted before others on top of them are extracted. The open-pit

mining problem is to determine the most profitable set of blocks to extract, subject to the

precedence constraints. This problem clearly falls into the framework of project selection —

each block corresponds to a separate project.

Here we will show that the project selection problem can be solved by reducing it to a

minimum cut computation on an extended graph G′, defined analogously to the graph we

used earlier for image segmentation. The idea is to construct G′ from G in such a way that

the source side of a minimum cut in G′ will correspond to an optimal set of projects to select.

To form the graph G′ we add a new source s and a new sink t to the graph G. For

each node i ∈ P with pi > 0, we add an edge (s, i) with capacity pi. For each node i ∈ P

with pi < 0, we add an edge (i, t) with capacity −pi. We will set the capacities on the

edges in G later. However, we can already see that the capacity of the cut ({s}, P ∪ {t}) is

C =
∑

i∈P :pi>0 pi, so the maximum flow value in this network is at most C.

We want to ensure that if (A′, B′) is a minimum cut in this graph, then A = A′−{s}
obeys the precedence constraints; i.e., if the node i ∈ A has an out-going edge (i, j) ∈ E,

then we must have j ∈ A. The conceptually cleanest way to ensure this is to give each of the

1When we discussed survey design, we made reference to the whimsically-named field of “data mining.”
Here, on the other hand, we’re talking about real mining, where you dig things out of the ground.

222 CHAPTER 6. NETWORK FLOW

edges in G capacity of∞. We haven’t previously formalized what an infinite capacity would

mean, but there is no problem in doing this: it is simply an edge for which the capacity

condition imposes no upper bound at all. The algorithms of the previous section, as well as

the Max-Flow Min-Cut theorem, carry over to handle infinite capacities. However, we can

also avoid bringing in the notion of infinite capacities by simply assigning each of these edges

a capacity that is “effectively infinite”. In our context, giving each of these edges a capacity

of C + 1 is would accomplish this: the maximum possible flow value in G′ is at most C, and

so no minimum cut can contain an edge with capacity above C. In the description below, it

will not matter which of these options we choose.

First consider a set of projects A that satisfy the precedence constraints. Let A′ = A∪{s}
and B′ = (P−A)∪{t}, and consider the s-t cut (A′, B′). If the set A satisfies the precedence

constraints then no edge (i, j) ∈ E crosses this cut. The capacity of the cut can be expressed

as follows.

(6.46) The capacity of the cut (A′, B′), as defined from a project set A satisfying the

precedence constraints, is c(A′, B′) = C −∑i∈A pi.

Proof. Edges of G′ can be divided into three categories: those corresponding to the edge

set E of G, those leaving the source s, and those entering the sink t. Because A satisfies

the precedence constraints, the edges in E do not cross the cut (A′, B′), and hence do not

contribute to its capacity. The edges entering the sink t contribute

∑

i∈A and pi<0

−pi

to the capacity of the cut, and the edges leaving the source s contribute

∑

i6∈A and pi>0

pi.

Using the definition of C, we can re-write this latter quantity as C −
∑

i∈A and pi>0

pi. The

capacity of the cut (A′, B′) is the sum of these two terms, which is

−
∑

i∈A and pi>0

pi + C −
∑

i∈A and pi<0

pi = C −
∑

i∈A

pi,

as claimed.

Next, recall that edges of G have capacity more than C =
∑

i∈P :pi>0 pi, and so these edges

cannot cross a cut of capacity at most C. This implies that such cuts define feasible sets of

projects.

(6.47) If (A′, B′) is a cut with capacity at most C, then the set A = A′−{s} satisfies the

precedence constraints.

6.9. APPLICATIONS OF MAXIMUM FLOWS AND MINIMUM CUTS 223

Now we can prove the main goal of our construction, that the minimum cut in G′ de-

termines the optimum set of projects. Putting the previous two claims together we see that

the cuts (A′, B′) of capacity at most C are in one-to-one correspondence with feasible sets

of project A = A′−{s}. The capacity of such a cut (A′, B′) is

c(A′, B′) = C − profit(A).

The capacity value C is a constant, independent of the cut (A′, B′), so the cut with minimum

capacity corresponds to the set of projects A with maximum profit. We have therefore proved

the following.

(6.48) If (A′, B′) is a minimum cut in G′ then the set A = A′−{s} is an optimum

solution to the project selection problem.

Baseball Elimination
Over on the radio side the producer’s saying, “See that thing in the paper

last week about Einstein? . . . Some reporter asked him to figure out the

mathematics of the pennant race. You know, one team wins so many of

their remaining games, the other teams win this number or that number.

What are the myriad possibilities? Who’s got the edge?”

“The hell does he know?”

“Apparently not much. He picked the Dodgers to eliminate the Giants

last Friday.”

— Don DeLillo, Underworld.

Suppose you’re a reporter for the Algorithmic Sporting News, and the following situation

arises late one September. There are four baseball teams trying to finish in first place in

the American League Eastern Division; let’s call them New York, Baltimore, Toronto, and

Boston. Currently, each team has the following number of wins:

New York: 92, Baltimore: 91, Toronto: 91, Boston: 90.

There are five games left in the season: these consist of all possible pairings of the above

four teams, except for New York and Boston.

The question is: can Boston finish with at least as many wins as every other team in the

Division? (That is: finish in first place, possibly in a tie.)

If you think about it, you realize that the answer is “no.” One argument is the follow-

ing. Clearly Boston must win both its remaining games and New York must lose both its

remaining games. But this means that Baltimore and Toronto will both beat New York; so

then the winner of the Baltimore-Toronto game will end up with the most wins.

Here’s a cleaner argument. Boston can finish with at most 92 wins. Cumulatively, the

other three teams have 274 wins currently, and their three games against each other will

224 CHAPTER 6. NETWORK FLOW

produce exactly three more wins, for a final total of 277. But 277 wins over three teams

means that one of them must have ended up with more than 92 wins.

So now you might start wondering: (i) Is there an efficient algorithm to determine whether

a team has been eliminated from first place? And (ii) whenever a team has been eliminated

from first place, is there an “averaging” argument like this that proves it?

In more concrete notation, suppose we have a set S of teams, and for each x ∈ S, its

current number of wins wx. Also, for two teams x, y ∈ S, they still have to play gxy games

against one another. Finally, we are given a specific team z.

We can use maximum flow techniques to achieve the following two things. First, we give

an efficient algorithm to decide whether z has been eliminated from first place — or, to put

it in positive terms, whether it is possible to choose outcomes for all the remaining games

in such a way that the team z ends with at least as many wins as every other team in S.

Second, we prove the following clean characterization theorem for baseball elimination —

essentially, that there is always a short “proof” when a team has been eliminated.

(6.49) Suppose that team z has indeed been eliminated. Then there exists a “proof” of

this fact of the following form:

• z can finish with at most m wins.

• There is a set of teams T ⊆ S so that

∑

x∈T

wx +
∑

x,y∈T

gxy > m|T |.

(And hence one of the teams in T must end with strictly more than m wins.)

We begin by constructing a flow network that provides an efficient algorithm for de-

termining whether z has been eliminated. Then, by examining the minimum cut in this

network, we will prove (6.49) .

Clearly, if there’s any way for z to end up in first place, we should have z win all its

remaining games — suppose that this leaves it with m wins. We now want to carefully

allocate the wins from all remaining games so that no other team ends with more than m

wins. Allocating wins in this way can be solved by a maximum flow computation, via the

following basic idea. We have a source s from which all “wins” emanate. The ith win can

pass through one of the two teams involved in the ith game. We then impose a capacity

constraint saying that at most m− wx wins can pass through team x.

More concretely: Let S ′ = S − {z}. Let g∗ =
∑

x,y∈S′ gxy — the total number of games

left between all pairs of teams in S ′. Let G denote the following graph. There are nodes s

and t, a node vx for each team x ∈ S ′ and a node uxy for each pair of teams x, y ∈ S ′ with

a non-zero number of games left to play against each other. We have the following edges.

6.9. APPLICATIONS OF MAXIMUM FLOWS AND MINIMUM CUTS 225

• Edges (s, uxy) (wins emanate from s);

• Edges (uxy, vx) and (uxy, vy) (only x or y can win a game that they play against each

other); and

• Edges (vx, t) (wins are absorbed at t).

Let’s consider what capacities we want to place on these edges. We want gxy wins to flow

from s to uxy at saturation, so we give (s, uxy) a capacity of gxy. We want to ensure that

team x cannot win more than m−wx games, so we give the edge (vx, t) a capacity of m−wx.

Finally, an edge of the form (uxy, vy) should have at least gxy units of capacity, so that it

has the ability to transport all the wins from uxy on to vx; in fact, our analysis will be the

cleanest if we give it infinite capacity. (We note that the construction still works even if

this edge is given only gxy units of capacity, but the proof of (6.49) becomes a little more

complicated.)

It is now easy to check that z is not yet eliminated from first place if and only if there is

an s-t flow of value g∗; this gives a polynomial-time algorithm to test for this property.

Proof of (6.49) . Suppose that z has been eliminated from first place. Then the maximum

s-t flow in G has value g′ < g∗; so there is an s-t cut (A, B) of capacity g′, and (A, B) is a

minimum cut. Let T be the set of teams x for which vx ∈ A.

Now consider the node uxy. Suppose one of x or y is not in T , but uxy ∈ A. Then the edge

(uxy, vx) would cross from A into B, and hence the cut (A, B) would have infinite capacity

— this contradicts the assumption that (A, B) is minimum cut of capacity less than g∗. So

if one of x or y is not in T , then uxy ∈ B. On the other hand, suppose both x and y belong

to T , but uxy ∈ B. Consider the cut (A′, B′) that we would obtain by adding uxy to the set

A and deleting it from the set B. The capacity of (A′, B′) is simply the capacity of (A, B),

minus the capacity gxy of the edge (s, uxy) — for this edge (s, uxy) used to cross from A to

B, and now it does not cross from A′ to B′. But since gxy > 0, this means that (A′, B′) has

smaller capacity than (A, B), again contradicting our assumption that (A, B) is a minimum

cut. So if both x and y belong to T , then uxy ∈ A.

Thus we have established the following conclusion, based on the fact that (A, B) is a

minimum cut: uxy ∈ A if and only if x, y ∈ T .

Let Γ be the collection of all unordered pairs of teams in T ; and let Γ be the collection

of all unordered pairs from S ′ in which (at least) one member does not belong to T . Note

that an unordered pair of teams is in exactly one of Γ or Γ; and our fact in the previous

paragraph says that uxy ∈ A if and only if (x, y) belongs to Γ and not Γ. So

c(A, B) =
∑

x∈T

(m− wx) +
∑

{x,y}∈Γ

gxy

= m|T | −
∑

x∈T

wx + (g∗ −
∑

{x,y}∈Γ

gxy).

226 CHAPTER 6. NETWORK FLOW

Since we know that c(A, B) = g′ < g∗, this last inequality implies

m|T | −
∑

x∈T

wx −
∑

{x,y}∈Γ

gxy < 0,

and hence
∑

x∈T

wx +
∑

x,y∈T

gxy > m|T |.

6.10 Minimum Cost Perfect Matchings

Let’s go back to the first problem we discussed in this chapter, bipartite matching. Perfect

matchings in a bipartite graph formed a way to model the problem of pairing one kind of

object with one another — jobs with machines, for example. But in many settings, there

are a large number of possible perfect matchings on the same set of objects, and we’d like a

way to express the idea that some perfect matchings may be “better” than others.

A natural way to do this is to introduce costs. It may be that we incur a certain cost to

perform a given job on a given machine, and we’d like to match jobs with machines in a way

that minimizes the total cost. Or there may be n fire trucks that must be sent to n distinct

houses; each house is at a given distance from each fire station, and we’d like a matching

that minimizes the average distance each truck drives to its associated house. In short, it

is very useful to have an algorithm that finds a perfect matching in a bipartite of minimum

total cost.

Formally, we consider a bipartite graph G = (V, E) whose node set, as usual, is partitioned

as V = X∪Y so that every edge e ∈ E has one end in X and the other end in Y . Furthermore,

each edge e has a non-negative cost ce. For a matching M , we say that the cost of the

matching is the total cost of all edges in M , i.e., cost(M) =
∑

e∈M ce. The Minimum-Cost

Perfect Matching problem assumes that |X| = |Y | = n, and the goal is to find a perfect

matching of minimum cost.

We now describe an efficient algorithm to solve this problem, based on the idea of aug-

menting paths but adapted to take the costs into account. In developing the solution, it is

useful to consider a slightly more general version: we will find a minimum cost matching

using i edges, for each value of i from 1 to n. Clearly this will include the solution to the

minimum cost perfect matching problem, which is the case i = n. The high-level structure

of the algorithm is quite simple. If we have a minimum-cost matching of size i, then we seek

an augmenting path to produce a matching of size i+1; and rather than looking for any aug-

menting path (as was sufficient in the case without costs), we use the cheapest augmenting

path so that the larger matching will also have minimum cost.

Recall the construction of the residual graph used for finding augmenting paths. Let M

be a matching. We add two new nodes s and t to the graph. We add edges (s, x) for all

6.10. MINIMUM COST PERFECT MATCHINGS 227

nodes x ∈ X that are unmatched, edges (y, t) for all nodes y ∈ Y that are unmatched. An

edge e = (x, y) ∈ E is oriented from x to y if e is not in the matching M and from y to x

if e ∈ M . We will use GM to denote this residual graph. Note that all edges going from Y

to X are in the matching M , while the edges going from X to Y are not. Any directed s-t

path P in the graph GM corresponds to a matching one larger than M by swapping edges

along P , i.e., the edges in P from X to Y are added to M and all edges in P that go from

Y to X are deleted from M . As before, we will call a path P in GM an augmenting path,

and we say that we augment the matching M using the path P .

Now, we would like to have the resulting matching have as small costs as possible. To

achieve this, we will search for a cheap augmenting path with respect to the following natural

costs. The edges leaving s and entering t will have cost 0; an edge e oriented from X to Y

will cost ce (as including this edge in the path means that we add the edge to M); and an

edge e oriented from Y to X will cost −ce (as including this edge in the path means that we

delete the edge from M). We will use cost(P) to denote the cost of a path P in GM . The

following statement summarizes this construction.

(6.50) Let M be a matching and P be a path in GM from s to t. Let M ′ be the

matching obtained from M by augmenting along P . Then |M ′| = |M | + 1 and cost(M ′) =

cost(M) + cost(P).

Given this statement, it is natural to suggest an algorithm to find a minimum cost perfect

matching: we iteratively find minimum cost paths in GM , and use the paths to augment the

matchings. But how can we be sure that the perfect matching we find is of minimum cost?

Or even worse, is this algorithm even meaningful? We can only find minimum cost paths if

we know that the graph GM has no negative cycles.

In fact, understanding the role of negative cycles in GM is the key to analyzing the

algorithm. First, consider the case in which M is a perfect matching. The nodes s and t

have no incident edges in GM , as our matching is perfect, but the rest of the graph and costs

are still meaningful.

(6.51) Let M be a perfect matching. If there is a negative cost directed cycle C in GM

then M is not minimum cost.

Proof. To see this, we use the cycle C for augmentation, just the same way we used directed

paths to obtain larger matchings. Augmenting M along C involves swapping edges along C in

and out of M . The resulting new perfect matching M ′ has cost cost(M ′) = cost(M)+cost(C);

but cost(C) < 0, and and hence M is not of minimum cost.

More importantly, the converse of this statement is true as well; so in fact a perfect

matching M has minimum cost precisely when there is no negative cycle in GM .

228 CHAPTER 6. NETWORK FLOW

(6.52) Let M be a perfect matching. If there are no negative cost directed cycles C in

GM , then M is a minimum cost perfect matching.

Proof. Suppose the statement is not true, and let M ′ be a perfect matching of smaller cost.

Consider the set of edges that are in one of M and M ′ but not in both. Observe that these

set of edges correspond to a set of node-disjoint directed cycles in GM . The cost of the set

of directed cycles is exactly cost(M ′)− cost(M). Assuming M ′ has smaller cost than M , it

must be that at least one of these cycles has negative cost.

Our plan is thus to iterate through matchings of larger and larger size, maintaining

the property that the graph GM has no negative cycles in any iteration. In this way, our

computation of a minimum-cost path will always be well-defined; and when we terminate

with a perfect matching, we can use (6.52) to conclude that it has minimum cost.

As we run the algorithm, we will in fact maintain a numerical price p(v) associated with

each node v; these will turn out to serve as a compact proof that GM has no negative cycles.

Specifically, we say that a set of numbers {p(v) : v ∈ V } forms a set of compatible prices

with respect to a matching M if

(i) for all unmatched nodes x ∈ X we have p(x) = 0;

(ii) for all edges e = (x, y) we have p(x) + ce ≥ p(y); and

(iii) for all edges e = (x, y) ∈ M we have p(x) + ce = p(y).

Why are such prices useful? We claim first of all that if M is any matching for which

there exists a set of compatible prices, then GM has no negative cycles. To see this, let us

define the reduced cost of an edge e to be cp
e = p(v) + ce − p(w). Note that for any cycle C,

we have

cost(C) =
∑

e∈C

ce =
∑

e∈C

cp
e,

since all the terms on the right-hand-side corresponding to prices cancel out. But by the def-

inition of compatible prices, we know that each term on the right-hand-side is non-negative,

and so clearly cost(C) is non-negative.

There is a second, algorithmic reason why it is useful to have explicit prices on the nodes.

When you have a graph with negative-cost edges but no negative cycles, you can compute

shortest paths using the Bellman-Ford algorithm in O(mn) time. But if the graph in fact has

no negative-cost edges, then you can use Dijkstra’s algorithm instead, which only requires

time O(m log n) — almost a full factor of n faster.

In our case, having the prices around allows us to compute shortest paths with respect

to the non-negative reduced costs cp
e, arriving at an equivalent answer. Indeed, suppose we

use Dijkstra’s algorithm to find the minimum cost dp,M(v) of a directed path from s to every

node v ∈ X ∪Y subject to the costs cp
e. Given the minimum costs dp,M(y) for an unmatched

nodes y ∈ Y , the (non-reduced) cost of the path from s to t through y is dp,M(y)+ p(y), and

6.10. MINIMUM COST PERFECT MATCHINGS 229

so we find the minimum cost in O(n) additional time. In summary, we have the following

fact.

(6.53) Let M be a matching, and p be compatible prices. We can use one run of Dijkstra’s

algorithm and O(n) extra time to find the minimum cost path from s to t.

This handles one iteration of the algorithm, provided we have a set of compatible prices.

In order to be ready for the next iteration, we need not only the minimum-cost path, but

also a way to produce a set of compatible prices with respect to the new matching. Thus

can be done using the fact that Dijkstra’s algorithm computes the distances to all nodes.

(6.54) Let M be a matching, p be compatible prices, and let M ′ be matching obtained

by augmenting along the minimum cost path from s to t. Then p′(v) = dp,M(v) + p(v) is a

compatible set of prices for M ′.

Proof. To prove compatibility, consider first an edge e = (x, y) ∈M . The only edge entering

x is the directed edge (y, x) and hence dp,M(x) = dp,M(y)−cp
e, where cp

e = p(x)+ce−p(x), and

hence we get the desired equation on such edges. Next consider edges in M ′−M . These edges

are along the minimum cost path from s to t, and hence they satisfy dp,M(y) = dp,M(y) + cp
e

as desired. Finally, we get the required inequality for all other edges by considering the fact

that all edges e = (x, y) 6∈M must satisfy dp,M(y) ≤ dp,M(y) + cp
e.

Finally, we have to consider how to initialize the algorithm, so as to get it underway. We

initialize M to be the empty set, define p(x) = 0 for all x ∈ X, and define p(y), for y ∈ Y ,

to be the minimum cost of an edge entering y. Note that these prices are compatible with

respect to M = φ.

We summarize the algorithm below.

Start with M equal to the empty set

Define p(x) = 0 for x ∈ X, and p(y) = min
e into y

ce for y ∈ Y .

While M is not a perfect matching

Find a minimum-cost s-t path P in GM using (6.53)

with respect to the reduced costs cp
e.

Augment along P to produce a new matching M ′.

Produce a set of compatible prices with respect to M ′ via (6.54)

.

EndWhile

The final set of compatible prices yields a proof that GM has no negative cycles; and by

(6.52) , this implies that M has minimum cost.

To conclude our discussion of the minimum-cost perfect matching problem, we develop

a natural economic interpretation of the prices. Consider the following scenario. Assume

230 CHAPTER 6. NETWORK FLOW

X is a set of n people looking to buy a house, and Y is a set of n houses that they are all

considering. Let v(x, y) denote the value of house y to buyer y. Since each buyer wants

one of the houses, one could argue that the best arrangement would be to find a perfect

matching M that maximizes
∑

(x,y)∈M v(x, y). We can find such a perfect matching by using

our minimum cost perfect matching algorithm with costs ce = −v(x, y) if e = (x, y).

The question we will ask now is this: Can we convince these buyers to buy the house they

are allocated? On her own, each buyer x would want to buy the house y that has maximum

value v(x, y) to her. How can we convince her to buy instead the house that our matching M

allocated? We will use prices to change the incentives of incentives of the buyers. Suppose

we set a price P (y) for each house y, i.e., the buyer buying the house y must pay P (y).

With these prices in mind, a buyer will be interested in buying the house with maximum

net value, i.e., will want to chose the house y that maximizes v(x, y) − P (y). We say that

a perfect matching M and house prices P are in equilibrium, if for all edges (x, y) ∈M and

all other houses y′ we have that

v(x, y)− P (y) ≥ v(x, y′)− P (y′).

But can we find a perfect matching and a set of prices so as to achieve this state of affairs,

with every buyer ending up happy? In fact, the minimum-cost perfect matching and an

associated set of compatible prices provide exactly what we’re looking for.

(6.55) Let M be a perfect matching of minimum cost, where cost(x, y) = −v(x, y), and

let p be compatible set of prices. Then the matching M and the set of prices {P (y) = −p(y) :

y ∈ Y } are in equilibrium.

Proof. Consider an edge e = (x, y) ∈ M , and e′ = (x, y′). We have that M and p are

compatible, hence p(x)+ ce = p(y) and p(x)+ ce′ ≥ p(y′). Subtracting these two inequalities

to cancel p(x), and substituting the values of P and c we get the desired inequality.

6.11 Exercises

1. Suppose you are given a directed graph G = (V, E), with a positive integer capacity ce

on each edge e, a designated source s ∈ V , and a designated sink t ∈ V . You are also

given a maximum s-t flow in G, defined by a flow value fe on each edge e. The flow

{fe} is acyclic: there is no cycle in G on which all edges carry positive flow.

Now, suppose we pick a specific edge e∗ ∈ E and reduce its capacity by 1 unit. Show

how to find a maximum flow in the resulting capacitated graph in time O(m), where

m is the number of edges in G.

6.11. EXERCISES 231

2. Consider the following problem. You are given a flow network with unit-capacity edges:

it consists of a directed graph G = (V, E), a source s ∈ V , and a sink t ∈ V ; and ce = 1

for every e ∈ E. You are also given a parameter k.

The goal is delete k edges so as to reduce the maxmimum s-t flow in G by as much as

possible. In other words, you should find a set of edges F ⊆ E so that |F | = k and the

maximum s-t flow in G′ = (V, E − F) is as small as possible subject to this.

Give a polynomial-time algorithm to solve this problem.

3. Suppose you’re looking at a flow network G with source s and sink t, and you want to

be able to express something like the following intuitive notion: some nodes are clearly

on the “source side” of the main bottlenecks; some nodes are clearly on the “sink side”

of the main bottlenecks; and some nodes are in the middle. However, G can have many

minimum cuts, so we have to be careful in how we try making this idea precise.

Here’s one way to divide the nodes of G into three categories of this sort.

• We say a node v is upstream if for all minimum s-t cuts (A, B), we have v ∈ A —

that is, v lies on the source side of every minimum cut.

• We say a node v is downstream if for all minimum s-t cuts (A, B), we have v ∈ B

— that is, v lies on the sink side of every minimum cut.

• We say a node v is central if it is neither upstream nor downstream; there is at

least one minimum s-t cut (A, B) for which v ∈ A, and at least one minimum s-t

cut (A′, B′) for which v ∈ B′.

Give an algorithm that takes a flow network G, and classifies each of its nodes as

being upstream, downstream, or central. The running time of your algorithm should

be within in a constant factor of the time required to compute a single maximum flow.

4. Let G = (V, E) be a directed graph, with source s ∈ V , sink t ∈ V , and non-negative

edge capacities {ce}. Give a polynomial time algorithm to decide whether G has a

unique minimum s-t cut. (I.e. an s-t of capacity strictly less than that of all other s-t

cuts.)

5. In a standard minimum s-t cut problem, we assume that all capacities are non-negative;

allowing an arbitrary set of positive and negative capacities results in an NP-complete

problem. (You don’t have to prove this.) However, as we’ll see here, it is possible

to relax the non-negativity requirement a little, and still have a problem that can be

solved in polynomial time.

Let G = (V, E) be a directed graph, with source s ∈ V , sink t ∈ V , and edge capacities

{ce}. Suppose that for every edge e that has neither s nor t as an endpoint, we have

232 CHAPTER 6. NETWORK FLOW

ce ≥ 0. Thus, ce can be negative for edges e that have at least one end equal to either

s or t. Give a polynomial-time algorithm to find an s-t cut of minimum value in such

a graph. (Despite the new non-negativity requirements, we still define the value of an

s-t cut (A, B) to be the sum of the capacities of all edges e for which the tail of e is in

A and the head of e is in B.)

6. Let M be an n× n matrix with each entry equal to either 0 or 1. Let mij denote the

entry in row i and column j. A diagonal entry is one of the form mii for some i.

Swapping rows i and j of the matrix M denotes the following action: we swap the

values mik and mjk for k = 1, 2, . . . , n. Swapping two columns is defined analogously.

We say that M is re-arrangeable if it is possible to swap some of the pairs of rows and

some of the pairs of columns (in any sequence) so that after all the swapping, all the

diagonal entries of M are equal to 1.

(a) Give an example of a matrix M which is not re-arrangeable, but for which at least

one entry in each row and each column is equal to 1.

(b) Give a polynomial-time algorithm that determines whether a matrix M with 0-1

entries, is re-arrangeable.

7. You’re helping to organize a class on campus that has decided to give all its students

wireless laptops for the semester. Thus, there is a collection of n wireless laptops; there

is also have a collection of n wireless access points, to which a laptop can connect when

it is in range.

The laptops are currently scattered across campus; laptop ` is within range of a set S`

of access points. We will assume that each laptop is within range of at least one access

point (so the sets S` are non-empty); we will also assume that every access point p has

at least one laptop within range of it.

To make sure that all the wireless connectivity software is working correctly, you need

to try having laptops make contact with access points, in such a way that each laptop

and each access point is involved in at least one connection. Thus, we will say that a

test set T is a collection of ordered pairs of the form (`, p), for a laptop ` and access

point p, with the properties that

(i) If (`, p) ∈ T , then ` is within range of p. (I.e. p ∈ S`).

(ii) Each laptop appears in at least one ordered pair in T .

(iii) Each access point appears in at least one ordered pair in T .

This way, by trying out all the connections specified by the pairs in T , we can be sure

that each laptop and each access point have correctly functioning software.

6.11. EXERCISES 233

The problem is: Given the sets S` for each laptop (i.e. which laptops are within range

of which access points), and a number k, decide whether there is a test set of size at

most k.

Example: Suppose that n = 3; laptop 1 is within range of access points 1 and 2;

laptop 2 is within range of access point 2; and laptop 3 is within range of access points

2 and 3. Then the set of pairs

(laptop 1, access point 1), (laptop 2, access point 2),

(laptop 3, access point 3)

would form a test set of size three.

(a) Give an example of an instance of this problem for which there is no test set of

size n. (Recall that we assume each laptop is within range of at least one access point,

and each access point p has at least one laptop within range of it.)

(b) Give a polynomial-time algorithm that takes the input to an instance of this

problem (including the parameter k), and decides whether there is a test set of size at

most k.

8. Back in the euphoric early days of the Web, people liked to claim that much of the

enormous potential in a company like Yahoo! was in the “eyeballs” — the simple

fact that it gets millions of people looking at its pages every day. And further, by

convincing people to register personal data with the site, it can show each user an

extremely targeted advertisement whenever he or she visits the site, in a way that

TV networks or magazines couldn’t hope to match. So if the user has told Yahoo!

that they’re a 20-year old computer science major from Cornell University, the site

can throw up a banner ad for apartments in Ithaca, NY; on the other hand, if they’re

a 50-year-old investment banker from Greenwich, Connecticut, the site can display a

banner ad pitching Lincoln Town Cars instead.

But deciding on which ads to show to which people involves some serious computation

behind the scenes. Suppose that the managers of a popular Web site have identified

k distinct demographic groups G1, G2, . . . , Gk. (These groups can overlap; for example

G1 can be equal to all residents of New York State, and G2 can be equal to all people

with a degree in computer science.) The site has contracts with m different advertisers,

to show a certain number of copies of their ads to users of the site. Here’s what the

contract with the ith advertiser looks like:

234 CHAPTER 6. NETWORK FLOW

• For a subset Xi ⊆ {G1, . . . , Gk} of the demographic groups, advertiser i wants its

ads shown only to users who belong to at least one of the demographic groups in

the set Xi.

• For a number ri, advertiser i wants its ads shown to at least ri users each minute.

Now, consider the problem of designing a good advertising policy — a way to show

a single ad to each user of the site. Suppose at a given minute, there are n users

visiting the site. Because we have registration information on each of these users, we

know that user j (for j = 1, 2, . . . , n) belongs to a subset Uj ⊆ {G1, . . . , Gk} of the

demographic groups. The problem is: is there a way to show a single ad to each user

so that the site’s contracts with each of the m advertisers is satisfied for this minute?

(That is, for each i = 1, 2, . . . , m, at least ri of the n users, each belonging to at least

one demographic group in Xi, are shown an ad provided by advertiser i.)

Give an efficient algorithm to decide if this is possible, and if so, to actually choose an

ad to show each user.

9. Some of your friends have recently graduated and started a small company called

WebExodus, which they are currently running out of their parents’ garages in Santa

Clara. They’re in the process of porting all their software from an old system to a new,

revved-up system; and they’re facing the following problem.

They have a collection of n software applications, {1, 2, . . . , n}, running on their old

system; and they’d like to port some of these to the new system. If they move applica-

tion i to the new system, they expect a net (monetary) benefit of bi ≥ 0. The different

software applications interact with one another; if applications i and j have extensive

interaction, then the company will incur an expense if they move one of i or j to the

new system but not both — let’s denote this expense by xij ≥ 0.

So if the situation were really this simple, your friends would just port all n applications,

achieving a total benefit of
∑

i bi. Unfortunately, there’s a problem . . .

Due to small but fundamental incompatibilities between the two systems, there’s no

way to port application 1 to the new system; it will have to remain on the old system.

Nevertheless, it might still pay off to port some of the other applications, accruing the

associated benefit and incurring the expense of the interaction between applications

on different systems.

So this is the question they pose to you: which of the remaining applications, if any,

should be moved? Give a polynomial-time algorithm to find a set S ⊆ {2, 3, . . . , n} for

which the sum of the benefits minus the expenses of moving the applications in S to

the new system is maximized.

6.11. EXERCISES 235

10. Consider a variation on the previous problem. In the new scenario, any application can

potentially be moved, but now some of the benefits bi for moving to the new system

are in fact negative: if bi < 0, then it is preferable (by an amount quantifed in bi)

to keep i on the old system. Again, give a polynomial-time algorithm to find a set

S ⊆ {1, 2, . . . , n} for which the sum of the benefits minus the expenses of moving the

applications in S to the new system is maximized.

11. Consider the following definition. We are given a set of n countries that are engaged in

trade with one another. For each country i, we have the value si of its budget surplus;

this number may be positive or negative, with a negative number indicating a deficit.

For each pair of countries i, j, we have the total value eij of all exports from i to j; this

number is always non-negative. We say that a subset S of the countries is free-standing

if the sum of the budget surpluses of the countries in S, minus the total value of all

exports from countries in S to countries not in S, is non-negative.

Give a polynomial-time algorithm that takes this data for a set of n countries, and

decides whether it contains a non-empty free-standing subset that is not equal to the

full set.

12. (∗) In sociology, one often studies a graph G in which nodes represent people, and

edges represent those who are friends with each other. Let’s assume for purposes of

this question that friendship is symmetric, so we can consider an undirected graph.

Now, suppose we want to study this graph G, looking for a “close-knit” group of people.

One way to formalize this notion would be as follows. For a subset S of nodes let e(S)

denote the number of edges in S, i.e., the number of edges that have both ends in S.

We define the cohesiveness of S as e(S)/|S|. A natural thing to search for would be

the set S of people achieving the maximum cohesiveness.

(a.) Give a polynomial time algorithm that takes a rational number α and determines

whether there exists a set S with cohesiveness at least α.

(b.) Give a polynomial time algorithm to find a set S of nodes with maximum cohe-

siveness

13. Suppose we are given a directed network G = (V, E) with a root node r, and a set

of terminals T ⊆ V . We’d like to disconnect many terminals from r, while cutting

relatively few edges.

We make this trade-off precise as follows. For a set of edges F ⊆ E, let q(F) denote

the number of nodes v ∈ T such that there is no r-v path in the subgraph (V, E − F).

Give a polynomial-time algorithm to find a set F of edges that maximizes the quantity

q(F)− |F |. (Note that setting F equal to the empty set is an option.)

236 CHAPTER 6. NETWORK FLOW

14. Some of your friends with jobs out West decide they really need some extra time each

day to sit in front of their laptops, and the morning commute from Woodside to Palo

Alto seems like the only option. So they decide to carpool to work.

Unfortunately, they all hate to drive, so they want to make sure that any carpool

arrangement they agree upon is fair, and doesn’t overload any individual with too

much driving. Some sort of simple round-robin scheme is out, because none of them

goes to work every day, and so the subset of them in the car varies from day to day.

Here’s one way to define fairness. Let the people be labeled S = {p1, . . . , pk}. We say

that the total driving obligation of pj over a set of days is the expected number of times

that pj would have driven, had a driver been chosen uniformly at random from among

the people going to work each day. More concretely, suppose the carpool plan lasts for

d days, and on the ith day a subset Si ⊆ S of the people go to work. Then the above

definition of the total driving obligation ∆j for pj can be written as ∆j =
∑

i:pj∈Si

1
|Si|

.

Ideally, we’d like to require that pj drives at most ∆j times; unfortunately, ∆j may

not be an integer.

So let’s say that a driving schedule is a choice of a driver for each day — i.e. a sequence

pi1 , pi2, . . . , pid with pit ∈ St — and that a fair driving schedule is one in which each pj

is chosen as the driver on at most d∆je days.

(a) Prove that for any sequence of sets S1, . . . , Sd, there exists a fair driving schedule.

(b) Give an algorithm to compute a fair driving schedule with running time polynomial

in k and d.

(c)(∗) One could expect k to be a much smaller parameter than d (e.g. perhaps k = 5

and d = 365). So it could be worth reducing the dependence of the running time on d

even at the expense of a much worse dependence on k. Give an algorithm to compute

a fair driving schedule whose running time has the form O(f(k) · d), where f(·) can be

an arbitrary function.

15. Suppose you live in a big apartment with a bunch of friends. Over the course of a year,

there are a lot of occasions when one of you pays for an expense shared by some subset

of the apartment, with the expectation that everything will get balanced out fairly at

the end of the year. For example, one of you may pay the whole phone bill in a given

month, another will occasionally make communal grocery runs to the nearby organic

food emporium; and a third might sometimes use a credit card to cover the whole bill

at the local Italian-Indian restaurant, Little Idli.

In any case, it’s now the end of the year, and time to settle up. There are n people in

the apartment; and for each ordered pair (i, j) there’s an amount aij ≥ 0 that i owes

j, accumulated over the course of the year. We will require that for any two people i

6.11. EXERCISES 237

and j, at least one of the quantities aij or aji is equal to 0. This can be easily made

to happen as follows: if it turns out that i owes j a positive amount x, and j owes

i a positive amount y < x, then we will subtract off y from both sides and declare

aij = x− y while aji = 0. In terms of all these quantities, we now define the imbalance

of a person i to be the sum of the amounts that i is owed by everyone else, minus

the sum of the amounts that i owes everyone else. (Note that an imbalance can be

positive, negative, or zero.)

In order to restore all imbalances to 0, so that everyone departs on good terms, certain

people will write checks to others; in other words, for certain ordered pairs (i, j), i will

write a check to j for an amount bij > 0. We will say that a set of checks constitutes

a reconciliation if for each person i, the total value of the checks received by i, minus

the total value of the checks written by i, is equal to the imbalance of i. Finally, you

and your friends feel it is bad form for i to write j a check if i did not actually owe j

money, so we say that a reconciliation is consistent if, whenever i writes a check to j,

it is the case that aij > 0.

Show that for any set of amounts aij there is always a consistent reconciliation in which

at most n − 1 checks get written, by giving a polynomial-time algorithm to compute

such a reconciliation.

16. Consider a set of mobile computing clients in a certain town who each need to be

connected to one of several possible base stations. We’ll suppose there are n clients,

with the position of each client specified its by (x, y) coordinates in the plane. There

are also k base stations; the position of each of these is specified by (x, y) coordinates

as well.

For each client, we wish to connect it to exactly one of the base stations. Our choice

of connections is constrained in the following ways. There is a range parameter r —

a client can only be connected to a base station that is within distance r. There is

also a load parameter L — no more than L clients can be connected to any single base

station.

Your goal is to design a polynomial-time algorithm for the following problem. Given

the positions of a set of clients and a set of base stations, as well as the range and load

parameters, decide whether every client can be connected simultaneously to a base

station, subject to the range and load conditions in the previous paragraph.

17. You can tell that cellular phones are at work in rural communities, from the giant mi-

crowave towers you sometimes see sprouting out of corn fields and cow pastures. Let’s

consider a very simplified model of a cellular phone network in a sparsely populated

area.

238 CHAPTER 6. NETWORK FLOW

We are given the locations of n base stations, specified as points b1, . . . , bn in the plane.

We are also given the locations of n cellular phones, specified as points p1, . . . , pn in the

plane. Finally, we are given a range parameter ∆ > 0. We call the set of cell phones

fully connected if it is possible to assign each phone to a base station in such a way

that

• Each phone is assigned to a different base station, and

• If a phone at pi is assigned to a base station at bj, then the straight-line distance

between the points pi and bj is at most ∆.

Suppose that the owner of the cell phone at point p1 decides to go for a drive, traveling

continuously for a total of z units of distance due east. As this cell phone moves, we

may have to update the assignment of phones to base stations (possibly several times)

in order to keep the set of phones fully connected.

Give a polynomial-time algorithm to decide whether it is possible to keep the set of

phones fully connected at all times during the travel of this one cell phone. (You should

assume that all other phones remain stationary during this travel.) If it is possible,

you should report a sequence of assignments of phones to base stations that will be

sufficient in order to maintain full connectivity; if it is not possible, you should report

a point on the traveling phone’s path at which full connectivity cannot be maintained.

You should try to make your algorithm run in O(n3) time if possible.

Example: Suppose we have phones at p1 = (0, 0) and p2 = (2, 1); we have base

stations at b1 = (1, 1) and b2 = (3, 1); and ∆ = 2. Now consider the case in which the

phone at p1 moves due east a distance of 4 units, ending at (4, 0). Then it is possible

to keep the phones fully connected during this motion: We begin by assigning p1 to b1

and p2 to b2, and we re-assign p1 to b2 and p2 to b1 during the motion. (For example,

when p1 passes the point (2, 0).)

18. Suppose you’re managing a collection of processors and must schedule a sequence of

jobs over time.

The jobs have the following characteristics. Each job j has an arrival time aj when it is

first available for processing, a length `j which indicates how much processing time it

needs, and a deadline dj by which it must be finished. (We’ll assume 0 < `j ≤ dj−aj.)

Each job can be run on any of the processors, but only on one at a time; it can also

be pre-empted and resumed from where it left off (possibly after a delay) on another

processor.

Moreover, the collection of processors is not entirely static either: you have an overall

pool of k possible processors; but for each processor i, there is an interval of time [ti, t
′
i]

during which it is available; it is unavailable at all other times.

6.11. EXERCISES 239

Given all this data about job requirements and processor availability, you’d like to

decide whether the jobs can all be completed or not. Give a polynomial-time algorithm

that either produces a schedule completing all jobs by their deeadlines, or reports

(correctly) that no such schedule exists. You may assume that all the parameters

associated with the problem are integers.

Example. Suppose we have two jobs J1 and J2. J1 arrives at time 0, is due at time

4, and has length 3. J2 arrives at time 1, is due at time 3, and has length 2. We also

have two processors P1 and P2. P1 is available between times 0 and 4; P2 is available

between times 2 and 3. In this case, there is a schedule that gets both jobs done:

• At time 0, we start job J1 on processor P1.

• At time 1, we pre-empt J1 to start J2 on P1.

• At time 2, we resume J1 on P2. (J2 continues processing on P1.)

• At time 3, J2 completes by its deadline. P2 ceases to be available, so we move J1

back to P1 to finish its remaining one unit of processing there.

• At time 4, J1 completes its processing on P1.

Notice that there is no solution that does not involve pre-emption and moving of jobs.

19. In a lot of numerical computations, we can ask about the “stability” or “robustness”

of the answer. This kind of question can be asked for combinatorial problems as well;

here’s one way of phrasing the question for the minimum spanning tree problem.

Suppose you are given a graph G = (V, E), with a cost ce on each edge e. We view the

costs as quantities that have been measured experimentally, subject to possible errors

in measurement. Thus, the minimum spanning tree one computes for G may not in

fact be the “real” minimum spanning tree.

Given error parameters ε > 0 and k > 0, and a specific edge e′ = (u, v), you would like

to be able to make a claim of the following form:

(∗) Even if the cost of each edge were to be changed by at most ε (either

increased or decreased), and the costs of k of the edges other than e′ were

further changed to arbitrarily different values, the edge e′ would still not

belong to any minimum spanning tree of G.

Such a property provides a type of guarantee that e′ is not likely to be belong to the

minimum spanning tree, even assuming significant measurement error.

Give a polynomial-time algorithm that takes G, e′, ε, and k, and decides whether or

not property (∗) holds for e′.

240 CHAPTER 6. NETWORK FLOW

20. Let G = (V, E) be a directed graph, and suppose that for each node v, the number of

edges into v is equal to the number of edges out of v. That is, for all v,

|{(u, v) : (u, v) ∈ E)}| = |{(v, w) : (v, w) ∈ E)}|.

Let x, y be two nodes of G, and suppose that there exist k mutually edge-disjoint

paths from x to y. Under these conditions, does it follow that there exist k mutually

edge-disjoint paths from y to x? Give a proof, or a counter-example with explanation.

21. Given a graph G = (V, E), and a natural number k, we can define a relation
G,k−→ on

pairs of vertices of G as follows. If x, y ∈ V , we say that x
G,k−→y if there exist k mutually

edge-disjoint paths from x to y in G.

Is it true that for every G and every k ≥ 0, the relation
G,k−→ is transitive? That is, is

it always the case that if x
G,k−→y and y

G,k−→z, then we have x
G,k−→z? Give a proof or a

counter-example.

22. Give a polynomial time algorithm for the following minimization analogue of the max-

flow problem. You are given a directed graph G = (V, E), with a source s ∈ V and

sink t ∈ V , and numbers (capacities) `(v, w) for each edge (v, w) ∈ E. We define a

flow f , and the value of a flow, as usual, requiring that all nodes except s and t satisfy

flow conservation. However, the given numbers are lower bounds on edge flow, i.e.,

they require that f(v, w) ≥ `(v, w) for every edge (v, w) ∈ E, and there is no upper

bound on flow values on edges.

(a) Give a polynomial time algorithm that finds a feasible flow of minimum possible

value.

(b) Prove an analog of the max-flow min-cut theorem for this problem (i.e., does

min-flow = max-cut?)

23. We define the escape problem as follows. We are given a directed graph G = (V, E)

(picture a network of roads); a certain collection of nodes X ⊂ V are designated as

populated nodes, and a certain other collection S ⊂ V are designated as safe nodes.

(Assume that X and S are disjoint.) In case of an emergency, we want evacuation

routes from the populated nodes to the safe nodes. A set of evacuation routes is

defined as a set of paths in G so that (i) each node in X is the tail of one path, (ii)

the last node on each path lies in S, and (iii) the paths do not share any edges. Such

a set of paths gives a way for the occupants of the populated nodes to “escape” to S,

without overly congesting any edge in G.

(a) Given G, X, and S, show how to decide in polynomial time whether such a set of

evacuation routes exists.

6.11. EXERCISES 241

(b) Suppose we have exactly the same problem as in (a), but we want to enforce an

even stronger version of the “no congestion” condition (iii). Thus, we change (iii) to

say “the paths do not share any nodes.”

With this new condition, show how to decide in polynomial time whether such a set

of evacuation routes exists.

Also, provide an example with a given G, X, and S, in which the answer is “yes” to

the question in (a) but “no” to the question in (b).

24. You are helping the medical consulting firm Doctors Without Weekends set up a system

for arranging the work schedules of doctors in a large hospital. For each of the next n

days, the hospital has determined the number of doctors they want on hand; thus, on

day i, they have a requirement that exactly pi doctors be present.

There are k doctors, and each is asked to provide a list of days on which he or she is

willing to work. Thus, doctor j provides a set Lj of days on which he or she is willing

to work.

The system produced by the consulting firm should take these lists, and try to return

to each doctor j a list L′
j with the following properties.

(A) L′
j is a subset Lj, so that doctor j only works on days he or she finds acceptable.

(B) If we consider the whole set of lists L′
1, . . . , L

′
k, it causes exactly pi doctors to be

present on day i, for i = 1, 2, . . . , n.

(a) Describe a polynomial-time algorithm that implements this system. Specifically,

give a polynomial-time algorithm that takes the numbers p1, p2, . . . , pn, and the lists

L1, . . . , Lk, and does one of the following two things.

• Return lists L′
1, L

′
2, . . . , L

′
k satisfying properties (A) and (B); or

• Report (correctly) that there is no set of lists L′
1, L

′
2, . . . , L

′
k that satisfies both

properties (A) and (B).

You should prove your algorithm is correct, and briefly analyze the running time.

(b) The hospital finds that the doctors tend to submit lists that are much too restric-

tive, and so it often happens that the system reports (correctly, but unfortunately)

that no acceptable set of lists L′
1, L

′
2, . . . , L

′
k exists.

Thus, the hospital relaxes the requirements as follows. They add a new parameter

c > 0, and the system now should try to return to each doctor j a list L′
j with the

following properties.

242 CHAPTER 6. NETWORK FLOW

(A∗) L′
j contains at most c days that do not appear on the list Lj.

(B) (Same as before.) If we consider the whole set of lists L′
1, . . . , L

′
k, it causes exactly

pi doctors to be present on day i, for i = 1, 2, . . . , n.

Describe a polynomial-time algorithm that implements this revised system. It should

take the numbers p1, p2, . . . , pn, the lists L1, . . . , Lk, and the parameter c > 0, and do

one of the following two things.

• Return lists L′
1, L

′
2, . . . , L

′
k satisfying properties (A∗) and (B); or

• Report (correctly) that there is no set of lists L′
1, L

′
2, . . . , L

′
k that satisfies both

properties (A∗) and (B).

In this question, you need only describe the algorithm; you do not need to explicitly

write a proof of correctness or running time analysis. (However, your algorithm must

be correct, and run in polynomial time.)

25. You are consulting for an environmental statistics firm. They collect statistics, and

publish the collected data in a book. The statistics is about populations of different

regions in the world, and is in the millions. Examples of such statistics would look like

the top table.

Country A B C Total
grownup men 11.998 9.083 2.919 24.000
grownup women 12.983 10,872 3.145 27.000
children 1.019 2.045 0.936 4.000

Total 26.000 22.000 7.000 55.000

We will assume here for simplicity that our data is such that all row and column sums

are integers. The census rounding problem is to round all data to integers without

changing any row or column sum. Each fractional number can be rounded either up or

down without. For example a good rounding for the above data would be as follows.

Country A B C Total
grownup men 11.000 10.000 3.000 24.000
grownup women 13.000 10.000 4.000 27.000
children 2.000 2.000 0.000 4.000

Total 26.000 22.000 7.000 55.000

(a) Consider first the special case when all data is between 0 and 1. So you have

a matrix of fractional numbers between 0 and 1, and your problem is to round each

6.11. EXERCISES 243

fraction that is between 0 and 1 to either 0 or 1 without changing the row or column

sums. Use a flow computation to check if the desired rounding is possible.

(b) Consider the census data rounding problem as defined above, where row and

column sums are integers, and you want round each fractional number α to either bαc
or dαe. Use a flow computation to check if the desired rounding is possible.

(c) Prove that the rounding we are looking for in (a) and (b) always exists.

26. (∗) Some friends of yours have grown tired of the game “Six degrees of Kevin Bacon”

(after all, they ask, isn’t it just breadth-first search?) and decide to invent a game

with a little more punch, algorithmically speaking. Here’s how it works.

You start with a set X of n actresses and a set Y of n actors, and two players P0 and

P1. P0 names an actress x1 ∈ X, P1 names an actor y1 who has appeared in a movie

with x1, P0 names an actress x2 who has appeared in a movie with y1, and so on. Thus,

P0 and P1 collectively generate a sequence x1, y1, x2, y2, . . . such that each actor/actress

in the sequence has co-starred with the actress/actor immediately preceding. A player

Pi (i = 0, 1) loses when it is Pi’s turn to move, and he/she cannot name a member of

his/her set who hasn’t been named before.

Suppose you are given a specific pair of such sets X and Y , with complete information

on who has appeared in a movie with whom. A strategy for Pi, in our setting, is an

algorithm that takes a current sequence x1, y1, x2, y2, . . . and generates a legal next

move for Pi (assuming it’s Pi’s turn to move). Give a polynomial-time algorithm that

decides which of the two players can force a win, in a particular instance of this game.

27. Statistically, the arrival of spring typically results in increased accidents, and increased

need for emergency medical treatment, which often requires blood transfusions. Con-

sider the problem faced by a hospital that is trying to evaluate whether their blood

supply is sufficient.

The basic rule for blood donation is the following. A person’s own blood supply has

certain antigens present (we can think of antigens as a kind of molecular signature);

and a person cannot receive blood with a particular antigen if their own blood does not

have this antigen present. Concretely, this principle underpins the division of blood

into four types: A, B, AB, and O. Blood of type A has the A antigen, blood of type B

has the B antigen, blood of type AB has both, and blood of type O has neither. Thus,

patients with type A can receive only blood types A or O in a transfusion, patients

with type B can receive only B or O, patients with type O can receive only O, and

patients with type AB can receive any of the four types.2

2The Austrian scientist Karl Landsteiner received the Nobel Prize in 1930 for his discovery of the blood
types A, B, O, and AB.

244 CHAPTER 6. NETWORK FLOW

(a) Let sO, sA, sB and sAB denote the supply in whole units of the different blood

types on hand. Assume that the hospital knows the projected demand for each blood

type dO, dA, dB and dAB for the coming week. Give a polynomial time algorithm to

evaluate if the blood on hand would suffice for the projected need.

(b) Consider the following example. Over the next week, they expect to need at most

100 units of blood. The typical distribution of blood types in US patients is 45% type

O, 42% type A, 10% type B, and 3% type AB. The hospital wants to know if the blood

supply they have on hand would be enough if 100 patients arrive with the expected

type distribution. There is a total of 105 units of blood on hand. The table below

gives these demands, and the supply on hand.

blood type: O A B AB
supply: 50 36 11 8
demand: 45 42 10 3

Is the 105 units of blood on hand enough to satisfy the 100 units of demand? Find an

allocation that satisfies the maximum possible number of patients. Use an argument

based on a minimum capacity cut to show why not all patients can receive blood.

Also, provide an explanation for this fact that would be understandable to the clinic

administrators, who have not taken a course on algorithms. (So, for example, this

explanation should not involve the words “flow,” “cut,” or “graph” in the sense we use

them in CS 482.)

28. Suppose you and your friend Alanis live, together with n−2 other people, at a popular

off-campus co-operative apartment, The Upson Collective. Over the next n nights,

each of you is supposed to cook dinner for the co-op exactly once, so that someone

cooks on each of the nights.

Of course, everyone has scheduling conflicts with some of the nights (e.g. prelims,

concerts, etc.) — so deciding who should cook on which night becomes a tricky task.

For concreteness, let’s label the people

{p1, . . . , pn},

the nights

{d1, . . . , dn};
and for person pi, there’s a set of nights Si ⊂ {d1, . . . , dn} when they are not able to

cook.

A feasible dinner schedule is an assignment of each person in the co-op to a different

night, so that each person cooks on exactly one night, there is someone cooking on

each night, and if pi cooks on night dj, then dj 6∈ Si.

6.11. EXERCISES 245

(a) Describe a bipartite graph G so that G has a perfect matching if and only if there

is a feasible dinner schedule for the co-op.

(b) Anyway, your friend Alanis takes on the task of trying to construct a feasible dinner

schedule. After great effort, she constructs what she claims is a feasible schedule, and

heads off to class for the day.

Unfortunately, when you look at the schedule she created, you notice a big problem.

n − 2 of the people at the co-op are assigned to different nights on which they are

available: no problem there. But for the other two people — pi and pj — and the

other two days — dk and d` — you discover that she has accidentally assigned both pi

and pj to cook on night dk, and assigned no one to cook on night d`.

You want to fix Alanis’s mistake, but without having to re-compute everything from

scratch. Show that it’s possible, using her “almost correct” schedule, to decide in only

O(n2) time whether there exists a feasible dinner schedule for the co-op. (If one exists,

you should also output it.)

29. We consider the bipartite matching problem on a bipartite graph G = (V, E). As usual,

we say that V is partitioned into sets X and Y , and each edge has one end in X and

the other in Y .

y

y

y

y

1

2

3

4

y
5

x1

x
2

Figure 6.3: An instance of Coverage Expansion.

If M is a matching in G, we say that a node y ∈ Y is covered by M if y is an end of

one of the edges in M .

(a) Consider the following problem. We are given G and a matching M in G. For a

given number k, we want to decide if there is a matching M ′ in G so that

246 CHAPTER 6. NETWORK FLOW

(i) M ′ has k more edges than M does, and

(ii) every node y ∈ Y that is covered by M is also covered by M ′.

We call this the Coverage Expansion problem, with input G, M , and k. and we

will say that M ′ is a solution to the instance.

Give a polynomial-time algorithm that takes an instance of Coverage Expansion

and either returns a solution M ′ or reports (correctly) that there is no solution. (You

should include an analysis of the running time, and a brief proof of why it is correct.)

Note: You may wish to also look at part (b) to help in thinking about this.

Example: Consider the accompanying figure, and suppose M is the matching con-

sisting of the one edge (x1, y2). Suppose we are asked the above question with k = 1.

Then the answer to this instance of Coverage Expansion is “yes.” We can let M ′

be the matching consisting (for example) of the two edges (x1, y2) and (x2, y4); M ′ it

has 1 more edge than M , and y2 is still covered by M ′.

(b) Give an example of an instance of Coverage Expansion — specified by G, M ,

and k — so that the following situation happens.

The instance has a solution; but in any solution M ′, the edges of M do not

form a subset of the edges of M ′.

(c) Let G be a bipartite graph, and let M be any matching in G. Consider the following

two quantities.

• K1 is the size of the largest matching M ′ so that every node y that is covered by

M is also covered by M ′.

• K2 is the size of the largest matching M ′′ in G.

Clearly K1 ≤ K2, since K2 is obtained by considering all possible matchings in G.

Prove that in fact K1 = K2; that is, we can obtain a maximum matching even if we’re

constrained to cover all the nodes covered by our initial matching M .

30. Suppose you’re a consultant for the Ergonomic Architecture Commission, and they

come to you with the following problem.

They’re really concerned about designing houses that are “user-friendly,” and they’ve

been having a lot of trouble with the set-up of light fixtures and switches in newly

designed houses. Consider, for example, a one-floor house with n light fixtures and n

locations for light switches mounted in the wall. You’d like to be able to wire up one

6.11. EXERCISES 247

switch to control each light fixture, in such a way that a person at the switch can see

the light fixture being controlled.

Sometimes this is possible, and sometimes it isn’t. Consider the two simple floor plans

for houses in the accompanying figure. There are three light fixtures (labeled a, b, c)

and three switches (labeled 1, 2, 3). It is possible to wire switches to fixtures in the

example on the left so that every switch has line-of-sight to the fixture, but this is not

possible in the example on the right.

a

b

c

a

b

c

1

2

3

1

2 3

ergonomic not ergonomic

Figure 6.4: Two floor plans with lights and switches.

Let’s call a floor plan — together with n light fixture locations and n switch locations

— “ergonomic” if it’s possible to wire one switch to each fixture so that every fixture

is visible from the switch that controls it. A floor plan will be represented by a set of

m horizontal or vertical line segments in the plane (the walls), where the ith wall has

endpoints (xi, yi), (x
′
i, y

′
i). Each of the n switches and each of the n fixtures is given

by its coordinates in the plane. A fixture is visible from a switch if the line segment

joining them does not cross any of the walls.

Give an algorithm to decide if a given floor plan, in the above representation, is er-

gonomic. The running time should be polynomial in m and n. You may assume that

you have a subroutine with O(1) running time that takes two line segments as input

and decides whether or not they cross in the plane.

31. Some of your friends are interning at the small high-tech company WebExodus. A

running joke among the employees there is that the back room has less space devoted

to high-end servers than it does to empty boxes of computer equipment, piled up in

case something needs to be shipped back to the supplier for maintainence.

248 CHAPTER 6. NETWORK FLOW

A few days ago, a large shipment of computer monitors arrived, each in its own large

box; and since there are many different kinds of monitors in the shipment, the boxes do

not all have the same dimensions. A bunch of people spent some time in the morning

trying to figure out how to store all these things, realizing of course that less space

would be taken up if some of the boxes could be nested inside others.

Suppose each box i is a rectangular parallelepiped with side lengths equal to (i1, i2, i3);

and suppose each side length is strictly between half a meter and one meter. Geomet-

rically, you know what it means for one box to nest inside another — it’s possible if

you can rotate the smaller so that it fits inside the larger in each dimension. Formally,

we can say that box i with dimensions (i1, i2, i3) nests inside box j with dimensions

(j1, j2, j3) if there is a permutation a, b, c of the dimensions {1, 2, 3} so that ia < j1,

and ib < j2, and ic < j3. Of course, nesting is recursive — if i nests in j, and j nests

in k, then by putting i inside j inside k, only box k is visible. We say that a nesting

arrangement for a set of n boxes is a sequence of operations in which a box i is put

inside another box j in which it nests; and if there were already boxes nested inside i,

then these end up inside j as well. (Also notice the following: since the side lengths of

i are more than half a meter each, and since the side lengths of j are less than a meter

each, box i will take up more than half of each dimension of j, and so after i is put

inside j, nothing else can be put inside j.) We say that a box k is visible in a nesting

arrangement if the sequence of operations does not result in its ever being put inside

another box.

So this is the problem faced by the people at WebExodus: Since only the visible boxes

are taking up any space, how should a nesting arrangement be chosen so as to minimize

the number of visible boxes?

Give a polynomial-time algorithm to solve this problem.

Example. Suppose there are three boxes with dimensions (.6, .6, .6), (.75, .75, .75),

and (.9, .7, .7). Then the first box can be put into either of the second or third boxes;

but in any nesting arrangement, both the second and third boxes will be visible. So

the minimum possible number of visible boxes is two, and one solution that achieves

this is to nest the first box inside the second.

32. (a) Suppose you are given a flow network with integer capacities, together with a

maximum flow f that has been computed in the network. Now, the capacity of one of

the edges e out of the source is raised by one unit. Show how to compute a maximum

flow in the resulting network in time O(m + n), where m is the number of edges and

n is the number of nodes.

(b) You’re designing an interactive image segmentation tool that works as follows.

You start with the image segmentation set-up described in Section 6.8, with n pixels,

6.11. EXERCISES 249

a set of neighboring pairs, and parameters {ai}, {bi}, and {pij}. We will make two

assumptions about this instance. First, we will suppose that each of the parameters

{ai}, {bi}, and {pij} is a non-negative integer between 0 and d, for some number d.

Second, we will suppose that the neighbor relation among the pixels has the property

that each pixel is a neighbor of at most four other pixels (so in the resulting graph,

there are at most four edges out of each node).

You first perform an initial segmentation (A0, B0) so as to maximize the quantity

q(A0, B0). Now, this might result in certain pixels being assigned to the background,

when the user knows that they ought to be in the foreground. So when presented with

the segmentation, the user has the option of mouse-clicking on a particular pixel v1,

thereby bringing it to the foreground. But the tool should not simply bring this pixel

into the foreground; rather, it should compute a segmentation (A1, B1) that maximizes

the quantity q(A1, B1) subject to the condition that v1 is in the foreground. (In practice,

this is useful for the following kind of operation: in segmenting a photo of a group of

people, perhaps someone is holding a bag that has been accidentally labeled as part of

the background. By clicking on a single pixel belonging to the bag, and re-computing

an optimal segmentation subject to the new condition, the whole bag will often become

part of the foreground.)

In fact, the system should allow the user to perform a sequence of such mouse-clicks

v1, v2, . . . , vt; and after mouse-click vi, the system should produce a segmentation

(Ai, Bi) that maximizes the quantity q(Ai, Bi) subject to the condition that all of

v1, v2, . . . , vi are in the foreground.

Give an algorithm that performs these operations so that the initial segmentation is

computed within a constant factor of the time for a single maximum flow, and then

the interaction with the user is handled in O(dn) time per mouse-click.

(Note: Part (a) is a useful primitive for doing this. Also, the symmetric operation of

forcing a pixel to belong to the background can be handled by analogous means, but you

do not have to work this out here.)

33. We now consider a different variation on the image segmentation problem from Section

6.8. We will develop a solution to an image labeling problem, where the goal is to label

each pixel with a rough estimate of its distance from the camera (rather than the

simple foreground/background labeling used in the text). The possible labels for each

pixel will be 0, 1, 2, . . . , M for some integer M .

Let G = (V, E) denote the graph whose nodes are pixels, and edges indicate neighboring

pairs of pixels. A labeling of the pixels is a partition of V into sets A0, A1, . . . , AM ,

where Ak is the set of pixels that is labeled with distance k for k = 0, . . . , M . We

will seek a labeling of minimum cost; the cost will come from two types of terms.

250 CHAPTER 6. NETWORK FLOW

By analogy with the foreground/background segmentation problem, we will have an

assignment cost: for each pixel i and label k, the cost ai,k is the cost of assigning label

k to pixel i. Next, if two neighboring pixels (i, j) ∈ E are assigned different labels,

there will be a separation cost. In the book, we use a separation penalty pij. In our

current problem, the separation cost will also depend on how far the two pixels are

separated; specifically, it will be proportional to the difference in value between their

two labels.

Thus, the overall cost q′ of a labeling is defined as follows:

q′(A0, . . . , AM) =
M
∑

k=0

∑

i∈Ai

ai,k +
∑

k<`

∑

(i,j)∈E

i∈Ak,j∈A`

(`− k)pij.

The goal of this problem is to develop a polynomial-time algorithm that finds the

optimal labeling given the graph G and the penalty parameters ai,k and pij. The

algorithm will be based on constructing a flow network, and we will start you off on

designing the algorithm by providing a portion of the construction.

The flow network will have a source s and a sink t. In addition, for each pixel i ∈ V we

will have nodes vi,k in the flow network for k = 1, . . . , M as shown in the accompanying

figure. (M = 5 in the example in the figure.)

vi,3 vi,4 vi,5L L L L L L

a a a a a ai,1 i,2 i,3 i,4 i,5i,0

s
v vi,1 i,2

t

For notational convenience, the nodes vi,0 and vi,M+1 will refer to s and t respectively,

for any choice of i ∈ V .

We now add edges (vi,k, vi,k+1) with capacity ai,k for k = 0, . . . , M ; and edges (vi,k+1, vi,k)

in the opposite direction with very large capacity L. We will refer to this collection of

nodes and edges as the chain associated with pixel i.

Notice that if we make this very large capacity L large enough, then there will be no

minimum cut (A, B) so that an edge of capacity L leaves the set A. (How large do

we have to make it for this to happen?). Hence, for any minimum cut (A, B), and

each pixel i, there will be exactly one low-capacity edge in the chain associated with

i that leaves the set A. (You should check that if there were two such edges, then a

large-capacity edge would also have to leave the set A.)

6.11. EXERCISES 251

Finally, here’s the question: Use the nodes and edges defined so far to complete the

construction of a flow network with the property that a minimum-cost labeling can be

efficiently computed from a minimum (s, t)-cut. You should prove that your construc-

tion has the desired property, and show to recover the minimum-cost labeling from the

cut.

34. The goal of this problem is to suggest variants of the preflow-push algorithm that speed

up the practical running time without ruining its worst case complexity. Recall that

the algorithm maintains the invariant that h(v) ≤ h(w) + 1 for all edges (v, w) in the

residual graph of the current preflow. We proved that if f is a flow (not just a preflow)

with this invariant, then it is a maximum flow. Heights were monotone increasing and

the whole running time analysis depended on bounding the number of times nodes can

increase their heights. Practical experience shows that the algorithm is almost always

much faster than suggested by the worst case, and that the practical bottleneck of the

algorithm is relabeling nodes (and not the unsaturating pushes that lead to the worst

case in the theoretical analysis). The goal of the problems below is the decrease the

number of relabelings by increasing heights faster than one-by-one. Assume you have

a graph G with n nodes, m edges, capacities c, source s and sink t.

(a) The preflow-push algorithm, as described in the text, starts by setting the flow

equal to the capacity ce on all edges e leaving the source, setting the flow to 0 on all

other edges, setting h(s) = n, and setting h(v) = 0 for all other nodes v ∈ V . Give an

O(m) procedure that for initializing node heights that is better than what we had in

class. Your method should set the height of each node v be as high as possible given

the initial flow.

(b) In this part we will add a new step, called gap relabeling to preflow-push, that will

increase the labels of lots of nodes by more than one at a time. Consider a preflow f

and heights h satisfying the invariant. A gap in the heights is an integer 0 < h < n

so that no node has height exactly h. Assume h is a gap value, and let A be the set

of nodes v with heights n > h(v) > h. Gap relabeling is to change the height of all

nodes in A to n. Prove that the preflow/push algorithm with Gap relabeling is a valid

max-flow algorithm. Note that the only new thing that you need to prove is that gap

relabeling preserves the invariant above.

(c) In Section 6.6 we proved that h(v) ≤ 2n − 1 throughout the algorithm. Here we

will have a variant that has h(v) ≤ n throughout. The idea is that we ”freeze” all

nodes when they get to height n, i.e., nodes at hight n are no longer considered active,

and hence are not used for push and relabel. This way at the end of the algorithm we

have a preflow and height function that satisfies the invariant above, and so that all

252 CHAPTER 6. NETWORK FLOW

excess is at height n. Let B be the set of nodes v so that there is a path from v to t

in the residual graph of the current preflow. Let A = V−B. Prove that at the end of

the algorithm (A, B) is a minimum capacity s− t cut.

(d) The algorithm in part (c) computes a minimum s − t cut, but fails to find a

maximum flow (as it ends with a preflow that has excesses). Give an algorithm that

takes the preflow f at the end of the algorithm of part (c) and converts it into a max

flow in at most O(mn) time. Hint: consider nodes with excess and try to send the

excess back to s using only edges that the flow came on.

Chapter 7

NP and Computational Intractability

We now arrive at a major transition point in the course. Up till now, we’ve developed efficient

algorithms for a wide range of problems, and have even made some progress on informally

categorizing the problems that admit efficient solutions — for example, problems expressible

as minimum cuts in a graph, or problems that allow a dynamic programming formulation.

But although we’ve often paused to take note of other problems that we don’t see how to

solve, we haven’t yet made any attempt to actually quantify or characterize the range of

problems that can’t be solved efficiently.

Back when we were first laying out the fundamental definitions, we settled on polynomial

time as our working notion of efficiency. One advantage of using a concrete definition like

this, as we noted earlier, is that it gives us the opportunity to prove mathematically that

certain problems cannot be solved by polynomial-time — and hence “efficient” — algorithms.

When people began investigating computational complexity in earnest, there was some

initial progress in proving that certain extremely hard problems cannot be solved by efficient

algorithms. But for many of the most fundamental discrete computational problems —

arising in optimization, artificial intelligence, combinatorics, logic, and elsewhere — the

question was too difficult to resolve, and it has remained open since then: we do not know

of polynomial-time algorithms for these problems, and we cannot prove that no polynomial-

time algorithm exists.

In the face of this formal ambiguity — which becomes increasingly hardened as years

pass — people working in the study of complexity have made significant progress. A large

class of problems in this “gray area” has been characterized, and it has been proved that

they are equivalent in the following sense: a polynomial-time algorithm for any one of them

would imply the existence of a polynomial-time algorithm for all of them. These are the

NP-complete problems, a name that will make more sense as we proceed a little further.

There are literally thousands of NP-complete problems, arising in numerous areas, and the

class seems to contain a large fraction of the fundamental problems whose complexity we

can’t resolve. So the formulation of NP-completeness, and the proof that all these problems

253

254 CHAPTER 7. NP AND COMPUTATIONAL INTRACTABILITY

are equivalent, is a powerful thing: it says that all these open questions are really a single

open question, a single type of complexity that we don’t yet fully understand.

From a pragmatic point of view, NP-completeness essentially means: “Computationally

hard for all practical purposes, though we can’t prove it.” Discovering that a problem is

NP-complete provides a compelling reason to stop searching for an efficient algorithm —

you might as well search for an efficient algorithm for any of the famous computational

problems already known to be NP-complete, for which many people have tried and failed to

find efficient algorithms.

7.1 Computationally Hard Problems

Before starting on the formal definition of NP-completeness, we introduce some paradigmatic

examples of hard problems, and then discuss some of the relations among them. All of these

problems will turn out to be NP-complete; hence we suspect, but cannot prove, that there

is no polynomial-time algorithm to solve any of them.

We will phrase all these problems as decision problems — i.e., each will have a “yes/no”

answer. Many of them also have a natural optimization version, in which we are seeking to

maximize or minimize a particular quantity. In all these cases, the decision and optimization

versions are essentially equivalent in terms of computational difficulty — we focus on the

decision versions because this will be cleaner in the mathematical developments that are

coming.

We break our discussion into six basic genres.

1. Packing Problems. In a packing problem, one is trying to select as large a number

of objects as possible, subject to some source of conflicts among the objects. Perhaps the

cleanest example is the Set Packing problem:

Given a set U of n elements, a collection S1, . . . , Sm of subsets of U , and a number

k, does there exist a collection of at least k of these sets with the property that

no two of them intersect?

In other words, we wish to “pack” a large number of sets together, with the constraint that

no two of them are overlapping.

As an example of where this type of issue might arise, imagine that we have a set U of n

non-shareable resources, and a set of m software processes. The ith process requires the set

Si ⊆ U of resources in order to run. Then the Set Packing problem seeks a large collection of

these process that can be run simultaneously, with the property that none of their resource

requirements overlap (i.e. represent a conflict).

7.1. COMPUTATIONALLY HARD PROBLEMS 255

The Independent Set problem, which we introduced at the beginning of the course, is a

graph-based packing problem. Recall that in a graph G = (V, E), we say a set of nodes

S ⊆ V is independent if no two nodes in S are joined by an edge.

Given a graph G and a number k, does G contain an independent set of size at

least k?

These two problems illustrate the contrast between decision and optimization: above, we

have phrased each as a yes/no decision question with an extra parameter k, but each has a

natural optimization version as well. We could ask: What is the largest collection of sets,

no two of which intersect? And: What is the largest independent set in G?

Given a method to solve these optimization versions, we automatically solve the decision

versions (for any k) as well. But there is also a slightly less obvious converse to this: if we

can solve the decision version of, say, Independent Set for every k, then we can also find a

maximum independent set. For given a graph G on n nodes, we simply solve the decision

version of Independent Set for each k; the largest k for which the answer is “yes” is the size of

the largest independent set in G. (And using binary search, we need only solve the decision

version for O(log n) different values of k.)

This simple equivalence between decision and optimization will also hold in the problems

we discuss below.

2. Covering Problems. Covering problems form a natural contrast to packing problems:

we seek to “cover” a collection of objects with as few sets as possible. The most basic

example is the Set Cover problem:

Given a set U of n elements, a collection S1, . . . , Sm of subsets of U , and a number

k, does there exist a collection of at most k of these sets whose union is equal to

all of U?

Imagine, for example, that we have m available pieces of software, and a set U of n

capabilities that we would like our system to have. The ith piece of software includes the

set Si ⊆ U of capabilities. In the Set Cover problem, we seek to include a small number of

these pieces of software on our system, with the property that our system will then have all

n capabilities.

There is also a natural graph-based covering problem. Given a graph G = (V, E), we

say that a set of nodes S ⊆ V is a vertex cover if every edge e ∈ E has at least one end

in S. Note the following thing about this use of terminology: in a vertex cover, it is the

vertices that do the covering; the edges are the objects being covered. We formulate the

Vertex Cover problem as follows:

Given a graph G and a number k, does G contain a vertex cover of size at most

k?

256 CHAPTER 7. NP AND COMPUTATIONAL INTRACTABILITY

3. Partition Problems. We could view the bipartite matching problem in the following

way: we are given two sets X and Y , each of size n, and a set P of pairs drawn from X ×Y .

The question is: does there exist a set of n pairs in P so that each element in X ∪ Y is

contained in exactly one of these pairs? The relation to bipartite matching is clear: the set

P of pairs is simply the edges of the graph.

This is a fundamental partitioning problem: we seek a collection of disjoint sets that

covers a ground set of elements. (Equivalently, we seek to partition a ground set into “al-

lowable” subsets.) The disjointness constraint is crucial; otherwise, this would simply be a

problem in the style of Set Cover.

Of course, bipartite matching is a problem we know how to solve in polynomial time.

But things get much more complicated when we move from ordered pairs to ordered triples.

Consider the following 3-Dimensional Matching problem:

Given disjoint sets X, Y , and Z, each of size n; and given a set T ⊆ X × Y × Z

of ordered triples, does there exist a set of n triples in T so that each element of

X ∪ Y ∪ Z is contained in exactly one of these triples?

Such a set of triples is called a perfect three-dimensional matching.

4. Sequencing Problems. Our first three types of problems have involved searching over

subsets of a collection of objects. Another type of computationally hard problem involves

searching over the set of all permutations of a collection of objects.

Probably the most famous such sequencing problem is the Traveling Salesman problem.

Consider a salesman who must visit n cities labeled v1, v2, . . . , vn. The salesman starts in

city v1, his home, and wants to find a tour — an order in which to visit all the other cities

and return home. His goal is to find a tour that causes him to travel as little total distance

as possible.

To formalize this, we will take a very general notion of distance — for each ordered pair

of cities (vi, vj), we will specify a non-negative number d(vi, vj) as the distance from vi to vj.

We will not require the distance to be symmetric (so it may happen that d(vi, vj) 6= d(vj, vi))

nor will we require it to satisfy the triangle inequality (so it may happen that d(vi, vj) plus

d(vj, vk) is actually less than the “direct” distance d(vi, vk)). The reason for this is to make

our formulation as general as possible. Indeed, Traveling Salesman arises naturally in many

applications where the points are not cities and the traveler is not a salesman. For example,

people have used Traveling Salesman formulations for problems such as planning the most

efficient motion of a robotic arm that drills holes in n points on the surface of a VLSI chip;

or for serving I/O requests on a disk; or for sequencing the execution of n software modules

to minimize the context-switching time.

Thus, given the set of distances, we ask: order the cities into a tour v[i1], v[i2], . . . , v[in],

with i1 = 1, so as to minimize the total distance
∑

j d(v[ij], v[ij+1]) + d(v[in], [i1]). The

7.1. COMPUTATIONALLY HARD PROBLEMS 257

requirement i1 = 1 simply “orients” the tour so that it starts at the home city, and the

terms in the sum simply give the distance from each city on the tour to the next one. (The

last term in the sum is the distance required for the salesman to return home at the end.)

Here is a decision version of the Traveling Salesman problem:

Given a set of distances on n cities, and a bound D, is there a tour of length at

most D?

The Traveling Salesman problem has a natural graph-based analogue, which forms one of

the fundamental problems in graph theory. Given a directed graph G = (V, E), we say that

a cycle C in G is a Hamiltonian cycle if it visits each vertex exactly once. In other words, it

constitutes a “tour” of all the vertices, with no repetitions. The Hamiltonian Cycle problem

is then the following:

Given a directed graph G, does it contain a Hamiltonian cycle?

5. Constraint Satisfaction Problems. We now turn to a somewhat more “abstract”

set of problems, which are formulated in Boolean notation. As such, they model a wide

range of problems in which we need to set decision variables so as to satisfy a given set of

constraints; such formalisms are common, for example, in artificial intelligence.

Suppose we are given a set X of n Boolean variables x1, . . . , xn; each can take the value

0 or 1 (equivalently, “false” or “true”). By a term over X, we mean one of the variables xi

or its negation xi. Finally, a clause is simply a disjunction of terms

t1 ∨ t2 ∨ · · · ∨ t`.

(Again, each ti ∈ {x1, x2, . . . , xn, x1, . . . , xn}.) We say the clause has length ` if it contains

` terms.

We now formalize what it means for an assignment of values to satisfy a collection of

clauses. A truth assignment for X is an assignment of the value 0 or 1 to each xi; in other

words, it is a function ν : X → {0, 1}. The assignment ν implicitly gives xi the opposite

truth value from xi. An assignment satisfies a clause C if it causes C to evaluate to 1 under

the rules of Boolean logic; this is equivalent to requiring that at least one of the terms in

C should receive the value 1. An assignment satisfies a collection of clauses C1, . . . , Ck if it

causes all of the Ci to evaluate to 1; in other words, if it causes the conjunction

C1 ∧ C2 ∧ · · · ∧ Ck

to evaluate to 1. In this case, we will say that ν is a satisfying assignment with respect to

C1, . . . , Ck; and that the set of clauses C1, . . . , Ck is satisfiable.

Here is a simple example. Suppose we have the three clauses

(x1 ∨ x2), (x1 ∨ x3), (x2 ∨ x3).

258 CHAPTER 7. NP AND COMPUTATIONAL INTRACTABILITY

Then the truth assignment ν which sets all variables to 1 is not a satisfying assignment,

because it does not satisfy the second of these clauses; but the truth assignment ν ′ which

sets all variables to 0 is a satisfying assignment.

We can now state the Satisfiability problem, also referred to as SAT:

Given a set of clauses C1, . . . , Ck over a set of variables X = {x1, . . . , xn}, does

there exist a satisfying truth assignment?

Satisfiability is a really fundamental combinatorial search problem; it contains the basic

ingredients of a hard computational problem in very “bare-bones” fashion. We have to make

n independent decisions (the assignments for each xi) so as to satisfy a set of constraints.

There several ways to satisfy each constraint in isolation, but we have to arrange our decisions

so that all constraints are satisfied simultaneously.

There is a special case of SAT that will turn out to be equivalently difficult, and is

somewhat easier to think about; this is the case in which all clauses have length 3. We call

this problem 3-Satisfiability, or 3-SAT:

Given a set of clauses C1, . . . , Ck, each of length 3, over a set of variables X =

{x1, . . . , xn}, does there exist a satisfying truth assignment?

6. Numerical Problems. Finally, we consider some computational problems that involve

arithmetic operations on numbers. Our basic problem in this genre will be Subset Sum, which

we saw before when we covered dynamic programming. We can formulate a decision version

of this problem as follows:

Given natural numbers w1, . . . , wn, and a target number W , is there a subset of

{w1, . . . , wn} that adds up to precisely W ?

We have already seen an algorithm to solve this problem; why are we now including it

on our list of computationally hard problems? This goes back to an issue that we raised the

first time we considered Subset Sum. The algorithm we developed has running time O(nW),

which is reasonable when W is small, but becomes hopelessly impractical as W (and the

numbers wi) grow large. Consider, for example, an instance with 100 numbers, each of which

is 100 bits long. Then the input is only 100×100 = 10000 digits, but W is now roughly 2100.

To phrase this more generally: since integers will typically be given in bit representation,

or base-10 representation, the quantity W is really exponential in the size of the input; our

algorithm was not a polynomial-time algorithm. (We referred to it as pseudo polynomial,

to indicate that it ran in time polynomial in the magnitude of the input numbers, but not

polynomial in the size of their representation.)

This is an issue that comes up in many settings; for example, we encountered it in the

context of network flow algorithms, where the capacities had integer values. Other settings

7.2. POLYNOMIAL-TIME REDUCTIONS 259

may be familiar to you as well. For example, the security of a cryptosystem such as RSA is

motivated by the sense that factoring a 400-bit number is difficult. But if we considered a

running time of 2400 steps feasible, factoring such a number would not be difficult at all.

It is worth pausing here for a moment and asking: Is this notion of polynomial time

for numerical operations too severe a restriction? For example, given two natural numbers

w1 and w2 represented in base-d notation for some d > 1 how long does it take to add,

subtract, or multiply them? Fortunately, the standard ways that kids in elementary school

learn to perform these operations have (low-degree) polynomial running times. Addition and

subtraction (with carries) takes O(log w1 + log w2) time, while the standard multiplication

algorithm runs in O(log w1 · log w2) time. (There are asymptotically faster multiplication

algorithms that elementary schoolers are unlikely to invent on their own; but we will not be

focusing on these here.)

So a basic question is: can Subset Sum be solved by a (genuinely) polynomial-time

algorithm? We will see that the framework developed here will shed light on this question,

as well as the analogous questions for all the other problems introduced above.

7.2 Polynomial-time Reductions

Our study of computationally hard problems will involve two basic ingredients: a mathe-

matical characterization of their structure, which we will develop in the next section, and a

method for quantifying their relative complexities, which we do now.

For various computational problems, we want to be able to ask questions of the form,

“Suppose we could solve problem X in polynomial time. What else could we then solve

in polynomial time?” Intuitively, this would be very useful for establishing relationships

between problems X and Y via statements like,

(∗) If we could solve problem X in polynomial time, then we could also solve

problem Y in polynomial time.

But it is not easy to work with an assumption phrased this way. To make the notion more

manageable, we will essentially add the assumption that X can be solved in polynomial time

directly to our model of computation. Suppose we had a black box that could solve instances

of a problem X; if we write down the input for an instance of X, then in a single step, the

black box will return the correct yes/no answer. We can now ask the following question:

(∗∗) Can arbitrary instances of problem Y be solved using a polynomial number

of standard computational steps, plus a polynomial number of calls to a black

box that solves problem X?

If the answer to this question is yes, then we write Y≤P X; we read this as “Y is polynomial-

time reducible to X,” or “X is at least as hard as Y (with respect to polynomial time).”

260 CHAPTER 7. NP AND COMPUTATIONAL INTRACTABILITY

Note that in this definition, we still pay for the time it takes to write down the input to the

black box solving X.

This formulation of reducibility is actually very natural. When we ask about reductions

to a problem X, it is as though we’ve supplemented our computational model with a piece

of specialized hardware that solves instances of X in a single step. We can now explore the

question: how much extra power does this piece of hardware give us?

An importance consequence of our definition of ≤P is the following. Suppose Y≤P X and

there actually exists a polynomial-time algorithm to solve X. Then our specialized black

box for X is actually not so valuable; we can replace it with a polynomial-time algorithm

for X. Consider what happens to our algorithm for problem Y that involved a polynomial

number of steps plus a polynomial number of calls to the black box. It now becomes an

algorithm that involves a polynomial number of steps, plus a polynomial number of calls to

a subroutine that runs in polynomial time; in other words, it has become a polynomial-time

algorithm. We have therefore proved the following fact.

(7.1) Suppose Y ≤P X. If X can be solved in polynomial time, then Y can be solved in

polynomial time.

We’ve made use of precisely this fact — implicitly — at earlier points in the course.

Recall that we solved the bipartite matching problem using a polynomial amount of pre-

processing plus the solution of a single maximum flow problem. Since the maximum flow

problem can be solved in polynomial time, we concluded that bipartite matching could as

well. Similarly, we solved the foreground/background image segmentation problem using a

polynomial amount of pre-processing plus the solution of a single minimum cut problem,

with the same consequences. Both of these were direct applications of (7.1) . Indeed,

(7.1) summarizes a great way to design polynomial-time algorithms for new problems: by

reduction to a problem we already know how to solve in polynomial time.

In this part of the course, however, we will be using (7.1) to establish the computational

intractability of various problems. For this purpose, we will really be using its contrapositive

form, which is sufficiently valuable that we’ll state it as a separate fact.

(7.2) Suppose Y ≤P X. If Y cannot be solved in polynomial time, then X cannot be

solved in polynomial time.

(7.2) is transparently equivalent to (7.1) , but it emphasizes our overall plan: if we have

a problem Y that is known to be hard, and we show that Y ≤P X, then the hardness has

“spread” to X; X must be hard or else it could be used to solve Y .

In reality, given that we don’t actually know whether the problems we’re studying can be

solved in polynomial time or not, we’ll be using ≤P to establish relative levels of difficulty

among problems.

7.2. POLYNOMIAL-TIME REDUCTIONS 261

With this in mind, we now establish some reducibilities among the problems introduced

in the previous section. We divide these into several categories.

Reductions from a Special Case to the General Case. Probably the most basic kind

of reduction is the following: we have problems X and Y , and we establish that Y is in effect

a “special case” of X. Consider, for example, the relationship between Vertex Cover and

Set Cover. In the latter case, we are trying to cover an arbitrary set using arbitrary subsets;

in the former case, we are specifically trying to cover edges of a graph using sets of edges

incident to vertices. Indeed, we can prove

(7.3) Vertex Cover ≤P Set Cover.

Proof. Suppose we have access to a black box that can solve Set Cover, and consider an

arbitrary instance of Vertex Cover, specified by a graph G = (V, E) and a number k. How

can we use the black box to help us?

Our goal is to cover the edges in E, so we formulate an instance of Set Cover in which

the ground set U is equal to E. Each time we pick a vertex in the Vertex Cover problem,

we cover all the edges incident to it; thus, for each vertex i ∈ V , we add a set Si ⊆ U to our

Set Cover instance, consisting of all the edges in G incident to i.

We now claim that U can be covered with at most k of the sets S1, . . . , Sn if and only

if G has a vertex cover of size at most k. This can be proved very easily. For if Si1, . . . , Si`

are ` ≤ k sets that cover U , then every edge in G is incident to one of the vertices i1, . . . , i`,

and so the set {i1, . . . , i`} is a vertex cover in G of size ` ≤ k. Conversely, if {i1, . . . , i`} is a

vertex cover in G of size ` ≤ k, then the sets Si1 , . . . , Si` cover U .

Thus, given our instance of Vertex Cover, we formulate the instance of Set Cover de-

scribed above, and pass it to our black box. We answer “yes” if and only if the black box

answers “yes.”

Here is something worth noticing about this proof. Although the definition of ≤P allows

us to issue many calls to our black box for Set Cover, we issued only one; indeed, our

algorithm for Vertex Cover consisted simply of encoding the problem as a single instance

of Set Cover, and then using the answer to this instance as our overall answer. This will

be true of essentially all the reductions that we consider; they will consist of establishing

Y≤P X by transforming our instance of Y to a single instance of X, invoking our black box

for X on this instance, and reporting the box’s answer as our answer for the instance of Y .

We can establish an analogous fact for packing problems. The proof is almost identical

to that of (7.3) ; we will leave the details as an exercise.

(7.4) Independent Set ≤P Set Packing.

262 CHAPTER 7. NP AND COMPUTATIONAL INTRACTABILITY

Reductions from the General Case to a Special Case. A more surprising kind of

reduction goes in the opposite direction: it establishes that a general problem is reducible

to one of its special cases. This is extremely useful; it shows that the true “hardness” of the

general problem is already present in the special case. It is also generally more difficult to

prove than the previous type of reduction, since we have to work within the confines of a

black box that can only solve the special case.

A basic example of this phenomenon is the relationship between Satisfiability and 3-

Satisfiability. It is clear that 3-SAT ≤P SAT, since every instance of 3-SAT is also an

instance of SAT. But the opposite reduction is true as well, for much less obvious reasons.

(7.5) SAT ≤P 3-SAT.

Proof. Consider an instance of SAT with variables X = {x1, . . . , xn} and clauses C1, . . . , Ck.

We will construct an instance of 3-SAT that is satisfiable if and only if the given instance of

SAT is satisfiable. In this way, by presenting the constructed 3-SAT instance to our black

box, we can determine whether the original SAT instance was satisfiable.

For each clause Ci in the SAT instance, we will construct a set of clauses Di1, Di2, . . .

containing the variables of Ci plus some variables that will not appear anywhere else. Any

assignment that satisfies the set of all Dij will also satisfy Ci; conversely, for any assignment

that satisfies Ci, we will be able to choose an assignment for the extra variables as well so

that all Dij are satisfied. In this way, we will have completely translated the clause Ci into

an ensemble of length-3 clauses.

Here is the specific construction. First, if Ci has length 2 — say Ci = ti1∨ti2 — we create

the single length-3 clause ti1 ∨ ti2 ∨ ti2, which is clearly equivalent. Similarly, if Ci = ti1 has

length 1, we create the length-3 clause ti1 ∨ ti1 ∨ ti1.

The interesting part is the translation of long clauses. Suppose that

Ci = ti1 ∨ ti2 ∨ · · · ∨ ti`

for terms ti1, . . . , ti`, with ` > 3. We create the following new clauses, each of length 3:

Di1 = ti1 ∨ ti2 ∨ yi1

Di2 = yi1 ∨ ti3 ∨ yi2

· · · = · · ·
Di,j−1 = yi,j−2 ∨ tij ∨ yi,j−1

Dij = yi,j−1 ∨ ti,j+1 ∨ yij

· · · = · · ·
Di,`−2 = yi,`−3 ∨ ti,`−1 ∨ ti`

The variables yi1, . . . , yi,`−3 will appear only in these clauses. We use Y to denote the set of

all new variables {yij}.

7.2. POLYNOMIAL-TIME REDUCTIONS 263

First, suppose there is a truth assignment ν that satisfies all Ci. Then we can extend

ν to a truth assignment ν ′ on all variables in X ∪ Y as follows. First, ν ′ will agree with ν

on all variables in X. Now, for clause Ci, at least one of the terms evaluates to 1; suppose

that tij evaluates to 1. Then we set ν ′(yim) = 1 for each m ≤ j − 2, and we set ν ′(yim) = 0

for each m ≥ j − 1. By looking at the clauses Di1, . . . , Di,`−2, we see that they will all be

satisfied by this truth assignment. Thus, if the set of clauses {Ci} is satisfiable, then the set

of clauses {Dij} is satisfiable.

Conversely, suppose that there is an assignment ν ′ that satisfies all Dij. Consider clause

Ci. We claim that at least one of the terms tij in Ci must evaluate to 1 under the assignment

ν ′. For if not, then since Di1 is satisfied, we know that ν ′(yi1) = 1; since Di2 is satisfied,

it follows that ν ′(yi2) = 1; and continuing in this way, we conclude that ν ′(yij) = 1 for all

j. But then the last clause Di,`−2 would not be satisfied, which contradicts our assumption.

Thus ν ′(tij) = 1 for some j, and hence the clause Ci is satisfied by ν ′. We have concluded

that if the set of clauses {Dij} is satisfiable, then the set of clauses {Ci} is satisfiable.

Since the original SAT instance is satisfiable if and only if the new 3-SAT instance is

satisfiable, the proof is complete.

Reductions by Simple Equivalence. In many cases, we are faced with two problems

that look similar, but neither is a special case of the other. Sometimes, it is possible to prove

that they are in a sense “equivalent,” and this can lead to reductions from one problem to

the other.

A natural example of this is the relationship between Independent Set and Vertex Cover.

Both independent sets and vertex covers are subsets of the vertex set of a graph, satisfying

specific properties; is there a connection between the two definitions? In fact, there is a very

basic one:

(7.6) Let G = (V, E) be a graph. Then S is an independent set if and only if its

complement V − S is a vertex cover.

Proof. First, suppose that S is an independent set. Consider an arbitrary edge e = (u, v).

Since S is independent, it cannot be the case that both u and v are in S; so one of them

must be in V − S. It follows that every edge has at least one end in V − S, and so V − S is

a vertex cover.

Conversely, suppose that V − S is a vertex cover. Consider any two nodes u and v in S.

If they were joined by edge e, then neither end of e would lie in V − S, contradicting our

assumption that V − S is a vertex cover. It follows that no two nodes in S are joined by an

edge, and so S is an independent set.

Reductions in each direction between the two problems follow immediately from this

definition.

264 CHAPTER 7. NP AND COMPUTATIONAL INTRACTABILITY

(7.7) Independent Set ≤P Vertex Cover.

Proof. If we have a black box to solve Vertex Cover, then we can decide whether G has an

independent set of size at least k by asking the black box whether G has a vertex cover of

size at most n− k.

(7.8) Vertex Cover ≤P Independent Set.

Proof. If we have a black box to solve Independent Set, then we can decide whether G has

a vertex cover of size at most k by asking the black box whether G has an independent set

of size at least n− k.

Reductions by Encoding with “Gadgets.” We have just seen that Vertex Cover can

be reduced to Independent Set. This is not so surprising, given that both are problems of a

similar flavor involving graphs.

We now show something considerably more surprising: that 3-SAT ≤P Independent Set.

The difficulty in proving a thing like this is clear; 3-SAT is about setting Boolean variables in

presence of constraints, while Independent Set is about selecting vertices in a graph. To solve

an instance of 3-SAT using a black box for Independent Set, we need a way to encode all these

Boolean constraints in the nodes and vertices of a graph, so that satisfiability corresponds

to the existence of a large independent set.

Doing this illustrates a general principle for designing complex reductions Y≤P X: build-

ing “gadgets” out of components in problem X to represent what is going on in problem

Y .

(7.9) 3-SAT ≤P Independent Set.

Proof. We have a black box for Independent Set and want to solve an instance of 3-SAT

consisting of variables X = {x1, . . . , xn} and clauses C1, . . . , Ck.

The key is to picture the 3-SAT instance as follows. Say that two terms t and t′ conflict

if one is equal to a variable xi and the other is equal to its negation xi. In order to satisfy

the instance, we must pick a term in each clause that will evaluate to 1, in such a way that

we do not pick two terms that conflict.

Here is how we encode this notion using independent sets in a graph. First, construct a

graph G = (V, E) consisting of 3k nodes grouped into k triangles. That is, for i = 1, 2, . . . , k,

we construct three vertices vi1, vi2, vi3 joined to one another by edges. We give each of these

vertices a label; vij is labeled with the jth term from the clause Ci of the 3-SAT instance.

Before proceeding, consider what the independent sets of size k look like in this graph:

since two vertices cannot be selected from the same triangle, they consist of all ways of

choosing one vertex from each of the triangles. This is implementing our goal of choosing a

7.2. POLYNOMIAL-TIME REDUCTIONS 265

v
11

v
12

v
13

v

v v

2

2 2

1

2 3

v

v v

k

k k

1

2 3

conflict

conflict
conflict

.

Figure 7.1: The reduction from 3-SAT to Independent Set.

term in each clause that will evaluate to 1; but we have so far not prevented ourselves from

choosing two terms that conflict.

We encode this notion by adding some more edges to the graph: For each pair of vertices

whose labels correspond to terms that conflict, we add an edge between them. Have we now

destroyed all the independent sets of size k, or does one still exist? It’s not clear; it depends

on whether we can still select one node from each triangle so that no conflicting pairs of

vertices are chosen. But this is precisely what the 3-SAT instance required . . .

Let’s claim, precisely, that the original 3-SAT instance is satisfiable if and only if the

graph G we have constructed has an independent set of size at least k. First, if the 3-SAT

instance is satisfiable, then each triangle in our graph contains at least one node whose label

evaluates to 1. Let S be a set consisting of one such node from each triangle. We claim S is

independent; for if there were an edge between two nodes u, v ∈ S, then the labels of u and

v would have to conflict; but this is not possible, since they both evaluate to 1.

Conversely, suppose our graph G has an independent set S of size at least k. Then, first

of all, the size of S is exactly k, and it must consist of one node from each triangle. Now,

we claim that there is a truth assignment ν for the variables in the 3-SAT instance with

the property that the labels of all nodes in S evaluate to 1. Here is how we could construct

such an assignment ν. For each variable xi, if neither xi nor xi appears as a label of a node

in S, then we arbitrarily set ν(xi) = 1. Otherwise, exactly one of xi or xi appears as a

label of a node in S — for if one node in S were labeled xi and another were labeled xi,

then there would be an edge between these two nodes, contradicting our assumption that

S is an independent set. Thus, if xi appears as a label of a node in S, we set ν(xi) = 1,

and otherwise we set ν(xi) = 0. By constructing ν in this way, all labels of nodes in S will

266 CHAPTER 7. NP AND COMPUTATIONAL INTRACTABILITY

evaluate to 1.

Since G has an independent set of size at least k if and only if the original 3-SAT instance

is satisfiable, the reduction is complete.

Some Final Observations

We have now worked through a number of reductions between problems. We can infer a

number of additional relationships using the following fact: ≤P is a transitive relation.

(7.10) If Z≤P Y , and Y≤P X, then Z≤P X.

Proof. Given a black box for X, we show how to solve an instance of Z; essentially, we just

compose the two algorithms implied by Z≤P Y and Y≤P X. We run the algorithm for Z

using a black box for Y ; but each time the black box for Y is called, we simulate it in a

polynomial number of steps using the algorithm that solves instances of Y using a black box

for X.

Transitivity can be quite useful. For example, since we have proved

SAT ≤P 3-SAT ≤P Independent Set ≤P Vertex Cover ≤P Set Cover,

we can conclude that SAT ≤P Set Cover.

7.3 Efficient Certification and the Definition of NP

Reducibility among problems was the first main ingredient in our study of computational

intractability. The second ingredient is a characterization of the class of problems that we

are dealing with. Combining these two ingredients, together with a powerful theorem of

Cook from 1971, will yield some surprising consequences.

Recall at the beginning of the course, when we first encountered the Independent Set

problem, we asked: Can we say anything good about it, from a computational point of

view? And, indeed, there was something: if a graph does contain an independent set of

size at least k, then we could give you an easy proof of this fact by exhibiting such an

independent set. Similarly, if a 3-SAT instance is satisfiable, we can prove this to you by

revealing the satisfying assignment. It may an enormously difficult task to actually find such

an assignment; but if we’ve done the hard work of finding one, it’s easy for you to plug it

into the clauses and check that they are all satisfied.

The issue here is the contrast between finding a solution and checking a proposed solution.

For Independent Set or 3-SAT, we do not know a polynomial-time algorithm to find solutions;

but checking a proposed solution to these problems can be easily done in polynomial time.

To see that this is not entirely trivial issue, consider the problem we’d face if we had to

7.3. EFFICIENT CERTIFICATION AND THE DEFINITION OF NP 267

prove that a 3-SAT instance was not satisfiable. What “evidence” could we show that would

convince you, in polynomial time, that the instance was unsatisfiable?

This will be the crux of our characterization; we now proceed to formalize it. The input

to a computational problem will be encoded as a finite binary string s. We denote the length

of a string s by |s|. We will identify a decision problem X with the set of strings on which

the answer is “yes.” An algorithm A for a decision problem receives an input string s and

returns the value “yes” or “no” — we will denote this return value by A(s). We say that A

solves the problem X if for all strings s, A(s) = yes if and only if s ∈ X.

As always, we say that A has a polynomial running time if there is a polynomial function

p(·) so that for every input string s, A terminates on s in at most O(p(|s|)) steps. Thus far

in the course, we have been concerned with problems solvable in polynomial time. In the

above notation, we can express this as the set P of all problems X for which there exists an

algorithm A with a polynomial running time that solves X.

Efficient Certification. Now, how should formalize the idea that a solution to a problem

can be checked efficiently, independently of whether it can be solved efficiently? A “checking

algorithm” for a problem X has a different structure from an algorithm that actually seeks

to solve the problem; in order to “check” a solution we need the input string s, as well as a

separate “certificate” string t that contains the evidence that s is a “yes” instance of X.

Thus, we say that B is an efficient certifier for a problem X if the following properties

hold:

• B is a polynomial-time algorithm that takes two input arguments s and t.

• There is a polynomial function p so that for every string s, s ∈ X if and only if there

exists a string t such that |t| ≤ p(|s|) and B(s, t) = yes.

It takes some time to really think through what this definition is saying. One should view

an efficient certifier as approaching a problem X from a “managerial” point of view. It will

not actually try to decide whether an input s belongs to X on its own. Rather, it is willing

to efficiently evaluate proposed “proofs” t that s belongs to X — provided they are not too

long — and it is a correct algorithm in the weak sense that s belongs to X if and only there

exists a proof that will convince it.

An efficient certifier B can be used as the core component of a “brute-force” algorithm

for a problem X: on an input s, try all strings t of length ≤ p(|s|), and see if B(s, t) = yes

for any of these string. But the existence of B does not provide us with any clear way to

design an efficient algorithm that actually solves X; after all, it is still up to us to find a

string t that will cause B(s, t) to say “yes” — and there are exponentially many possibilities

for t.

268 CHAPTER 7. NP AND COMPUTATIONAL INTRACTABILITY

The class NP. We define NP to be the set of all problems for which there exists an

efficient certifier.1 Here is one thing we can observe immediately.

(7.11) P ⊆ NP.

Proof. Consider a problem X ∈ P; this means that there is a polynomial-time algorithm A

that solves X. To show that X ∈ NP, we must show that there is an efficient certifier B

for X.

This is very easy; we design B as follows. When presented with the input pair (s, t), B

simply returns the value A(s). (Think of B as a very “hands-on” manager who ignores the

proposed proof t and simply solves the problem on its own.) Why is B an efficient certifier

for X? Clearly it has polynomial running time, since A does. If a string s ∈ X, then for

every t of length at most p(|s|), B(s, t) = yes. On the other hand, if s 6∈ X, then for every

t of length at most p(|s|), B(s, t) = no.

We can easily check that the problems introduced in the first section belong to NP:

it is a matter of determining how an efficient certifier for each of them will make use of a

“certificate” string t. For example:

• For the Satisfiability problem, the certificate t is an assignment of truth values to

the variables; the certifier B evaluates the given set of clauses with respect to this

assignment.

• For the Independent Set problem, the certificate t is the identity of a set of at least k

vertices; the certifier B checks that, for these vertices, no edge joins any pair of them.

• For the Traveling Salesman problem, the certificate t is a permutation of the cities; the

certifier checks that the length of the corresponding tour is at most D.

Yet, we cannot prove that any of these problems require more than polynomial time to

solve. Indeed, we cannot prove that there is any problem in NP that does not belong to P.

So in place of a concrete theorem, we can only ask a question:

(7.12) Is there a problem in NP that does not belong to P? Does P = NP?

The problem of whether P = NP is the most fundamental question in the area of

algorithms, and the most famous precisely formulated problem in computer science. The

general consensus is that P 6= NP — and this is taken as a working hypothesis throughout

the field — but there is not a lot of hard technical evidence for it. It is more based on

1The act of searching for a string t that will cause an efficient certifier to accept the input s is often
viewed as a non-deterministic search over the space of possible proofs t; for this reason, NP was named as
an acronym for “non-deterministic polynomial time.”

7.4. NP-COMPLETE PROBLEMS 269

the sense that P = NP would be too amazing to be true. How could there be a general

transformation from the task of checking a solution, to the much harder task of actually

finding a solution? How could there be a general means for designing efficient algorithms

— powerful enough to handle all these hard problems — that we have somehow failed to

discover? More generally, a huge amount of effort has gone into failed attempts at designing

polynomial-time algorithms for hard problems in NP; perhaps the most natural explanation

for this consistent failure is that many or all of these problems simply cannot be solved in

polynomial time.

7.4 NP-complete Problems

In the absence of progress on the P = NP question, people have turned to a related but

more approachable question: What are the hardest problems in NP? Polynomial-time

reducibility gives us a way of addressing this question, and gaining insight into the structure

of NP.

Arguably the most natural way to define a “hardest” problem X is via the following two

properties: (i) X ∈ NP; and (ii) for all Y ∈ NP, Y≤P X. In other words, we require that

every problem in NP can be reduced to X. We will call such an X an NP-complete problem.

The following fact helps to further reinforce our use of the term “hardest.”

(7.13) Suppose X is an NP-complete problem. Then X is solvable in polynomial time if

and only if P = NP.

Proof. Clearly, if P = NP, then X can be solved in polynomial time since it belongs to NP.

Conversely, suppose that X can be solved in polynomial time. If Y is any other problem

in NP, then Y≤P X, and so by (7.1) , it follows that Y can be solved in polynomial time.

Hence NP ⊆ P; combined with (7.11) , we have the desired conclusion.

A crucial consequence of (7.13) is the following: if there is an any problem in NP
that cannot be solved in polynomial time, then no NP-complete problem can be solved in

polynomial time.

Thus, our definition has some very nice properties. But before we get too carried away

in thinking about this notion, we should stop to notice something: it is not at all obvious

that NP-complete problems should even exist. Why couldn’t there exist two incomparable

problems X ′ and X ′′, so that there is no X ∈ NP with the property that X ′≤P X and

X ′′≤P X? To prove a problem is NP-complete, one must show how it could encode any

problem in NP. This is much trickier matter than what we encountered in the previous

section, where we sought to encode specific, individual problems in terms of others.

In 1971, Cook and Levin independently showed how to do this for very natural problems

in NP. Cook’s theorem can be stated as follows.

270 CHAPTER 7. NP AND COMPUTATIONAL INTRACTABILITY

(7.14) Satisfiability is NP-complete.

This was a very fundamental result, and it opened the door to a much fuller understanding

of this class of hardest problems. We will not go into the proof of (7.14) at the moment,

though it is actually not so hard to follow the basic idea that underlies it. Essentially, a

polynomial-time algorithm implemented in any standard model of computation maintains a

polynomial amount of state in the form of the settings of its variables — consider a processor

manipulating bits in registers and memory locations. This state completely describes the

behavior of the algorithm at any point in time. At the end of a polynomial number of steps,

the algorithm returns either “yes” or “no.” To prove (7.14) , one first shows that the state

of the computation of an algorithm can modeled using Boolean variables and clauses. The

proof then considers any problem in NP, and its efficient certifier B(·, ·). It establishes that

the question, “Given s, is there a t so that the algorithm B(s, t) will return ‘yes’?” can be

encoded as a polynomial-size collection of clauses; and that these clauses have a satisfying

assignment if and only if there is such a t.

The key feature of (7.14) for our purposes is this: once we have our hands on a first

NP-complete problem, we can discover many more via the following simple observation.

(7.15) If Y is an NP-complete problem, and X is a problem in NP with the property

that Y≤P X, then X is NP-complete.

Proof. Since X ∈ NP, we need only verify property (ii) of the definition. So let Z be any

problem in NP. We have Z≤P Y , by the NP-completeness of Y , and Y≤P X by assumption.

By (7.10) , it follows that Z≤P X.

In view of the sequence of reductions summarized at the end of the previous section, we

can use (7.15) to conclude:

(7.16) All of the following problems are NP-complete: 3-SAT, Independent Set, Set

Packing, Vertex Cover, and Set Cover.

Proof. Each of these problems has the property that it is in NP, and that SAT can be

reduced to it.

For most of the remainder of this chapter, we will take off in search of further NP-complete

problems. In particular, we will prove that the rest of the problems introduced in the first

section are also NP-complete. As we suggested initially, there is a very practical motivation

in doing this: since it is widely believed that P 6= NP, the discovery that a problem is

NP-complete can be taken as a strong indication that it cannot be solved in polynomial

time.

Given a new problem X, here is the basic strategy for proving it is NP-complete.

7.5. SEQUENCING AND PARTITIONING PROBLEMS 271

1. Prove that X ∈ NP.

2. Choose a problem Y that is known to be NP-complete.

3. Prove that Y≤P X.

We noticed earlier that most of our reductions Y≤P X consist of transforming a given

instance of Y into a single instance of X with the same answer. This is a particular way of

using a black box to solve X; in particular, it requires only a single invocation of the black

box. When we use this style of reduction, we can refine the strategy above to the following

outline of an NP-completeness proof:

1. Prove that X ∈ NP.

2. Choose a problem Y that is known to be NP-complete.

3. Consider an arbitrary instance sY of problem Y , and show how to construct, in poly-

nomial time, an instance sX of problem X that satisfies the following properties:

(a) If sY is a “yes” instance of Y , then sX is a “yes” instance of X.

(b) If sX is a “yes” instance of X, then sY is a “yes” instance of Y .

In other words, this establishes that sY and sX have the same answer.

7.5 Sequencing and Partitioning Problems

We now prove the NP-completeness of the sequencing and partitioning problems that we

discussed in the opening section. There will be two main results here, proving the NP-

completeness of Hamiltonian Cycle and of 3-Dimensional Matching. Fundamentally, they

will follow exactly the style outlined above; we identify known NP-complete problems, and

reduce them to these two problems. In the details, however, the reductions will be distinctly

more complicated than what we have encountered so far. In both cases, we will reduce from

3-SAT, constructing “gadgets” that encode the variables and clauses.

Sequencing Problems.

(7.17) Hamiltonian Cycle is NP-complete.

Proof. We first show that Hamiltonian Cycle is in NP. Given a directed graph G = (V, E),

a certificate that there is a solution would be the ordered list of the vertices on a Hamiltonian

cycle. We could then check, in polynomial time, that this list of vertices does contain each

vertex exactly once, and that each consecutive pair in the ordering is joined by an edge; this

would establish the ordering defines a Hamiltonian cycle.

272 CHAPTER 7. NP AND COMPUTATIONAL INTRACTABILITY

.

.

.

P

P

P

1

2

3

s

t

Figure 7.2: The reduction from 3-SAT to Hamiltonian Cycle: Part 1.

We now show that 3-SAT ≤P Hamiltonian Cycle. Why are we reducing from 3-SAT?

Essentially, faced with Hamiltonian Cycle, we really have no idea what to reduce from; it’s

sufficiently different from all the problems we’ve seen so far that there’s no real basis for

choosing. In such a situation, one strategy is to go all the way back to 3-SAT, since its

combinatorial structure is very basic. Of course, this strategy guarantees at least a certain

level of complexity in the reduction, since we need to encode variables and clauses in the

language of graphs.

So consider an arbitrary instance of 3-SAT, with variables x1, . . . , xn and clauses C1, . . . , Ck.

We must show to solve it, given the ability to detect Hamiltonian cycles in directed graphs.

As always, it helps to focus on the essential ingredients of 3-SAT: We can set the values of

the variables however we want, and we are given three chances to satisfy each clause.

7.5. SEQUENCING AND PARTITIONING PROBLEMS 273

P

P

P

1

2

3

s

t

c
1

.

.

.

Figure 7.3: The reduction from 3-SAT to Hamiltonian Cycle: Part 2.

We begin by describing a graph that contains 2n different Hamiltonian cycles that cor-

respond very naturally to the 2n possible truth assignments to the variables. After this, we

will add nodes to model the constraints imposed by the clauses.

We construct n paths P1, . . . , Pn, where Pi consists of nodes vi1, vi2, . . . , vib for a quantity

b that we take to be somewhat larger than k; say, b = 3k + 3. There are edges from vij to

vi,j+1 and in the other direction from vi,j+1 to vij. Thus, Pi can be traversed “left-to-right”,

from vi1 to vib, or “right-to-left”, from vib to vi1.

We hook these paths together as follows. For each i = 1, 2, . . . , n − 1, we define edges

from vi1 to vi+1,1 and to vi+1,b. We also define edges from vib to vi+1,1 and to vi+1,b. We add

two extra nodes s and t; we define edges from s to v11 and v1b; from vn1 and vnb to t; and

from t to s.

274 CHAPTER 7. NP AND COMPUTATIONAL INTRACTABILITY

The construction up to this point is pictured in Figure 7.2. It’s important to pause here,

and consider what the Hamiltonian cycles in our graph look like. Since only one edge leaves

t, we know that any Hamiltonian cycle C must use the edge (t, s). After entering s, C can

then traverse P1 either left-to-right or right-to-left; regardless of what it does here, it can

then traverse P2 either left-to-right or right-to-left; and so forth, until it finishes traversing

Pn and enters t. In other words, there are exactly 2n different Hamiltonian cycles, and they

correspond to the n independent choices of how to traverse each Pi.

This naturally models the n independent choices of how to set each variables x1, . . . , xn

in the 3-SAT instance. Thus, we will identify each Hamiltonian cycle uniquely with a truth

assignment as follows: if C traverses Pi left-to-right, then xi is set to 1; otherwise, xi is set

to 0.

Now we add nodes to model the clauses; the 3-SAT instance will turn out to be satisfiable

if and only if any Hamiltonian cycle survives. Let’s consider, as a concrete example, a clause

C1 = x1 ∨ x2 ∨ x3.

In the language of Hamiltonian cycles, this clause says, “The cycle should traverse P1 left-to-

right; or it should traverse P2 right-to-left; or it should traverse P3 left-to-right.” So we add

a node c1 as in Figure 7.3 that does just this. (Note that certain edges have been eliminated

from this drawing, for the sake of clarity.) For some value of `, node c1 will have edges from

v1`, v2,`+1, and v3`; it will have edges to v1,`+1, v2,`, and v3,`+1. Thus it can be easily spliced

into any Hamiltonian cycle that traverses P1 left-to-right by visiting node c1 between v1` and

v1,`+1; similarly c1 can be spliced into any Hamiltonian cycle that traverses P2 right-to-left,

or P3 left-to-right. It cannot be spliced into a Hamiltonian cycle that does not do any of

these things.

More generally, we will define a node cj for each clause Cj. We will reserve node positions

3j and 3j + 1 in each path Pi for variables that participate in clause Cj. Suppose clause Cj

contains a term t. Then if t = xi, we will add edges (vi,3j, cj) and (cj, vi,3j+1); if t = xi, we

will add edges (vi,3j+1, cj) and (cj, vi,3j).

This completes the construction of the graph G. Now, following our generic outline for

NP-completeness proofs, we claim that the 3-SAT instance is satisfiable if and only if G has

a Hamiltonian cycle.

First, suppose there is a satisfying assignment for the 3-SAT instance. Then we define

a Hamiltonian cycle following our informal plan above. If xi is assigned 1 in the satisfying

assignment, then we traverse the path Pi left-to-right; otherwise we traverse Pi right-to-left.

For each clause Cj, since it is satisfied by the assignment, there will be at least path Pi in

which we will be going in the “correct” direction relative to the node cj, and we can splice

it into the tour there via edges incident on vi,3j and vi,3j+1.

Conversely, suppose that there is a Hamiltonian cycle C in G. The crucial thing to observe

is the following. If C enters a node cj on an edge from vi,3j , it must depart on an edge to

7.5. SEQUENCING AND PARTITIONING PROBLEMS 275

vi,3j+1. For if not, then vi,3j+1 will have only one unvisited neighbor left, namely vi,3j+2, and

so the tour will not be able to visit this node and still maintain the Hamiltonian property.

Symmetrically, if it enters from vi,3j+1, it must depart immediately to vi,3j . Thus, for each

node cj, the nodes immediately before and after cj in the cycle C are joined by an edge e in

G; thus, if we remove cj from the cycle and insert this edge e for each j, then we obtain a

Hamiltonian cycle C ′ on the subgraph G−{c1, . . . , ck}. This is our original subgraph, before

we added the clause nodes; as we noted above, any Hamiltonian cycle in this subgraph must

traverse each Pi fully in one direction or the other. We thus use C ′ to define the following

truth assignment for the 3-SAT instance. If C ′ traverses Pi left-to-right, then we set xi = 1;

otherwise, we set xi = 0. Since the larger cycle C was able to visit each clause node cj, at

least one of the paths was traversed in the “correct” direction relative to the node cj, and

so the assignment we have defined satisfies all the clauses.

Having established that the 3-SAT instance is satisfiable if and only if G has a Hamilto-

nian cycle, our proof is complete.

It is sometimes useful to think about a variant of Hamiltonian Cycle in which it is not

necessary to return to one’s starting point. Thus, given a directed graph G = (V, E), we say

that a path P in G is a Hamiltonian path if it contains each vertex exactly once. (It is allowed

to start at any node and end at any node, provided it respects this constraint.) Thus, such a

path consists of distinct nodes vi1 , vi2 , . . . , vin in order, such that they collectively constitute

the entire vertex set V ; by way of contrast with a Hamiltonian cycle, it is not necessary for

there to be an edge from vin back to vi1 . Now, the Hamiltonian Path problem asks:

Given a directed graph G, does it contain a Hamiltonian path?

Using the intractability of Hamiltonian Cycle, it is not hard to show

(7.18) Hamiltonian Path is NP-complete.

Proof. First of all, Hamiltonian Path is in NP: a certificate could be a path in G, and

a certifier could then check that it is indeed a path and that it contains each node exactly

once.

One way to show that Hamiltonian Path is NP-complete is to use a reduction from 3-SAT

that is almost identical to the one we used for Hamiltonian Cycle: we construct the same

graph that appears in Figure 7.2, except that we do not include an edge from t to s. If

there is any Hamiltonian path in this modified graph, it must begin at s (since s has no

incoming edges) and end at t (since t has no outgoing edges). With this one change, we can

adapt the argument used in the Hamiltonian Cycle reduction more or less word-for-word to

argue that there is a satisfying assignment for the instance of 3-SAT if and only if there is

a Hamiltonian path.

276 CHAPTER 7. NP AND COMPUTATIONAL INTRACTABILITY

An alternate way to show that Hamiltonian Path is NP-complete is to prove that Hamil-

tonian Cycle ≤P Hamiltonian Path. Given an instance of Hamiltonian Cycle, specified by a

directed graph G, we construct a graph G′ as follows. We choose an arbitrary node v in G,

and replace it with two new nodes v′ and v′′. All edges out of v in G are now out of v′; and

all edges into v in G are now into v′′. More precisely, each edge (v, w) in G is replaced by

an edge (v′, w); and each edge (u, v) in G is replaced by an edge (u, v ′′). This completes the

construction of G′.

We claim that G′ contains a Hamiltonian path if and only if G contains a Hamiltonian

cycle. Indeed, suppose C is a Hamiltonian cycle in G, and consider traversing it beginning

and ending at node v. It is easy to see that the same ordering of nodes forms a Hamiltonian

path in G′ that begins at v′ and ends at v′′. Conversely, suppose P is a Hamiltonian cycle

in G′. Clearly P must begin at v′ (since v′ has no incoming edges) and end at v′′ (since v′′

has no outgoing edges). If we replace v′ and v′′ with v, then this ordering of nodes forms a

Hamiltonian cycle in G.

Armed with our basic hardness results for sequencing problems on directed graphs, we

can move on to show the intractability of Traveling Salesman.

(7.19) Traveling Salesman is NP-complete.

Proof. We have argued earlier that Traveling Salesman is in NP: the certificate is a per-

mutation of the cities, and a certifier checks that the length of the corresponding tour is at

most the given bound.

We now show that Hamiltonian Cycle ≤P Traveling Salesman. Given a directed graph

G = (V, E), we define the following instance of Traveling Salesman. We have a city v ′
i for

each node vi of the graph G. We define d(v′
i, v

′
j) to be 1 if there is an edge (vi, vj) in G, and

we define it to be 2 otherwise.

Now we claim that G has a Hamiltonian Cycle if and only if there is tour of length at

most n in our Traveling Salesman instance. For if G has a Hamiltonian Cycle, then this

ordering of the corresponding cities defines a tour of length n. Conversely, suppose there is a

tour of length at most n. The expression for the length of this tour is a sum of n terms, each

of which is at least 1; thus, it must be the case that all the terms are equal to 1. Hence, each

pair of nodes in G that correspond to consecutive cities on the tour must be connected by

an edge; it follows that the ordering of these corresponding nodes must form a Hamiltonian

cycle.

Note that allowing asymmetric distances in the Traveling Salesman problem (d(v ′
i, v

′
j) 6=

d(v′
j, v

′
i)) played a crucial role; since the graph in the Hamiltonian Cycle instance is directed,

our reduction yielded a Traveling Salesman instance with asymmetric distances.

7.5. SEQUENCING AND PARTITIONING PROBLEMS 277

variable 1 variable 2 variable 3

core

tips

clause 1

Figure 7.4: The reduction from 3-SAT to 3-Dimensional Matching.

In fact, the analogue of the Hamiltonian Cycle problem for undirected graphs is also NP-

complete; although we will not prove this here, it follows via a not-too-difficult reduction

from directed Hamiltonian Cycle. Using this undirected Hamiltonian Cycle problem, an

exact analogue of (7.19) can be used to prove that the Traveling Salesman problem with

symmetric distances is also NP-complete.

Of course, the most famous special case of the Traveling Salesman problem is the one in

which the distances are defined by a set of n points in the plane. It is possible to reduce

Hamiltonian Cycle to this special case as well, though this is much trickier.

Partitioning Problems.

(7.20) 3-Dimensional Matching is NP-complete.

Proof. Not surprisingly, it is easy to prove that 3-Dimensional Matching is in NP. Given a

collection of triples T ⊂ X×Y ×Z, a certificate that there is a solution could be a collection

of triples T ′ ⊆ T . In polynomial time one could verify that each element in X ∪ Y ∪ Z

belongs to exactly one of the triples in T ′.

For the reduction, we again return all the way to 3-SAT. This is perhaps a little more

curious than in the case of Hamiltonian Cycle, since 3-Dimensional Matching bears some

resemblance to both Set Packing and Set Cover— but the partitioning requirement is hard

to encode using either of these problems.

Thus, consider an arbitrary instance of 3-SAT, with variables x1, . . . , xn and clauses

C1, . . . , Ck. We will show to solve it, given the ability to detect perfect three-dimensional

278 CHAPTER 7. NP AND COMPUTATIONAL INTRACTABILITY

matchings.

The overall strategy in this reduction will be similar — at a very high level — to the

approach we followed in the reduction from 3-SAT to Hamiltonian Cycle. We will first

design gadgets that encode the independent choices involved in the truth assignment to each

variable; we will then add gadgets that encode the constraints imposed by the clauses. In

performing this construction, we will initially describe all the elements in the 3-Dimensional

Matching instance simply as “elements,” without trying to specify for each one whether it

comes from X, Y , or Z. At the end, we will observe that they naturally decompose into

these three sets.

Here is the basic gadget associated with variable xi. We define elements Ai = {ai1, ai2, . . . , ai,2k}
that constitute the core of the gadget; we define elements Bi = {bi1, . . . , bi,2k} at the tips

of the gadget. For each j = 1, 2, . . . , 2k, we define a triple tij = (aij, ai,j+1, bij), where we

interpret addition modulo 2k. Three of these gadgets are pictured in Figure 7.4. In gadget

i, we will call a triple tij “even” if j is even, and “odd” if j is odd. In an analogous way, we

will refer to a tip bij as being either “even” or “odd.”

These will be the only triples that contain the elements in Ai, so we can already say

something about how they must be covered in any perfect matching: we must either use all

the even triples in gadget i, or all the odd triples in gadget i. This will be our basic way of

encoding the idea that xi can be set to either 0 or 1; if we select all the even triples, this

will represent setting xi = 0, and if we select all the odd triples, this will represent setting

xi = 1.

Here is another way to view the odd/even decision, in terms of the tips of the gadget. If

we decide to use the even triples, we cover the even tips of the gadget, and leave the odd

tips free. If we decide to use the odd triples, we cover the odd tips of the gadget, and leave

the even tips free. Thus, our decision of how to set xi can be viewed as follows: leaving the

odd tips free corresponds to 0, while leaving the even tips free corresponds to 1. This will

actually be the more useful way to think about things in the remainder of the construction.

So far, we can make this even/odd choice independently for each of the n variable gadgets.

We now add elements to model the clauses, and constrain the assignments we can choose.

As in the proof of (7.17) , let’s consider the example of a clause

C1 = x1 ∨ x2 ∨ x3.

In the language of three-dimensional matchings, it tells us, “The matching on the cores of

the gadgets should leave the even tips of the first gadget free; or it should leave the odd

tips of the second gadget free; or it should leave the even tips of the third gadget free.” So

we add a clause gadget that does precisely this. It consists of a set of two core elements

P1 = {p1, p
′
1}, and three triples that contain them. One has the form (p1, p

′
1, b1j) for an even

tip b1j ; another includes p1, p′1, and an odd tip b2,j′ ; and a third includes p1, p′1, and an even

7.5. SEQUENCING AND PARTITIONING PROBLEMS 279

tip b3,j′′ . These are the only three triples that cover P1, so we know that one of them must

be used; this enforces the clause constraint exactly.

In general, for clause Cj, we create a gadget with two core elements Pj = {pj, p
′
j}, and we

define three triples containing Pj as follows. Suppose clause Cj contains a term t. If t = xi,

we define a triple (pj, p
′
j, bi,2j); if t = xi, we define a triple (pj, p

′
j, bi,2j−1). Note that only

clause gadget j makes use of tips bim with m = 2j or m = 2j − 1; thus, the clause gadgets

will never “compete” with each other for free tips.

We are almost done with the construction, but there’s still one problem. Suppose the set

of clauses has a satisfying assignment. Then we make the corresponding choices of odd/even

for each variable gadget; this leaves at least one free tip for each clause gadget, and so all the

core elements of the clause gadgets get covered as well. The problem is: we haven’t covered

all the tips. We started with n · 2k = 2nk tips; the triples {tij} covered nk of them; and the

clause gadgets covered an additional k of them. This leaves (n− 1)k tips left to be covered.

We handle this problem with a very simple trick: we add (n− 1)k “cleanup gadgets” to

the construction. Cleanup gadget i consists of two core elements Qi = {qi, q
′
i}, and there

is a triple (qi, qi, b) for every tip b in every variable gadget. This is the final piece of the

construction.

Thus, if the set of clauses has a satisfying assignment, then we make the corresponding

choices of odd/even for each variable gadget; as before, this leaves at least one free tip for

each clause gadget. Using the cleanup gadgets to cover the remaining tips, we see that all

core elements in the variable, clause, and cleanup gadgets have been covered, and all tips

have been covered as well.

Conversely, suppose there is a perfect three-dimensional matching in the instance we have

constructed. Then, as we argued above, in each variable gadget the matching chooses either

all the even {tij} or all the odd {tij}. In the former case, we set xi = 0 in the 3-SAT instance;

and in the latter case, we set xi = 1. Now, consider clause Cj; has it been satisfied? Because

the two core elements in Pj have been covered, at least one of the three variable gadgets

corresponding to a term in Cj made the “correct” odd/even decision, and this induces a

variable assignment that satisfies Cj.

This concludes the proof, except for one last thing to worry about: Have we really

constructed an instance of 3-Dimensional Matching? We have a collection of elements, and

triples containing certain of them, but can the elements really be partitioned into appropriate

sets X, Y , and Z of equal size?

Fortunately, the answer is yes. We can define X to be set of all aij with j even, the set

of all pj, and the set of all qi. We can define Y to be set of all aij with j odd, the set of all

p′j, and the set of all q′i. Finally, we can define Z to be the set of all tips bij. It is now easy

to check that each triple consists of one element from each of X, Y , and Z.

280 CHAPTER 7. NP AND COMPUTATIONAL INTRACTABILITY

7.6 The Hardness of Numerical Problems

We now consider problems that involve arithmetic operations on integers. Up till now, there

has not been much ambiguity about how to define the “size” of the input to a problem

— of the many standard representations for graphs or sets, for example, all are related by

polynomial factors. But when we work with numbers, we have to resolve a fundamental

issue: given an input number w, is its size O(log w) or O(w). In other words, do we consider

a 100-bit number as having size roughly 100 or roughly 2100?

In most settings, the standard is that the number w has input size O(log w) — numbers

are represented in base-d notation, for some d > 1. As a result, algorithms that run in time

O(w) are not polynomial-time.

With this in mind, we consider the Subset Sum problem. We have seen an O(nW)

algorithm that uses dynamic programming; we now ask: Could there be an algorithm with

running time polynomial in n and log W ? Or polynomial in n alone?

The following result suggests that this is not likely to be the case.

(7.21) Subset Sum is NP-complete.

Proof. We first show that Subset Sum is in NP. Given natural numbers w1, . . . , wn, and

a target W , a certificate that there is a solution would be the subset wi1, . . . , wik that is

purported to add up to W . In polynomial time, we can compute the sum of these numbers,

and verify that it is equal to W .

We now reduce a known NP-complete problem to Subset Sum. Since we are seeking a set

that adds up to exactly a given quantity (as opposed to being bounded above or below by this

quantity), we look for a combinatorial problem that is based meeting an exact bound. The

3-Dimensional Matching problem is a natural choice; we show that 3-Dimensional Matching

≤P Subset Sum. The trick will be to encode the manipulation of sets via the addition of

integers.

So consider an instance of 3-Dimensional Matching specified by sets X, Y, Z, each of size

n, and a set of m triples T ⊆ X ×Y ×Z. A common way to represent sets is via bit-vectors:

each entry in the vector corresponds to a different element, and it holds a 1 if and only if

the set contains that element. We adopt this type of approach for representing each triple

t = (xi, yj, zk) ∈ T : we construct a number wt with 3n digits that has a 1 in positions i,

n + j, and 2n + k, and a 0 in all other positions. In other words, for some base d > 1,

wt = di−1 + dn+j−1 + d2n+k−1.

Note how taking the union of triples almost corresponds to integer addition: the 1’s fill in

the places where there is an element in any of the sets. But we say “almost” because addition

includes carries: too many 1’s in the same column will “roll over” and produce a non-zero

entry in the next column. This has no analogue in the context of the union operation.

7.6. THE HARDNESS OF NUMERICAL PROBLEMS 281

In the present situation, we handle this problem by a simple trick. We have only m

numbers in all, and each has digits equal to 0 or 1; so if we assume that our numbers are

written in base d = m + 1, then there will be no carries at all.

Thus, we construct the following instance of Subset Sum. For each triple t = (xi, yj, zk) ∈
T , we construct a number wt in base m+1 as defined above. We define W to be the number

in base m + 1 with 3n digits, each of which is equal to 1, i.e., W =
∑3n−1

i=0 (m + 1)i.

We claim that the set T of triples contains a perfect three-dimensional matching if and

only if there is a subset of the numbers {wt} that adds up to W . For suppose there is a perfect

three-dimensional matching consisting of triples t1, . . . , tn. Then in the sum wt1 + · · ·+ wtn ,

there is a single 1 in each of the 3n digit positions, and so the result is equal to W .

Conversely, suppose there exists a set of numbers wt1 , . . . , wtk that adds up to W . Then

since each wti has three 1’s in its representation, and there are no carries, we know that

k = n. It follows that for each of the 3n digit positions, exactly one of the wti has a 1 in

that position. Thus, t1, . . . , tk constitute a perfect three-dimensional matching.

The hardness of Subset Sum can be used to establish the hardness of a range of scheduling

problems — including some that do not obviously involve the addition of numbers. Here is a

nice example, a natural (but much harder) generalization of a scheduling problem we solved

earlier in the course using a greedy algorithm.

Suppose we are given a set of n jobs that must be run on a single machine. Each job i

has a release time ri, a deadline di, and a processing duration ti. We will assume that all of

these parameters are natural numbers. In order to be completed, job i must be allocated a

contiguous slot of ti time units somewhere in the interval [ri, di]. The machine can only run

one job at a time. The question is: can we schedule all jobs so that each completes by its

deadline? We will call this an instance of Scheduling with Release Times and Deadlines.

(7.22) Scheduling with Release Times and Deadlines is NP-complete.

Proof. Given an instance of the problem, a certificate that it is solvable would be a specifica-

tion of the starting time for each job. We could then check that each job runs for a distinct

interval of time, between its release time and deadline. Thus, the problem is in NP.

We now show that Subset Sum is reducible to this scheduling problem. Thus, consider

an instance of Subset Sum with numbers w1, . . . , wn and a target W . In constructing an

equivalent scheduling instance, one is struck initially by the fact that we have so many

parameters to manage — release times, deadlines, durations. The key is to sacrifice most of

this flexibility, producing a “skeletal” instance of the problem that still encodes the Subset

Sum problem.

Let S =
∑n

i=1 wi. We define jobs 1, 2, . . . , n; job i has a release time of 0, a deadline of

S + 1, and a duration of wi. For this set of jobs, we have the freedom to arrange them in

any order, and they will all finish on time.

282 CHAPTER 7. NP AND COMPUTATIONAL INTRACTABILITY

We now further constrain the instance so that the only way to solve it will be to group

together a subset of the jobs whose durations add up to precisely W . To do this, we define

an (n + 1)st job; it has a release time of W , a deadline of W + 1, and a duration of 1.

Now, consider any feasible solution to this scheduling instance. The (n+1)st job must be

run in the interval [W, W +1]. This leaves S available time units between the common release

time and the common deadline; and there are S time units worth of jobs to run. Thus, the

machine must not have any “idle time,” when no jobs are running. In particular, if jobs

i1, . . . , ik are the ones that run before time W , then the corresponding numbers wi1, . . . , wik

in the Subset Sum instance add up to exactly W .

Conversely, if there are numbers wi1, . . . , wik that add up to exactly W , then we can

schedule these before job n + 1, and the remainder after job n + 1; this is a feasible solution

to the scheduling instance.

Caveat: Subset Sum with Polynomially Bounded Numbers. There is a very com-

mon source of pitfalls involving the Subset Sum problem, and while it is closely connected

to the issues we have been discussing already, we feel it is worth discussing explicitly. The

pitfall is the following:

Consider the special case of Subset Sum, with n input numbers, in which W is

bounded by a polynomial function of n. Assuming P 6= NP, this special case is

not NP-complete.

It is not NP-complete for the simple reason that it can be solved in time O(nW), by our

dynamic programming algorithm from earlier in the course; when W is bounded by a poly-

nomial function of n, this is a polynomial-time algorithm.

All this is very clear; so you may ask: Why dwell on it? The reason is that there is a

genre of problem that is often wrongly claimed to be NP-complete (even in published papers)

via reduction to this special case of Subset Sum. Here is a basic example of such a problem,

which we will call Component Grouping:

Given a graph G that is not connected, and a number k, does there exist a subset

of its connected components whose union has size exactly k?

Incorrect Claim: Component Grouping is NP-complete.

Incorrect Proof: Component Grouping is in NP, and we’ll skip the proof of this. We show

that Subset Sum ≤P Component Grouping. Given an instance of Subset Sum with numbers

w1, . . . , wn and target W , we construct an instance of Component Grouping as follows. For

each i, we construct a path Pi of length wi. The graph G will be the union of the paths

P1, . . . , Pn, each of which is a separate connected component. We set k = W . It is clear that

7.7. CO-NP AND THE ASYMMETRY OF NP. 283

G has a set of connected components whose union has size k if and only if some subset of

the numbers w1, . . . , wn adds up to W .

The error here is subtle; in particular, the claim in the last sentence is correct. The

problem is that the construction described above does not establish that Subset Sum ≤P

Component Grouping, because it requires more than polynomial time. In constructing the

input to our black box that solves Component Grouping, we had to build the encoding of a

graph of size w1 + · · ·+ wn, and this takes time exponential in the size of the input to the

Subset Sum instance. In effect, Subset Sum works with the numbers w1, . . . , wn in a very

compact representation, but Component Grouping does not accept “compact” encodings of

graphs.

The problem is more fundamental than the incorrectness of this proof; in fact, Component

Grouping is a problem that can be solved in polynomial time. If n1, n2, . . . , nc denote the

sizes of the connected components of G, we simply use our dynamic programming algorithm

for Subset Sum to decide whether some subset of these numbers {ni} adds up to k. The

running time required for this is O(nk); and since k ≤ n, this is O(n2) time.

Thus, we have discovered a new polynomial-time algorithm by reducing in the other

direction, to a polynomial-time solvable special case of Subset Sum.

7.7 co-NP and the Asymmetry of NP.

To conclude this chapter, let’s return to the definitions underlying the class NP. We’ve

seen that the notion of an efficient certifier doesn’t suggest a concrete algorithm for actually

solving the problem that’s better than brute-force search.

Now, here’s another thing to notice: the definition of efficient certification, and hence of

NP, is fundamentally asymmetric. An input string s is a “yes’ instance if and only if there

exists a short t so that B(s, t) = yes. Negating this statement, we see that an input string

s is a “no” instance if and only if for all short t, it’s the case that B(s, t) = no.

This relates closely to our intuition about NP: when we have a “yes” instance, we can

provide a short proof of this fact. But when we have a “no” instance, no correspondingly

short proof is guaranteed by the definition; the answer is “no” simply because there is no

string that will serve as a proof. In concrete terms, recall our question from earlier in

this chapter: given an unsatisfiable set of clauses, what evidence could we show to quickly

convince you that there is no satisfying assignment?

For every problem X, there is a natural complementary problem X: for all input strings

s, we say s ∈ X if and only if s 6∈ X. Note that if X ∈ P, then X ∈ P, since from an

algorithm A that solves X, we can simply produce an algorithm A that runs A and then

flips its answer.

284 CHAPTER 7. NP AND COMPUTATIONAL INTRACTABILITY

But it is far from clear that if X ∈ NP, it should follow that X ∈ NP. X, rather, has

a different property: for all s, we have s ∈ X if and only if for all t of length at most p(|s|),
B(s, t) = no. This is a fundamentally different definition, and it can’t be worked around by

simply “inverting” the output of the efficient certifier B to produce B. The problem is that

the “exists t” in the definition of NP has become a “for all t”, and this is a serious change.

There is a class of problems parallel to NP that is designed to model this issue; it

is called, naturally enough, co−NP. A problem X belongs to co−NP if and only if the

complementary problem X belongs to NP. We do not know for sure that NP and co−NP
are different; we can only ask

(7.23) Does NP = co−NP?

Again, the widespread belief is that NP 6= co−NP: just because the “yes” instances of

a problem have short proof, it should not automatically follow that the “no” instances have

short proofs as well.

Proving NP 6= co−NP would be an even bigger step than proving P 6= NP, for the

following reason:

(7.24) If NP 6= co−NP, then P 6= NP

Proof. We’ll actually prove the contrapositive statement: P = NP implies NP = co−NP.

Essentially, the point is that P is closed under complementation; so if P = NP, then NP
would be closed under complementation as well. More formally, starting from the assumption

P = NP, we have

X ∈ NP =⇒ X ∈ P =⇒ X ∈ P =⇒ X ∈ NP =⇒ X ∈ co−NP

and

X ∈ co−NP =⇒ X ∈ NP =⇒ X ∈ P =⇒ X ∈ P =⇒ X ∈ NP.

Hence it would follow that NP ⊆ co−NP and co−NP ⊆ NP, whence NP = co−NP.

Good Characterizations: The class NP ∩ co−NP. If a problem X belongs to both

NP and co−NP, then it has the following nice property: when the answer is “yes,” there

is a short proof; and when the answer is “no,” there is also a short proof. Thus, problems

that belong to this intersection NP∩ co−NP are said to have a good characterization, since

there is always a nice certificate for the solution.

This notion corresponds directly to some of the results we have seen earlier in the course.

For example, consider the problem of determining whether a flow network contains a flow

of value at least ν, for some quantity ν. To prove that the answer is “yes”, we could simply

exhibit a flow that achieves this value; this is consistent with the problem belonging to NP.

7.8. EXERCISES 285

But we can also prove the answer is “no”: we can exhibit a cut whose capacity is strictly less

than ν. This duality between “yes” and “no” instances is the crux of the Max-flow Min-Cut

Theorem.

Similarly, Hall’s Theorem for matchings proved that the bipartite perfect matching prob-

lem is in NP∩co−NP: we can either exhibit a perfect matching, or a set of vertices A ⊆ X

such that the total number of neighbors of A is strictly less than |A|.
Now, if a problem X is in P, then it belongs to both NP and co−NP; thus, P ⊆

NP∩co−NP. Interestingly, both our proof of the Max-flow Min-cut Theorem and our proof

of Hall’s Theorem came hand-in-hand with proofs of the stronger results that maximum

flow and bipartite matching are problems in P. Nevertheless, the good characterizations

themselves are so clean that formulating them separately still gives us a lot of conceptual

leverage in reasoning about these problems.

Naturally, one would like to know whether there’s a problem that has a good character-

ization but no polynomial-time algorithm. But this too is an open question:

(7.25) Does P = NP ∩ co−NP?

Unlike questions (7.12) and (7.23), general opinion seems fairly mixed on this one. In part,

this is because there are many cases in which a problem was found to have a non-trivial good

characterization; and then — sometimes many years later — it was also discovered to have

a polynomial-time algorithm. We simply lack a large set of good candidates for problems in

(NP ∩ co−NP)− P.

7.8 Exercises

1. You want to get a break from all the homework and projects that you’re doing, so

you’re planning a large party over the weekend. Many of your friends are involved in

group projects, and you are worried that if you invite a whole group to your party, the

group might start discussing their project instead of enjoying your party.

Before you realize it, you’ve formulated the Party Selection Problem. You have

a set of F friends whom you’re considering to invite, and you’re aware of a set of k

project groups, S1, . . . , Sk, among these friends. The problem is to decide if there is

a set of n of your friends whom you could invite so that not all members of any one

group are invited.

Prove that the Party Selection Problem is NP-complete.

2. Given an undirected graph G = (V, E), a feedback set is a set X ⊆ V with the property

that G − X has no cycles. The undirected feedback set problem asks: given

G and k, does G contain a feedback set of size at most k? Prove that undirected

feedback set is NP-complete.

286 CHAPTER 7. NP AND COMPUTATIONAL INTRACTABILITY

3. Consider a set A = {a1, . . . , an} and a collection B1, B2, . . . , Bm of subsets of A. (That

is, Bi ⊆ A for each i.)

We say that a set H ⊆ A is a hitting set for the collection B1, B2, . . . , Bm if H contains

at least one element from each Bi — that is, if H ∩Bi is not empty for each i. (So H

“hits” all the sets Bi.)

We now define the Hitting Set problem as follows. We are given a set A =

{a1, . . . , an}, a collection B1, B2, . . . , Bm of subsets of A, and a number k. We are

asked: is there a hitting set H ⊆ A for B1, B2, . . . , Bm so that the size of H is at most

k?

Prove that Hitting Set is NP-complete.

4. Suppose you’re helping to organize a summer sports camp, and the following problem

comes up. The camp is supposed to have at least one counselor who’s skilled at each of

the n sports covered by the camp (baseball, volleyball, and so on). They have received

job applications from m potential counselors. For each of the n sports, there is some

subset of the m applicants that is qualified in that sport. The question is: for a given

number k < m, is it possible to hire at most k of the counselors and have at least one

counselor qualified in each of the n sports? We’ll call this the Efficient Recruiting

Problem.

Show that Efficient Recruiting Problem is NP-complete.

5. We’ve seen the Interval Scheduling problem in class; here we consider a computationally

much harder version of it that we’ll call Multiple Interval Scheduling. As before,

you have a processor that is available to run jobs over some period of time. (E.g. 9

AM to 5 PM.)

People submit jobs to run on the processor; the processor can only work on one job

at any single point in time. Jobs in this model, however, are more complicated than

we’ve seen in the past: each job requires a set of intervals of time during which it needs

to use the processor. Thus, for example, a single job could require the processor from

10 AM to 11 AM, and again from 2 PM to 3 PM. If you accept this job, it ties up your

processor during those two hours, but you could still accept jobs that need any other

time periods (including the hours from 11 to 2).

Now, you’re given a set of n jobs, each specified by a set of time intervals, and you

want to answer the following question: For a given number k, is it possible to accept

at least k of the jobs so that no two of the accepted jobs have any overlap in time?

Show that Multiple Interval Scheduling is NP-complete.

7.8. EXERCISES 287

6. Since the 3-Dimensional Matching problem is NP-complete, it is natural to expect

that the corresponding 4-Dimensional Matching problem is at least as hard. Let

us define 4-Dimensional Matching as follows. Given sets W , X, Y , and Z, each of

size n, and a collection C of ordered 4-tuples of the form (wi, xj, yk, z`), do there exist

n 4-tuples from C so that no two have an element in common?

Prove that 4-Dimensional Matching is NP-complete.

7. The following is a version of the Independent Set problem. You are given a graph

G = (V, E) and an integer k. For this problem, we will call a set I ⊂ V strongly

independent if for any two nodes v, u ∈ I, the edge (v, u) does not belong to E, and

there is also no path of 2 edges from u to v, i.e., there is no node w such that both

(u, w) ∈ E and (w, v) ∈ E. The Strongly Independent Set problem is to decide

whether G has a strongly independent set of size k.

Prove that the Strongly Independent Set problem is NP-complete.

8. Consider the problem of reasoning about the identity of a set from the size of its

intersections with other sets. You are given a finite set U of size n, and a collection

A1, . . . , Am of subsets of U . You are also given numbers c1, . . . , cm. The question is:

does there exist a set X ⊂ U so that for each i = 1, 2, . . . , m, the cardinality of X ∩Ai

is equal to ci? We will call this an instance of the Intersection Inference problem, with

input U , {Ai}, and {ci}.
Prove that Intersection Inference is NP-complete.

9. You’re consulting for a small high-tech company that maintains a high-security com-

puter system for some sensitive work that it’s doing. To make sure this system is not

being used for any illicit purposes, they’ve set up some logging software that records

the IP addresses that all their users are accessing over time. We’ll assume that each

user accesses at most one IP address in any given minute; the software writes a log

file that records, for each user u and each minute m, a value I(u, m) that is equal to

the IP address (if any) accessed by user u during minute m. It sets I(u, m) to the null

symbol ⊥ if u did not access any IP address during minute m.

The company management just learned that yesterday, the system was used to launch

a complex attack on some remote sites. The attack was carried out by accessing t

distinct IP addresses over t consecutive minutes: in minute 1, the attack accessed

address i1; in minute 2, it accessed address i2; and so on, up to address it in minute t.

Who could have been responsible for carrying out this attack? The company checks

the logs, and finds to its surprise that there’s no single user u who accessed each of

the IP addresses involved at the appropriate time; in other words, there’s no u so that

I(u, m) = im for each minute m from 1 to t.

288 CHAPTER 7. NP AND COMPUTATIONAL INTRACTABILITY

So the question becomes: what if there were a small coalition of k users that collectively

might have carried out the attack? We will say a subset S of users is a suspicious

coalition if for each minute m from 1 to t, there is at least one user u ∈ S for which

I(u, m) = im. (In other words, each IP address was accessed at the appropriate time

by at least one user in the coalition.)

The Suspicious Coalition problem asks: given the collection of all values I(u, m), and

a number k, is there a suspicious coalition of size at most k?

10. As some people remember, and many have been told, the idea of hypertext predates the

World Wide Web by decades. Even hypertext fiction is a relatively old idea — rather

than being constrained by the linearity of the printed page, you can plot a story that

consists of a collection of interlocked virtual “places” joined by virtual “passages.”2

So a piece of hypertext fiction is really riding on an underlying directed graph; to be

concrete (though narrowing the full range of what the domain can do) we’ll model this

as follows.

Let’s view the structure of a piece of hypertext fiction as a directed graph G = (V, E).

Each node u ∈ V contains some text; when the reader is currently at u, they can

choose to follow any edge out of u; and if they choose e = (u, v), they arrive next at

the node v. There is a start node s ∈ V where the reader begins, and an end node

t ∈ V ; when the reader first reaches t, the story ends. Thus, any path from s to t is a

valid plot of the story. Note that, unlike a Web browser, there is not necessarily a way

to go back; once you’ve gone from u to v, you might not be able to ever return to u.

In this way, the hypertext structure defines a huge number of different plots on the same

underlying content; and the relationships among all these possibilities can grow very

intricate. Here’s a type of problem one encounters when reasoning about a structure

like this. Consider a piece of hypertext fiction built on a graph G = (V, E) in which

there are certain crucial thematic elements — love; death; war; an intense desire to

major in computer science; and so forth. Each thematic element i is represented by

a set Ti ⊆ V consisting of the nodes in G at which this theme appears. Now, given

a particular set of thematic elements, we may ask: is there a valid plot of the story

in which each of these elements is encountered? More concretely, given a directed

graph G, with start node s and end node t, and thematic elements represented by

sets T1, T2, . . . , Tk, the Plot Fulfillment problem asks: is there a path from s to t that

contains at least one node from each of the sets Ti?

Prove that Plot Fulfillment is NP-complete.

11. (We thank Maverick Woo for the idea of the Star Wars theme.) There are those who

2See e.g. http://www.eastgate.com

7.8. EXERCISES 289

insist that the initial working title for Episode XXVII of the Star Wars series was “P

= NP” — but this is surely apocryphal. In any case, if you’re so inclined, it’s easy

to find NP-complete problems lurking just below the surface of the original Star Wars

movies.

Consider the problem faced by Luke, Leia, and friends as they tried to make their way

from the Death Star back to the hidden Rebel base. We can view the galaxy as an

undirected graph G = (V, E), where each node is a star system and an edge (u, v)

indicates that one can travel directly from u to v. The Death Star is represented by a

node s, the hidden Rebel base by a node t. Certain edges in this graph represent longer

distances than others; thus, each edge e has an integer length `e ≥ 0. Also, certain

edges represent routes that are more heavily patrolled by evil Imperial spacecraft; so

each edge e also has an integer risk re ≥ 0, indicating the expected amount of damage

incurred from special-effects-intensive space battles if one traverses this edge.

It would be safest to travel through the outer rim of the galaxy, from one quiet upstate

star system to another; but then one’s ship would run out of fuel long before getting to

its destination. Alternately, it would be quickest to plunge through the cosmopolitan

core of the galaxy; but then there would be far too many Imperial spacecraft to deal

with. In general, for any path P from s to t, we can define its total length to be the

sum of the lengths of all its edges; and we can define its total risk to be the sum of the

risks of all its edges.

So Luke, Leia, and company are looking at a complex type of shortest-path problem

in this graph: they need to get from s to t along a path whose total length and total

risk are both reasonably small. In concrete terms, we can phrase the Galactic Shortest

Path problem as follows: given a set-up as above, and integer bounds L and R, is there

a path from s to t whose total length is at most L, and whose total risk is at most R?

Prove that Galactic Shortest Path is NP-complete.

12. The mapping of genomes involves a large array of difficult computational problems.

At the most basic level, each of an organism’s chromosomes can be viewed as an

extremely long string (generally containing millions of symbols) over the four-letter

alphabet {a, c, g, t}. One family of approaches to genome mapping is to generate a

large number of short, overlapping snippets from a chromosome, and then to infer the

full long string representing the chromosome from this set of overlapping substrings.

While we won’t be able to go into these string assembly problems in full detail, here’s

a simplified problem that suggests some of the computational difficulty one encounters

in this area. Suppose we have a set S = {s1, s2, . . . , sn} of short DNA strings over

a q-letter alphabet; and each string si has length 2`, for some number ` ≥ 1. We

also have a library of additional strings T = {t1, t2, . . . , tm} over the same alphabet;

290 CHAPTER 7. NP AND COMPUTATIONAL INTRACTABILITY

each of these also has length 2`. In trying to assess whether the string sb might come

directly after the string sa in the chromosome, we will look to see whether the library

T contains a string tk so that the first ` symbols in tk are equal to the last ` symbols in

sa, and the last ` symbols in tk are equal to the first ` symbols in sb. If this is possible,

we will say that tk corroborates the pair (sa, sb). (In other words, tk could be a snippet

of DNA that straddled the region in which sb directly followed sa.)

Now, we’d like to concatenate all the strings in S in some order, one after the other with

no overlaps, so that each consecutive pair is corroborated by some string in the library

T . That is, we’d like to order the strings in S as si1 , si2, . . . , sin, where i1, i2, . . . , in is

a permutation of {1, 2, . . . , n}, so that for each j = 1, 2, . . . , n− 1, there is a string tk

that corroborates the pair (sij , sij+1
). (The same string tk can be used for more than

one consecutive pair in the concatenation.) If this is possible, we will say that the set

S has a perfect assembly.

Given sets S and T , the Perfect Assembly problem asks: does S have an assembly with

respect to T ? Prove that Perfect Assembly is NP-complete.

Example. Suppose the alphabet is {a, c, g, t}, the set S = {ag, tc, ta}, and the set

T = {ac, ca, gc, gt}. (So each string has length 2` = 2.) Then the answer to this

instance of Perfect Assembly is “yes” — we can concatanate the three strings in S in

the order tcagta. (So si1 = s2, si2 = s1, and si3 = s3.) In this order, the pair (si1 , si2)

is corroborated by the string ca in the library T , and the pair (si2 , si3) is corroborated

by the string gt in the library T .

13. Suppose you’re consulting for a company that’s setting up a Web site. They want to

make the site publically accessible, but only in a limited way; people should be allowed

to navigate through the site provided they don’t become too “intrusive.”

We’ll model the site as a directed graph G = (V, E), in which the nodes represent Web

pages and the edges represent directed hyperlinks. There is a distinguished entry node

s ∈ V . The company plans to regulate the flow of traffic as follows. They’ll define a

collection of restricted zones Z1, . . . , Zk, each of which is a subset of V . These zones

Zi need not be disjoint from one another. The company has a mechanism to track the

path followed by any user through the site; if the user visits a single zone more than

once, an alarm is set off and the user’s session is terminated.

The company wants to be able to answer a number of questions about its monitoring

system; among them is the following evasive path problem: Given G, Z1, . . . , Zk,

s ∈ V , and a destination node t ∈ V , is there an s-t path in G that does not set off an

alarm? (I.e. it passes through each zone at most once.) Prove that evasive path is

NP-complete.

7.8. EXERCISES 291

14. Consider an instance of the Satisfiability problem, specified by clauses C1, . . . , Ck over

a set of Boolean variables x1, . . . , xn. We say that the instance is monotone if each

term in each clause consists of a non-negated variable; that is, each term is equal to xi,

for some i, rather than xi. Monotone instances of Satisfiability are very easy to solve:

they are always satisfiable, by setting each variable equal to 1.

For example, suppose we have the three clauses

(x1 ∨ x2), (x1 ∨ x3), (x2 ∨ x3).

This is monotone, and indeed the assignment that sets all three variables to 1 satisfies

all the clauses. But we can observe that this is not the only satisfying assignment; we

could also have set x1 and x2 to 1, and x3 to 0. Indeed, for any monotone instance, it

is natural to ask how few variables we need to set to 1 in order to satisfy it.

Given a monotone instance of Satisfiability, together with a number k, the problem of

Monotone Satisfiability with Few True Variables asks: is there a satisfying assignment

for the instance in which at most k variables are set to 1? Prove this problem is

NP-complete.

15. Suppose you’re consulting for a group that manages a high-performance real-time sys-

tem in which asynchronous process make use of shared resources. Thus, the system has

a set of n processes and a set of m resources. At any given point in time, each process

specifies a set of resources that it requests to use. Each resource might be requested

by many processes at once; but it can only be used by a single process at a time.

Your job is to allocate resources to processes that request them. if a process is allocated

all the resources it requests, then it is active; otherwise it is blocked. You want to

perform the allocation so that as many processes as possible are active. Thus, we

phrase the Resource Reservation problem as follows: given a set of process and

resources, the set of requested resources for each process, and a number k, is it possible

to allocate resources to processes so that at least k processes will be active?

Show that Resource Reservation is NP-complete.

16. You’re configuring a large network of workstations, which we’ll model as an undirected

graph G — the nodes of G represent individual workstations and the edges repre-

sent direct communication links. The workstations all need access to a common core

database, which contains data necessary for basic operating system functions.

You could replicate this database on each workstation — then lookups would be very

fast from any workstation, but you’d have to manage a huge number of copies. Al-

ternately, you could keep a single copy of the database on one workstation and have

the remaining workstations issue requests for data over the network G; but this could

292 CHAPTER 7. NP AND COMPUTATIONAL INTRACTABILITY

result in large delays for a workstation that’s many hops away from the site of the

database.

So you decide to look for the following compromise: you want to maintain a small

number of copies, but place them so that any workstation either has a copy of the

database, or is connected by a direct link to a workstation that has a copy of the

database.

Thus, we phrase the Server Placement problem as follows: Given the network

G, and a number k, is there a way to place k copies of the database at k different

workstations so that every workstation either has a copy of the database, or is connected

by a direct link to a workstation that has a copy of the database?

17. Three of your friends work for a large computer-game company, and they’ve been

working hard for several months now to get their proposal for a new game, Droid

Trader!, approved by higher management. In the process, they’ve had to endure all

sorts of discouraging comments, ranging from, “You’re really going to have to work

with Marketing on the name,” to, “Why don’t you emphasize the parts where people

get to kick each other in the head?”

At this point, though, it’s all but certain that the game is really heading into pro-

duction, and your friends come to you with one final issue that’s been worrying them:

What if the overall premise of the game is too simple, so that players get really good

at it and become bored too quickly?

It takes you a while, listening to their detailed description of the game, to figure out

what’s going on; but once you strip away the space battles, kick-boxing interludes,

and Stars-Wars-inspired-pseudo-mysticism, the basic idea is as follows. A player in the

game controls a spaceship and is trying to make money buying and selling droids on

different planets. There are n different types of droids, and k different planets. Each

planet p has the following properties: there are s(j, p) ≥ 0 droids of type j available for

sale, at a fixed price of x(j, p) ≥ 0 each, for j = 1, 2, . . . , n; and there is a demand for

d(j, p) ≥ 0 droids of type j, at a fixed price of y(j, p) ≥ 0 each. (We will assume that

a planet does not simultaneously have both a positive supply and a positive demand

for a single type of droid; so for each j, at least one of s(j, p) or d(j, p) is equal to 0.)

The player begins on planet s with z units of money, and must end at planet t; there

is a directed acyclic graph G on the set of planets, such that s-t paths in G correspond

to valid routes by the player. (G is chosen to be acyclic to prevent arbitrarily long

games.) For a given s-t path P in G, the player can engage in transactions as follows:

whenever the player arrives at a planet p on the path P , she can buy up to s(j, p)

droids of type j for x(j, p) units of money each (provided she has sufficient money on

hand) and/or sell up to d(j, p) droids of type j for y(j, p) units of money each (for

7.8. EXERCISES 293

j = 1, 2, . . . , n). The player’s final score is the total amount of money she has on hand

when she arrives at planet t. (There are also bonus points based on space battles and

kick-boxing, which we’ll ignore for the purposes of formulating this question . . .)

So basically, the underlying problem is to achieve a high score. In other words, given

an instance of this game, with a directed acyclic graph G on a set of planets, all the

other parameters described above, and also a target bound B, is there an path P in

G and a sequence of transactions on P so that the player ends with a final score that

is at least B? We’ll call this an instance of the High-Score-on-Droid-Trader! problem,

or HSoDT! for short.

Prove that HSoDT! is NP-complete, thereby guaranteeing (assuming P 6= NP) that

there isn’t a simple strategy for racking up high scores on your friends’ game.

18. (∗) Suppose you’re consulting for one of the many companies in New Jersey that

designs communication networks, and they come to you with the following problem.

They’re studying a specific n-node communication network, modeled as a directed

graph G = (V, E). For reasons of fault-tolerance they want to divide up G into as

many virtual “domains” as possible: a domain in G is a set X of nodes, of size at least

2, so that for each pair of nodes u, v ∈ X there are directed paths from u to v and v

to u that are contained entirely in X.

Show that the following Domain Decomposition problem is NP-complete. Given a

directed graph G = (V, E) and a number k, can V be partitioned into at least k sets,

each of which is a domain?

19. You and a friend have been trekking through various far-off parts of the world, and

have accumulated a big pile of souvenirs. At the time you weren’t really thinking about

which of these you were planning to keep, and which your friend was going to keep,

but now the time has come to divide everything up.

Here’s a way you could go about doing this. Suppose there are n objects, labeled

1, 2, . . . , n, and object i has an agreed-upon value xi. (We could think of this, for

example, as a monetary re-sale value; the case in which you and your friend don’t

agree on the value is something we won’t pursue here.) One reasonable way to divide

things would be to look for a partition of the objects into two sets, so that the total

value of the objects in each set is the same.

This suggests solving the following Number Partitioning problem. You are given pos-

itive integers x1, . . . , xn; you want to decide whether the numbers can be partitioned

into two sets S1 and S2 with the same sum:

∑

xi∈S1

xi =
∑

xj∈S2

xj.

294 CHAPTER 7. NP AND COMPUTATIONAL INTRACTABILITY

Show that Number Partitioning is NP-complete.

20. Consider the following problem. You are given positive integers x1, . . . , xn, and num-

bers k and B. You want to know whether it is possible to partition the numbers {xi}
into k sets S1, . . . , Sk so that the squared sums of the sets add up to at most B:

k
∑

i=1





∑

xj∈Si

xj





2

≤ B.

Show that this problem is NP-complete.

21. You are given a graph G = (V, E) with weights we on its edges e ∈ E. The weights

can be negative or positive. The Zero-weight-cycle problem is to decide if there

is a simple cycle in G so that the sum of the edge weights on this cycle is exactly 0.

Prove that this problem is NP-complete.

22. Consider the following version of the Steiner tree problem, which we’ll refer to as

graphical steiner tree. You are given an undirected graph G = (V, E), a set

X ⊆ V of vertices, and a number k. You want to decide whether there is a set

F ⊆ E of at most k edges so that in the graph (V, F), X belongs to a single connected

component.

Show that graphical steiner tree is NP-complete.

23. The Directed Disjoint Paths problem is defined as follows. We are given a directed

graph G and k pairs of nodes (s1, t1), (s2, t2), . . . , (sk, tk). The problem is to decide

whether there exist node-disjoint paths P1, P2, . . . , Pk so that Pi goes from si to ti.

Show that Directed Disjoint Paths is NP-complete.

24. Given a directed graph G a cycle cover is a set of node-disjoint cycles so that each

node of G belongs to a cycle. The Cycle Cover problem asks whether a given directed

graph has a cycle cover.

(a) Show that the cycle cover problem can be solved in polynomial time. (Hint: use

bipartite matching.)

(b)(∗) Suppose we require each cycle to have at most 3 edges. Show that determining

whether a graph G has such a cycle cover is NP-complete.

25. Given two undirected graphs G and H, we say that H is a subgraph of G if we can

obtain a copy of the graph H by starting from G and deleting some of the vertices and

edges.

The Subgraph Containment problem is defined as follows: given G and H, is H a

subgraph of G? Show that Subgraph Containment is NP-complete.

7.8. EXERCISES 295

26. Let G = (V, E) be a graph with n nodes and m edges. If E ′ ⊂ E, we say that the

coherence of E ′ is equal to n minus the number of connected components of the graph

(V, E ′). (So a graph with no edges has coherence 0, while a connected graph has

coherence n− 1.)

We are given subsets E1, E2, . . . , Em of E. Our goal is to choose k of these sets —

Ei1 , . . . , Eik — so that the coherence of the union Ei1 ∪ · · · ∪Eik is as large as possible.

Given this input, and a bound C, prove that it is NP-complete to decide whether it is

possible to achieve a coherence of at least C.

27. Let G = (V, E) be a bipartite graph; suppose its nodes are partitioned into sets X and

Y so that each edge has one end in X and the other in Y . We define an (a, b)-skeleton

of G to be a set of edges E ′ ⊆ E so that at most a nodes in X are incident to an edge

in E ′, and at least b nodes in Y are incident to an edge in E ′.

Show that, given a bipartite graph G and numbers a and b, it is NP-complete to decide

whether G has an (a, b)-skeleton.

28. After a few too many days immersed in the popular entrepreneurial self-help book

Mine Your Own Business, you’ve come to the realization that you need to upgrade

your office computing system. This, however, leads to some tricky problems . . .

In configuring your new system, there are k components that must be selected: the

operating system, the text editing software, the e-mail program, and so forth; each

is a separate component. For the jth component of the system, you have a set Aj of

options; and a configuration of the system consists of a selection of one element from

each of the sets of options A1, A2, . . . , Ak.

Now, the trouble arises because certain pairs of options from different sets may not be

compatible: we say that option xi ∈ Ai and option xj ∈ Aj form an incompatible pair

if a single system cannot contain them both. (For example, Linux (as an option for

the operating system) and Word (as an option for the text-editing software) form an

incompatible pair.) We say that a configuration of the system is fully compatible if it

consists of elements x1 ∈ A1, x2 ∈ A2, . . . xk ∈ Ak such that none of the pairs (xi, xj)

is an incompatible pair.

We can now define the Fully Compatible Configuration (FCC) problem. An instance

of FCC consists of the sets of options A1, A2, . . . , Ak, and a set P of incompatible pairs

(x, y), where x and y are elements of different sets of options. The problem is to decide

whether there exists a fully compatible configuration: a selection of an element from

each option set so that no pair of selected elements belongs to the set P .

296 CHAPTER 7. NP AND COMPUTATIONAL INTRACTABILITY

Example. Suppose k = 3, and the sets A1, A2, A3 denote options for the operating

system, the text editing software, and the e-mail program respectively. We have

A1 = {Linux, Windows NT},

A2 = {emacs, Word},
A3 = {Outlook, Eudora, rmail},

with the set of incompatible pairs equal to

P = {(Linux, Word), (Linux, Outlook), (Word, rmail)}.

Then the answer to the decision problem in this instance of FCC is “yes” — for example,

the choices Linux ∈ A1, emacs ∈ A2, rmail ∈ A3 is a fully compatible configuration

according to the above definitions.

Prove that Fully Compatible Configuration is NP-complete.

29. For functions g1, . . . , g`, we define the function max(g1, . . . , g`) via

[max(g1, . . . , g`)](x) = max(g1(x), . . . , g`(x)).

Consider the following problem. You are given n piecewise linear, continuous functions

f1, . . . , fn defined over the interval [0, t] for some integer t. You are also given an integer

B. You want to decide: do there exist k of the functions fi1, . . . , fik so that

∫ t

0
[max(fi1 , . . . , fik)](x) dx ≥ B?

Prove that this problem is NP-complete.

30. Consider the following Broadcast Time problem. We are given a directed graph G =

(V, E), with a designated node r ∈ V and a designated set of “target nodes” T ⊆
V − {r}. Each node v has a switching time sv, which is a positive integer.

At time 0, the node r generates a message that it would like every node in T to receive.

To accomplish this, we want to find a scheme whereby r tells some of its neighbors (in

sequence), who in turn tell some of their neighbors, and so on, until every node in T has

received the message. More formally, a broadcast scheme is defined as follows. Node r

may send a copy of the message to one of its neighbors at time 0; this neighbor will

receive the message at time 1. In general, at time t ≥ 0, any node v that has already

received the message may send a copy of the message to one of its neighbors, provided it

has not sent a copy of the message in any of the time steps t−sv +1, t−sv +2, . . . , t−1.

(This reflects the role of the switching time; v needs a pause of sv − 1 steps between

7.8. EXERCISES 297

successive sendings of the message. Note that if sv = 1, then no restriction is imposed

by this.)

The completion time of the broadcast scheme is the minimum time t by which all nodes

in T have received the message. The Broadcast Time problem is the following: given

the input described above, and a bound b, is there a broadcast scheme with completion

time at most b?

Prove that Broadcast Time is NP-complete.

Example. Suppose we have a directed graph G = (V, E), with V = {r, a, b, c}; edges

(r, a), (a, b), (r, c); the set T = {b, c}; and switching time sv = 2 for each v ∈ V . Then

a broadcast scheme with minimum completion time would be as follows: r sends the

message to a at time 0; a sends the message to b at time 1; r sends the message to c at

time 2; and the scheme completes at time 3 when c receives the message. (Note that

a can send the message as soon as it receives it at time 1, since this is its first sending

of the message; but r cannot send the message at time 1 since sr = 2 and it sent the

message at time 0.)

31. Suppose that someone gives you a black-box algorithm A that takes an undirected

graph G = (V, E), and a number k, and behaves as follows.

• If G is not connected, it simply returns “G is not connected.”

• If G is connected and has an independent set of size at least k, it returns “yes.”

• If G is connected and does not have an independent set of size at least k, it returns

“no.”

Suppose that the algorithm A runs in time polynomial in the size of G and k.

Show how, using calls to A, you could then solve the Indepedent Set problem in

polynomial time: Given an arbitrary undirected graph G, and a number k, does G

contain an independent set of size at least k?

32. Given a set of finite binary strings S = {s1, . . . , sk}, we say that a string u is a

concatenation over S if it is equal to si1si2 · · · sit for some indices i1, . . . , it ∈ {1, . . . , k}.
A friend of yours is considering the following problem: Given two sets of finite binary

strings, A = {a1, . . . , am} and B = {b1, . . . , bn}, does there exist any string u so that

u is both a concatenation over A and a concatenation over B?

You friend announces, “At least the problem is in NP, since I would just have to exhibit

such a string u in order to prove the answer is ‘yes.’ ” You point out — politely, of

course — that this is a completely inadequate explanation; how do we know that the

298 CHAPTER 7. NP AND COMPUTATIONAL INTRACTABILITY

shortest such string u doesn’t have length exponential in the size of the input, in which

case it would not be a polynomial-size certificate?

However, it turns out that this claim can be turned into a proof of membership in NP.

Specifically, prove the following statement:

If there is a string u that is a concatenation over both A and B, then there

is such a string whose length is bounded by a polynomial in the sum of the

lengths of the strings in A ∪B.

33. Your friends at WebExodus have recently been doing some consulting work for com-

panies that maintain large, publicly accessible Web sites — contractual issues prevent

them from saying which ones — and they’ve come across the following Strategic

Advertising problem.

A company comes to them with the map of a Web site, which we’ll model as a directed

graph G = (V, E). The company also provides a set of t trails typically followed by

users of the site; we’ll model these trails as directed paths P1, P2, . . . , Pt in the graph

G. (I.e. each Pi is a path in G.)

The company wants WebExodus to answer the following question for them: Given

G, the paths {Pi}, and a number k, is it possible to place advertisements on at most

k of the nodes in G, so that each path Pi includes at least one node containing an

advertisement? We’ll call this the Strategic Advertising problem, with input G,

{Pi : i = 1, . . . , t}, and k.

Your friends figure that a good algorithm for this will make them all rich; unfortunately,

things are never quite this simple . . .

(a) Prove that Strategic Advertising is NP-complete.

(b) Your friends at WebExodus forge ahead and write a pretty fast algorithm S that

produces yes/no answers to arbitrary instances of the Strategic Advertising prob-

lem. You may assume that the algorithm S is always correct.

Using the algorithm S as a black box, design an algorithm that takes input G, {Pi},
and k as in part (a), and does one of the following two things:

• Outputs a set of at most k nodes in G so that each path Pi includes at least one

of these nodes, or

• Outputs (correctly) that no such set of at most k nodes exists.

Your algorithm should use at most a polynomial number of steps, together with at

most a polynomial number of calls to the algorithm S.

7.8. EXERCISES 299

34. Consider the following problem. You are managing a communication network, modeled

by a directed graph G = (V, E). There are c users who are interested in making use of

this network. User i (for each i = 1, 2, . . . , c) issues a request to reserve a specific path

Pi in G on which to transmit data.

You are interested in accepting as many of these path requests as possible, subject to

the following restriction: if you accept both Pi and Pj, then Pi and Pj cannot share

any nodes.

Thus, the Path Selection problem asks: given a directed graph G = (V, E), a set of

requests P1, P2, . . . , Pc — each of which must be a path in G — and a number k, is it

possible to select at least k of the paths so that no two of the selected paths share any

nodes?

Prove that Path Selection is NP-complete.

35. A store trying to analyze the behavior of its customers will often maintain a two-

dimensional array A, where the rows correspond to its customers and the columns

correspond to the products it sells. The entry A[i, j] specifies the quantity of product

j that has been purchased by customer i.

Here’s a tiny example of such an array A.

liquid
detergent

beer diapers cat litter

Raj 0 6 0 3
Alanis 2 3 0 0
Chelsea 0 0 0 7

One thing that a store might want to do with this data is the following. Let us say

that a subset S of the customers is diverse if no two of the of the customers in S have

ever bought the same product. (I.e. for each product, at most one of the customers

in S has ever bought it.) A diverse set of customers can be useful, for example, as a

target pool for market research.

We can now define the Diverse Subset problem as following: given an m× n array

A as defined above, and a number k ≤ m, is there a subset of at least k of customers

that is diverse?

Show that Diverse Subset is NP-complete.

300 CHAPTER 7. NP AND COMPUTATIONAL INTRACTABILITY

36. A combinatorial auction is a particular mechanism developed by economists for selling

a collection of items to a collection of potential buyers. (The Federal Communica-

tions Commission has studied this type of auction for assigning stations on the radio

spectrum to broadcasting companies.)

Here’s a simple type of combinatorial auction. The are n items for sale, labeled

I1, . . . , In. Each item is indivisible, and can only be sold to one person. Now, m

different people place bids: the ith bid specifies a subset Si of the items, and an offer-

ing price xi that the offeror of this bid is willing to pay for the items in the set Si, as

a single unit. (We’ll represent this bid as the pair (Si, xi).)

An auctioneer now looks at the set of all m bids; she chooses to accept some of these

bids, and reject the others. The offeror of an accepted bid gets to take all the items in

Si. Thus, the rule is that no two accepted bids can specify sets that contain a common

item, since this would involve giving the same item to two different people.

The auctioneer collects the sum of the offering prices of all accepted bids. (Note

that this is a “one-shot” auction; there is no opportunity to place further bids.) The

auctioneer’s goal is to collect as much money as possible.

Thus, the Combinatorial Auction problem asks: Given items I1, . . . , In, bids (S1, x1), . . . , (Sm, xm),

and a bound B, is there a collection of bids that the auctioneer can accept so as to

collect an amount of money that is at least B?

Example. Suppose an auctioneer decides to use this method to sell some excess

computer equipment. There are four items labeled “PC,” “monitor,” “printer”, and

“modem”; and three people place bids. Define

S1 = {PC, monitor}, S2 = {PC, printer}, S3 = {monitor, printer, modem}

and

x1 = x2 = x3 = 1.

The bids are (S1, x1), (S2, x2), (S3, x3) and the bound B is equal to 2.

Then the answer to this instance is “no”: The auctioneer can accept at most one of

the bids (since any two bids have a desired item in common), and this results in a total

monetary value of only 1.

Prove that Combinatorial Auction is NP-complete.

Chapter 8

PSPACE

8.1 PSPACE

Throughout the course, one of the main issues has been the notion of time as a computational

resource. It was this notion that formed the basis for adopting polynomial time as our working

definition of efficiency; and, implicitly, it underlies the distinction between P and NP. To

some extent, we have also been concerned with the space — i.e. memory — requirements

of algorithms. In this chapter, we investigate a class of problems defined by treating space

as the fundamental computational resource. In the process, we develop a natural class of

problems that appear to be even harder than NP and co−NP.

The basic class we study is PSPACE, the set of all problems that can be solved by an

algorithm that uses an amount of space that is polynomial in the size of the input.

We begin by considering the relationship of PSPACE to classes of problems we have con-

sidered earlier. First of all, in polynomial time, an algorithm can consume only a polynomial

amount of space; so we can say

(8.1) P ⊆ PSPACE.

But PSPACE is much broader than this. Consider, for example, an algorithm that just

counts from 0 to 2n − 1 in base-2 notation. It simply needs to implement an n-bit counter,

which it maintains in exactly the same way one increments an odometer in a car. Thus,

this algorithm runs for an exponential amount of time, and then halts; in the process, it

has used only a polynomial amount of space. Although this algorithm is not doing anything

particularly interesting, it illustrates an important principle: Space can be re-used during a

computation in ways that time, by definition, cannot.

Here is a more striking application of this principle.

(8.2) There is an algorithm that solves 3-SAT using only a polynomial amount of space.

301

302 CHAPTER 8. PSPACE

Proof. We simply use a brute-force algorithm that tries all possible truth assignments; for

each assignment, it plugs it into the set of clauses and sees if it satisfies them. The key is to

implement this all in polynomial space.

To do this, we increment an n-bit counter from 0 to 2n− 1 just as described above. The

values in counter correspond to truth assignments in the following way: when the counter

holds a value q, we interpret it as a truth assignment ν that sets xi to be the value of the

ith bit of q.

Thus, we devote a polynomial amount of space to enumerating all possible truth assign-

ment ν. For each truth assignment, we need only polynomial space to plug it into the set of

clauses and see if it satisfies them. If it does satisfy the clauses, we can stop the algorithm

immediately. If it doesn’t, we delete the intermediate work involved in this “plugging in”

operation, and re-use this space for the next truth assignment. Thus, we spend only poly-

nomial space cumulatively in checking all truth assignments; this completes the bound on

the algorithm’s space requirements.

Since 3-SAT is an NP-complete problem, (8.2) has a significant consequence.

(8.3) NP ⊆ PSPACE.

Proof. Consider an arbitrary problem Y in NP. Since Y≤P 3-SAT, there is an algorithm

that solves Y using a polynomial number of steps plus a polynomial number of calls to a

black box for 3-SAT. Using the algorithm in (8.2) to implement this black box, we obtain

an algorithm for Y that uses only polynomial space.

Just as with the class P, a problem X is in PSPACE if and only if its complementary

problem X is in PSPACE as well. Thus, we can conclude that co−NP ⊆ PSPACE. We

draw what is known about the relationships among these classes of problems in Figure 8.1.

Given that PSPACE is an enormously large class of problems, containing both NP and

co−NP, it is very likely that it contains problems that cannot be solved in polynomial time.

But despite this widespread belief, it has, amazingly, not been proven that P 6= PSPACE.

Nevertheless, the nearly universal conjecture is that PSPACE contains problems that are

not even in NP or co−NP.

8.2 Some Hard Problems in PSPACE

We now survey some natural examples of problems in PSPACE that are not known — and

not believed — to belong to NP or co−NP.

As was the case with NP, we can try understanding the structure of PSPACE by looking

for complete problems — the hardest problems in the class. We will say that a problem X is

8.2. SOME HARD PROBLEMS IN PSPACE 303

P

PSPACE

NP co-NP

Figure 8.1: The relationships among various classes of problems.

PSPACE-complete if (i) it belongs to PSPACE; and (ii) for all problems Y in PSPACE, we

have Y≤P X. Note that we continue to use ≤P as our notion of reduction.

It turns out — analogously to the case of NP — that a wide range of natural problems

are PSPACE-complete. Indeed, a number of the basic problems in artificial intelligence are

PSPACE-complete, and we describe three genres of these here.

1. Planning. Planning problems seek to capture, in a clean way, the problem of interacting

with a complex environment to achieve a desired set of goals. A common toy example used

in AI is the fifteen-puzzle — a 4 × 4 grid with fifteen movable tiles labeled 1, 2, . . . , 15 and

a single hole. One wishes to push the tiles around so that the numbers end up in ascending

order. In the same vein, one could picture peg-jumping solitaire games or Rubik’s Cube.

If we wanted to search for a solution to such a problem, we could enumerate the conditions

we are trying to achieve, and the set of allowable operators that can we apply to achieve

these conditions. We model the environment by a set C = {C1, . . . , Cn} of conditions: a

given state of the world is specified by the subset of the conditions that currently hold. We

interact with the environment through a set {O1, . . . ,Ok} of operators. Each operator Oi

is specified by a prerequisite list, containing a set of conditions that must hold for Oi to be

invoked; an add list, containing a set of conditions that will become true after Oi is invoked;

304 CHAPTER 8. PSPACE

and a delete list, containing a set of conditions that will cease to hold after Oi is invoked.

The problem we face is the following. Given a set C0 of initial conditions, and a set C∗ of

goal conditions, is it possible to apply a sequence of operators beginning with C0 so that we

reach a situation in which precisely the conditions in C∗ (and no others) hold? We will call

this an instance of the Planning problem.

2. Quantification. We have seen, in the 3-SAT problem, some of the difficulty in deter-

mining whether a set of disjunctive clauses can be simultaneously satisfied. When we add

quantifiers to such a formula, the problem appears to become even more difficult.

Let Φ(x1, . . . , xn) be a Boolean formula of the form

C1 ∧ C2 ∧ · · · ∧ Ck,

where each Ci is a disjunction of three terms. (In other words, it is an instance of 3-SAT.)

Assume for simplicity that n is an odd number, and suppose we ask

∃x1∀x2 · · · ∃xn−2∀xn−1∃xnΦ(x1, . . . , xn)?

That is, we wish to know whether there is a choice for x1, so that for both choices of x2,

there is a choice for x3 — and so on — so that Φ is satisfied. We will refer to this decision

problem as Quantified 3-SAT (or, briefly, QSAT).

Problems of this type arise naturally as a form of contingency planning — we wish to

know whether there is a decision we can make (the choice of x1) so that for all possible

responses (the choice of x2) there is a decision we can make (the choice of x3), and so forth

. . .

The original 3-SAT problem, by way of comparison, simply asked

∃x1∃x2 · · · ∃xn−2∃xn−1∃xnΦ(x1, . . . , xn)?

In other words, in 3-SAT it was sufficient to look for a single setting of the Boolean variables.

3. Games. In 1996 and 1997, world chess champion Garry Kasparov was billed by the

media as the defender of the human race, as he faced IBM’s program Deep Blue in two chess

matches. We needn’t look further than this picture to convince ourselves that computational

game-playing is one of the most visible successes of contemporary artificial intelligence.

A large number of combinatorial two-player games fit naturally into the following frame-

work. Players alternate moves, and the first one to achieve a specific goal wins. Moreover,

there is often a natural, polynomial, upper bound on the maximum possible length of a

game.

The Competitive Facility Location problem that we introduced at the beginning of the

course fits naturally within this framework. We are given a graph G, with a non-negative

8.3. SOLVING PROBLEMS IN POLYNOMIAL SPACE 305

value bi attached to each node i. Two players alternately select nodes of G, so that the set of

selected nodes at all times forms an independent set. Player 2 wins if she ultimately selects

a set of nodes of total value at least B, for a given bound B; Player 1 wins if he prevents this

from happening. The question is, given the graph G and the bound B, is there a strategy

by which Player 1 can force a win?

We now discuss how to solve all of these problems in polynomial space. As we will see

this will be trickier — in one case, a lot trickier — than the (simple) task we faced in showing

that problems like 3-SAT and Independent Set belong to NP.

8.3 Solving Problems in Polynomial Space

Quantifiers and Games

First let’s show that QSAT can be solved in polynomial space. As was the case with 3-SAT,

the idea will be to run a brute-force algorithm that re-uses space carefully as the computation

proceeds.

Here is the basic brute-force approach. To deal with the first quantifier ∃x1, we consider

both possible values for x1 in sequence. We first set x1 = 0 and see, recursively, whether the

remaining portion of the formula evaluates to 1. We then set x1 = 1 and see, recursively,

whether the remaining portion of the formula evaluates to 1. The full formula evaluates to

1 if and only if either of these recursive calls yields a 1 — that’s simply the definition of the

∃ quantifier.

If we were to save all the work done in both these recursive call, our space usage S(n)

would look something like

S(n) = 2S(n− 1) + poly(n),

where poly(n) is a polynomial function, since each level of the recursion generates two new

calls. This would result in an exponential bound, which is too large.

Fortunately, we can perform a simple optimization that greatly reduces the space usage:

When we’re done with the case x1 = 0, all we really need to save is the single bit that

represents the outcome of the recursive call; we can throw away all the other intermediate

work. This is another example of “re-use” — we’re re-using the space from the computation

for x1 = 0 in order to compute the case x1 = 1.

Here is a compact description of the algorithm.

If the first quantifier is ∃xi then

Set xi = 0 and recursively evaluate quantified expression

over remaining variables.

Save the result (0 or 1) and delete all other intermediate work.

306 CHAPTER 8. PSPACE

Set xi = 1 and recursively evaluate quantified expression

over remaining variables.

If either outcome yielded an evaluation of 1, then

return 1;
Else return 0
Endif

If the first quantifier is ∀xi then

Set xi = 0 and recursively evaluate quantified expression

over remaining variables.

Save the result (0 or 1) and delete all other intermediate work.

Set xi = 1 and recursively evaluate quantified expression

over remaining variables.

If both outcomes yielded an evaluation of 1, then

return 1;
Else return 0
Endif

Endif

Since the recursive calls for the cases x1 = 0 and x1 = 1 over-write the same space, our

space requirement S(n) for an n-variable problem is simply a polynomial in n plus the space

requirement for one recursive call on an (n− 1)-variable problem:

S(n) ≤ poly(n) + S(n− 1). (8.1)

Thus, S(n) ≤ n · poly(n), which is a polynomial bound.

We can determine which player has a forced win in a game such as Competitive Facility

Location by a very similar type of algorithm.

Suppose Player 1 moves first. We consider all of his possible moves in sequence. For each

of these moves, we see who has a forced win in the resulting game, with Player 2 moving first.

If Player 1 has a forced win in any of them, then Player 1 has a forced win from the initial

position. The crucial point, as in the QSAT algorithm, is that we can re-use the space from

one candidate move to the next — we need only store the single bit representing the outcome.

In this way, we only consume a polynomial amount of space plus the space requirement for

one recursive call on a graph with fewer nodes. As before, we get the recurrence

S(n) ≤ poly(n) + S(n− 1).

Planning

Now we consider how to solve the basic Planning problem in polynomial space. The issues

here will look quite different, and it will turn out to be a more difficult task.

8.3. SOLVING PROBLEMS IN POLYNOMIAL SPACE 307

Recall that we have a set of conditions C = {C1, . . . , Cn} and a set of operators {O1, . . . ,Ok}.
Each operator Oi has a prerequisite list Pi, an add list Ai, and a delete list Di. Note that

Oi can still be applied even if conditions other than those in Pi are present; and it does not

affect conditions that are not in Ai or Di.

We define a configuration to be a subset C ′ ⊆ C; the state of the planning problem at

any given time can be identified with a unique configuration C ′ consisting precisely of the

conditions that hold at that time. For an initial configuration C0 and a goal configuration

C∗, we wish to determine whether there is a sequence of operators that will take us from C0

to C∗.
We can view our planning instance in terms of a giant, implicitly defined, directed graph

G. There is a node of G for each of the 2n possible configurations; and there is an edge of G
from configuration C ′ to configuration C ′′ if in one step, one of the operators can convert C ′
to C ′′. In terms of this graph, the planning problem has a very natural formulation: Is there

a path in G from C0 to C∗? Such a path corresponds precisely to a sequence of operators

leading from C0 to C∗.
The first thing to appreciate is that there need not always be a short solutions to instances

of Planning, i.e., there need not always be short path in G. This should not be so surprising,

since G has an exponential number of nodes. But we must be careful in applying this

intuition, since G has a special structure: it is defined very compactly in terms of the n

conditions and k operators.

(8.4) There are instances of the Planning problem with n conditions and k operators for

which there exists a solution, but the shortest solution has length 2n − 1.

Proof. We give a simple example of such an instance; it essentially encodes the task of

incrementing an n-bit counter from the all-zeroes state to the all-ones state.

• We have conditions C1, C2, . . . , Cn.

• We have operators Oi for i = 1, 2, . . . , n.

• O1 has no pre-requisites or delete list; it simply adds C1.

• For i > 1, Oi requires Cj for all j < i as pre-requisites. When invoked, it adds Ci and

deletes Cj for all j < i.

Now we ask: is there a sequence of operators that will take us from C0 = φ to C∗ =

{C1, C2, . . . , Cn}?
We claim the following, by induction on i:

(†) From any configuration that does not contain Cj for any j ≤ i, there exists

a sequence of operators that reaches a configuration containing Cj for all j ≤ i;

but any such sequence has at least 2i − 1 steps.

308 CHAPTER 8. PSPACE

This is clearly true for i = 1. For larger i, here’s one solution.

• By induction, achieve conditions {Ci−1, . . . , C1} using operators O1, . . . ,Oi−1.

• Now invoke operator Oi, adding Ci but deleting everything else.

• Again, by induction, achieve conditions {Ci−1, . . . , C1} using operators O1, . . . ,Oi−1.

Note that condition Ci is preserved throughout this process.

Now we take care of the other part of the inductive step — that any such sequence

requires at least 2i − 1 steps. So consider the first moment when Ci is added. At this step,

Ci−1, . . . , C1 must have been present, and by induction, this must have taken at least 2i−1−1

steps. Ci can only be added by Oi, which deletes all Cj for j < i. Now we have to achieve

conditions {Ci−1, . . . , C1} again; this will take another 2i−1 − 1 steps, by induction, for a

total of at least 2(2i−1 − 1) + 1 = 2i − 1 steps.

The overall bound now follows by applying this claim with i = n.

Of course, if every “yes” instance of Planning had a polynomial-length solution, then

Planning would be in NP — we could just exhibit the solution. But (8.4) shows that the

shortest solution is not necessarily a good certificate for a Planning instance, since it can

have a length that is exponential in the input size.

However, (8.4) describes essentially the worst case, for we have the following matching

upper bound. The graph G has 2n nodes, and if there is a path from C0 to C∗, then the

shortest such path does not visit any node more than once. As a result, the shortest path

can take at most 2n − 1 steps after leaving C0.

(8.5) If a Planning instance with n conditions has a solution, then it has one using at

most 2n − 1 steps.

Now we return to the main issue: how can we solve an arbitrary Planning instance

using only polynomial space? Here is a brute-force algorithm to solve the Planning instance.

We build the graph G, and use any graph connectivity algorithm — depth-first search or

breadth-first search — to decide whether there is a path from C0 to C∗.
But this algorithm is too “brute-force” for our purposes; it takes exponential space to

construct the graph G. We could try an approach in which we never actually build G, and

just simulate the behavior of depth-first search or breadth-first search on it. But this too

is not feasible. Depth-first search crucially requires us to maintain a list of all the nodes in

the current path we are exploring — and this can grow to exponential size. Breadth-first

requires a list of all nodes in the current “frontier” of the search — and this too can grow

to exponential size.

8.3. SOLVING PROBLEMS IN POLYNOMIAL SPACE 309

We seem stuck. Our problem is transparently equivalent to finding a path in G, and all

the standard path-finding algorithms we know are too lavish in their use of space. Could

there really be a fundamentally different path-finding algorithm out there?

In fact, there is. The basic idea, proposed by Savitch in 1970, is a clever use of the divide-

and-conquer principle. It subsequently inspired the trick for reducing the space requirements

in the sequence alignment problem; so the overall approach may remind you of what we

discussed there. Our plan, as before, is to find a clever way to re-use space, admittedly at

the expense of increasing the time spent. Neither depth-first search nor breadth-first search

are nearly aggressive enough in their re-use of space; they need to maintain a large history at

all times. We need a way to solve half the problem, throw away almost all the intermediate

work, and then solve the other half of the problem.

The key is a procedure that we will call Path(C1, C2, L) — it determines whether there

is a sequence of operators, consisting of at most L steps, that leads from configuration

C1 to configuration C2. So our initial problem is to determine the result (yes or no) of

Path(C0, C∗, 2n). Breadth-first search can be viewed as the following dynamic programming

implementation of this procedure: to determine Path(C1, C2, L) we first determine all C ′ for

which Path(C1, C ′, L − 1) holds; we then see, for each such C ′, whether any operator leads

directly from C ′ to C2.
This indicates some of the wastefulness — in terms of space — that breadth-first search

entails. We are generating a huge number of intermediate configurations just to reduce

the parameter L by one. More effective would be to try determining whether there is any

configuration C ′ that could serve as the midpoint of a path from C1 to C2. We could first

generate all possible midpoints C ′. For each C ′, we then check recursively whether we can

get from C1 to C ′ in at most L/2 steps; and also whether we can get from C ′ to C2 in at most

L/2 steps. This involves two recursive calls, but we only care about the yes/no outcome of

each; other than this, we can re-use space from one to the next.

Does this really reduce the space usage to a polynomial amount? We first write down

the procedure carefully, and then analyze it. We will assume that L is a power of 2.

Path(C1, C2, L)
If L = 1 then

If there is an operator O converting C1 to C2 then

return ‘‘yes’’

Else

return ‘‘no’’

Endif

Else (L > 1)
Enumerate all configurations C ′ using an n-bit counter.

For each C ′ do the following:

Compute x = Path(C1, C ′, L/2)

310 CHAPTER 8. PSPACE

Delete all intermediate work, saving only the return value x.
Compute y = Path(C ′, C2, L/2)
Delete all intermediate work, saving only the return value y.
If both x and y are equal to ‘‘yes’’, then return ‘‘yes.’’

Endfor

If ‘‘yes’’ was not returned for any of the C ′ then

Return ‘‘no’’

Endif

Endif

Again, note that this procedure solves a generalization of our original question, which

simply asked for Path(C0, C∗, 2n). This does mean, however, that we should remember to

view L as an exponentially large parameter: log L = n.

The following claim therefore implies that Planning can be solved in polynomial space.

(8.6) Path(C1, C2, L) returns “yes” if and only if there is a sequence of operators of length

at most L leading from C1 to C2. Its space usage is polynomial in n, k, and log L.

Proof. The correctness follows by induction on L. It clearly holds when L = 1, since all

operators are considered explicitly. Now consider a larger value of L. If there is a sequence

of operators from C1 to C2, of length L′ ≤ L, then there is a configuration C ′ that occurs

at position bL′/2c in this sequence. By induction, Path(C1, C ′, L/2) and Path(C ′, C2, L/2)

will both return “yes”, and so Path(C1, C2, L) will return “yes.” Conversely, if there is a

configuration C ′ so that Path(C1, C ′, L/2) and Path(C ′, C2, L/2) both return “yes,” then the

induction hypothesis implies that there exist corresponding sequences of operators; concate-

nating these two sequences, we obtain a sequence of operators from C1 to C2 of length at

most L.

Now we consider the space requirements. Aside from the space spent inside recursive

calls, each invocation of Path involves an amount of space polynomial in n, k, and log L.

But at any given point in time, only a single recursive call is active, and the intermediate

work from all other recursive calls has been deleted. Thus, for a polynomial function p, the

space requirement S(n, k, L) satisfies the recurrence

S(n, k, L) ≤ p(n, k, log L) + S(n, k, L/2).

S(n, k, 1) ≤ p(n, k, 1).

Unwinding the recurrence for log L levels, we obtain the bound S(n, k, L) = O(logL ·
p(n, k, log L), which is a polynomial in n, k, and log L.

If dynamic programming has an opposite, this is it. Back when we were solving problems

by dynamic programming, the fundamental principle was: save all the intermediate work, so

8.4. PROVING PROBLEMS PSPACE-COMPLETE 311

that you don’t have to re-compute it. Now that conserving space is our goal, we have just

the opposite priorities: throw away all the intermediate work, since it’s just taking up space

and it can always be re-computed.

As we saw when we designed the space-efficient sequence alignment algorithm, the sensible

strategy often lies somewhere in between, motivated by these two approaches: throw away

some of the intermediate work, but not so much that you blow up the running time.

8.4 Proving Problems PSPACE-complete

When we studied NP, we had to prove a first problem NP-complete directly from the

definition of NP. After Cook and Levin did this for Satisfiability in 1971, many other

NP-complete problems could follow by reduction.

A similar sequence of events followed for PSPACE, shortly after the results for NP. The

natural analogue of Satisfiability here is played by QSAT, and one can prove directly from

the definitions that it is PSPACE-complete. This basic PSPACE-complete problem can then

serve as a good “root” from which to discover other PSPACE-complete problems. By strict

analogy with the case of NP, it’s easy to see from the definition that if a problem Y is

PSPACE-complete, and a problem X in PSPACE has the property that Y≤P X, then X is

PSPACE-complete as well.

Our goal in this section is to prove the PSPACE-completeness of problems from the two

other genres we have been considering: Planning and Games. We first consider Competi-

tive Facility Location, then Planning; we describe a way to reduce QSAT to each of these

problems.

Games. It is actually not surprising at all that there should be a close relation between

quantifiers and games. Indeed, we could have equivalently defined QSAT as the problem of

deciding whether the first player has a forced win in the following Competitive 3-SAT game.

Suppose we fix a formula Φ(x1, . . . , xn) consisting, as in QSAT, of a conjunction of length-3

clauses. Two players alternate turns picking values for variables: the first player picks the

value of x1, then the second player picks the value of x2, then the first player picks the value

of x3, and so on. We will say that the first player wins if Φ(x1, . . . , xn) ends up evaluating

to 1, and the second player wins if it ends up evaluating to 0.

When does the first player have a forced win in this game? (I.e. when does our instance

of Competitive 3-SAT have a “yes” answer?) Precisely when there is a choice for x1 so that

for all choices of x2 there is a choice for x3 so that . . . and so on, resulting in Φ(x1, . . . , xn)

evaluating to 1. That is, the first player has a forced win if and only if (assuming n is an

odd number)

∃x1∀x2 · · · ∃xn−2∀xn−1∃xnΦ(x1, . . . , xn).

312 CHAPTER 8. PSPACE

variable 1

variable 3

variable 2

1000

100

10

1000

100

10

Goal: 101

clause 1

1

Figure 8.2: The reduction from Competitive 3-SAT to Competitive Facility Location.

In other words, our Competitive 3-SAT game is directly equivalent to the instance of QSAT

defined by the same Boolean formula Φ, and so we have proved the following

(8.7) QSAT ≤P Competitive 3-SAT.

This result moves us nicely into the world of games. We now establish the PSPACE-

completeness of Competitive Facility Location by proving the following.

(8.8) Competitive 3-SAT ≤P Competitive Facility Location.

Proof. We are given an instance of Competitive 3-SAT, defined by a formula Φ. Φ is the

conjunction of clauses

C1 ∧ C2 ∧ · · · ∧ Ck;

each Cj has length 3, and can be written Cj = tj1 ∨ tj2 ∨ tj3. As before, we will assume that

there is an odd number n of variables. We will also assume, quite naturally, that no clause

contains both a term and its negation — after all, such a clause would be automatically

satisfied by any truth assignment. We must show how to encode this Boolean structure in

the graph that underlies Competitive Facility Location.

We can picture the instance of Competitive 3-SAT as follows. The players alternately

select values in a truth assignment, beginning and ending with Player 1; at the end, Player

8.4. PROVING PROBLEMS PSPACE-COMPLETE 313

2 has won if she can select a clause Cj in which none of the terms has been set to 1. Player

1 has won if Player 2 cannot do this.

It is this notion that we would like to encode in an instance of Competitive Facility

Location — that the players alternately make a fixed number of moves, in a highly constrained

fashion, and then there’s a final chance by Player 2 to win the whole thing. But in its

general form, Competitive Facility Location looks much more wide-open than this — whereas

the players in Competitive 3-SAT must set one variable at a time, in order, the players in

Competitive Facility Location can jump all over the graph, choosing nodes wherever they

want.

Our fundamental trick, then, will be to use the values bi on the nodes to tightly constrain

where the players can move, under any “reasonable” strategy. In other words, we will set

things up so that if the either of the players deviates from a particular narrow course, he or

she will lose instantly.

As with our complicated NP-completeness reductions, the construction will have gadgets

to represent assignments to the variables, and further gadgets to represent the clauses. Here

is how we encode the variables. For each variable xi, we define two nodes vi, v
′
i in the graph

G, and include an edge (vi, v
′
i). The selection of vi will represent setting xi = 1; v′

i will

represent xi = 0. The constraint that the chosen variables must form an independent set

naturally prevents both vi and v′
i from being chosen. At this point, we do not define any

other edges.

How do we get the players to set the variables in order — first x1, then x2, and so forth?

We place values on v1 and v′
1 so high that Player 1 will lose instantly if he does not choose

them. We place somewhat lower values on v2 and v′
2, and continue in this way. Specifically,

for a value c ≥ k +2 we define the node values bvi
and bv′

i
to be c1+n−i. We define the bound

that Player 2 is trying to achieve to be

B = cn−1 + cn−3 + · · ·+ c2 + 1.

Let’s pause, before worrying about the clauses, to consider the game played on this graph.

In the opening move of the game, Player 1 must select one of v1 or v′
1 (thereby obliterating

the other one) — for if not, then Player 2 will immediately select one of them on her next

move, winning instantly. Similarly, in the second move of the game, Player 2 must select

one of v2 or v′
2. For otherwise, Player 1 will select one on his next move; and then, even

if Player 2 acquired all the remaining nodes in the graph, she would not be able to meet

the bound B. Continuing by induction in this way, we see that to avoid an immediate

loss, the player making the ith move must select one of vi or v′
i. Note that our choice of

node values has achieved precisely what we wanted — the players must set the variables in

order. And what is the outcome on this graph? Player 2 ends up with a total of value of

cn−1 + cn−3 + · · ·+ c2 = B − 1 — she has lost by 1 unit!

314 CHAPTER 8. PSPACE

We now complete the analogy with Competitive 3-SAT by giving Player 2 one final move

on which she can try to win. For each clause Cj, we define a node cj with value bcj
= 1 and

an edge associated with each of its terms as follows. If t = xi, we add an edge (cj, vi); if

t = xi, we add an edge (cj, v
′
i). In other words, we join cj to the node that represents the

term t.

This now defines the full graph G. We can verify that, because their values are so small,

the addition of the clause nodes did not change the property that the players will begin by

selecting the variable nodes {vi, v
′
i} in the correct order. However, after this is done, Player

2 will win if and only if she can select a clause node cj that is not adjacent to any selected

variable node — in other words, if and only the truth assignment defined alternately by the

players failed to satisfy some clause.

Thus, Player 2 can win the Competitive Facility Location instance we have defined if and

only if she can win the original Competitive 3-SAT instance. The reduction is complete.

Planning. We now establish the PSPACE-completeness of Planning by proving the fol-

lowing result.

(8.9) QSAT ≤P Planning.

Proof. We are given an instance of Competitive 3-SAT, defined by a formula Φ. Φ is the

conjunction of clauses

K1 ∧K2 ∧ · · · ∧Kk;

each Kj has length 3, and can be written Kj = tj1 ∨ tj2 ∨ tj3.
1 As before, we will assume

that there is an odd number n of variables.

The key to the reduction to consider the Planning formalism as a very abstract type

of “programming language.” We will not simply express the QSAT instance in this lan-

guage — we will actually construct a Planning instance to describe the full execution of

the polynomial-space QSAT algorithm that we covered earlier in this chapter. To this end,

we will have conditions that model the variable assignments this algorithm makes, and the

control flow as it is running. Indeed, if one looks at the reduction to follow from a sufficiently

high level, it does look like a schematic piece of code that implements the QSAT algorithm;

and our Planning instance is to decide whether this piece of code will output 0 or 1, after

its exponentially long execution.

For i = 1, 2, . . . , n, we have a condition Li, indicating that the execution of the algorithm

is currently at “level i” of the recursion, and hence working on variable xi. For i = 1, 2, . . . , n,

and b = 0, 1, we have the following conditions:

• C[xi = b : ∗], indicating that the algorithm is currently in the middle of the recursive

call with xi = b.

1We use “K” to denote the clauses, since “C” will reserved for the conditions in the Planning problem.

8.4. PROVING PROBLEMS PSPACE-COMPLETE 315

• C[xi = b :?], indicating that it has not yet started the recursive call with xi = b.

• For c = 0, 1, conditions C[xi = b : c] indicating that the recursive call with xi = b

recursive call has returned with result c.

Finally, we have a condition C[1] to indicate that the full algorithm has returned 1 and

C[0] to indicate that the full algorithm has returned 0. The initial configuration is C0 =

{L1, C[x1 = 0 : ∗], C[x1 = 1 :?]}. The goal configuration is C∗ = {C[0]}.
Here are the operators that model the control flow, enforcing these interpretations of the

conditions. We also give the intended meaning of each.

• Let i < n. Given Li and C[xi = b : ∗], we can add {Li+1, C[xi+1 = 0 : ∗], C[xi+1 = 1 :?]}
and delete Li. (xi has just been set to b, so we move to level i + 1.)

• Let i > 1 be odd, so the associated quantifier is ∃xi.

– Given Li, C[xi = 0 : 0], and C[xi = 1 :?], we can add C[xi = 1 : ∗] and delete

C[xi = 1 :?]. (The option xi = 0 has returned 0, so we move on to the case

xi = 1.)

– Given Li, C[xi = b : 1], and C[xi−1 = b′ : ∗], we can add {Li−1, C[xi−1 = b′ : 1]}
and delete all conditions associated with levels j ≥ i. (The option xi = b has

returned 1, so the ∃ evaluates to 1 and we pop up to level i− 1.)

– Given Li, C[xi = 0 : 0], C[xi = 1 : 0], and C[xi−1 = b′ : ∗], we can add

{Li−1, C[xi−1 = b′ : 0]} and delete all conditions associated with levels j ≥ i.

(Both settings of xi have returned 0, so the ∃ evaluates to 0 and we pop up to

level i− 1.)

• Let i be even, so the associated quantifier is ∀xi.

– Given Li, C[xi = 0 : 1], and C[xi = 1 :?], we can add C[xi = 1 : ∗] and delete

C[xi = 1 :?]. (The option xi = 1 has returned 0, so we move on to the case

xi = 1.)

– Given Li, C[xi = 0 : 1], C[xi = 1 : 1], and C[xi−1 = b′ : ∗], we can add

{Li−1, C[xi−1 = b′ : 1]} and delete all conditions associated with levels j ≥ i.

(Both settings of xi have returned 1, so the ∀ evaluates to 1 and we pop up to

level i− 1.)

– Given Li, C[xi = b : 0], and C[xi−1 = b′ : ∗], we can add {Li−1, C[xi−1 = b′ : 0]}
and delete all conditions associated with levels j ≥ i. (The option xi = b has

returned 0, so the ∀ evaluates to 0 and we pop up to level i− 1.)

• Finally, here are some operators that apply to the first level.

316 CHAPTER 8. PSPACE

– Given L1, C[x1 = 0 : 0], and C[x1 = 1 :?], we can add C[x1 = 1 : ∗] and delete

C[x1 = 1 :?]. (The option xi = 0 has returned 0, so we move on to the case

xi = 1.)

– Given L1, C[x1 = b : 1], and C[xi−1 = b′ : ∗], we can add C[1] and delete all other

conditions. (The option xi = b has returned 1, so the ∃ evaluates to 1 and we

have reached the goal configuration.)

– Given L1, C[x1 = 0 : 0], and C[x1 = 1 : 0], we can add C[0] and delete all other

conditions. (Both settings of xi have returned 0, so the ∃ evaluates to 0 and we

declare failure. No operators will be valid from this configuration.)

We now have to model level n, when the recursion “bottoms out” with a full assignment

to all variables. Here, we must plug this assignment into the clauses and see if they can all

be satisfied. Thus, for each clause Kj, we have a condition C[Kj] that will express the notion

that the current assignment satisfies Kj. These conditions will be associated with level n, so

they are deleted when the other level-n conditions are deleted. Here are the operators that

model the evaluation of the clauses.

• Given Ln and C[xi = 1 : ∗], where xi is a term of Kj, we can add C[Kj]. (The current

assignment satisfies Kj.)

• Given Ln and C[xi = 0 : ∗], where xi is a term of Kj, we can add C[Kj]. (The current

assignment satisfies Kj.)

• Given Ln, C[xn−1 = b : ∗], and C[K1], C[K2], . . . , C[Kk], we can add {Ln−1, C[xn−1 =

b : 1]} and delete all conditions associated with level n. (All clauses are satisfied, so

this level evaluates to 1 and we pop up to level n− 1.)

• Given Ln and C[xn = 0 : ∗], we can add {C[xn = 0 : 0], C[xn = 1 : ∗]} and delete

{C[xn = 0 : ∗], C[K1], . . . , C[Kk]}. (We cannot satisfy all clauses with xn = 0, so we

set xn = 1.)

• Given Ln, C[xn = 0 : 0], C[xn = 1 : ∗], and C[xn−1 = b : ∗], we can add {Ln−1, C[xn−1 =

b : 0]} and delete all conditions associated with level n. (We cannot satisfy all clauses

with xn = 0 or with xn = 1, so this level returns 0 and we pop up to level n− 1.)

These operators directly model the execution of the polynomial-space QSAT algorithm; it

is easy to check that if this algorithm has an execution that returns 1, then the corresponding

sequence of operators leads to the goal configuration. Conversely, one can show inductively

that each condition has its intended meaning relative to the algorithm, though we will not

write out the full details of this here. As a result, if the configuration C∗ = {C[1]} is

reachable, then the QSAT algorithm must have an execution that returns 1.

8.5. EXERCISES 317

Since we have seen earlier that the QSAT algorithm correctly evaluates the formula Φ,

we see that Φ evaluates to 1 if and only if the goal configuration C∗ is reachable from C0.

8.5 Exercises

1. (Based on a problem proposed by Maverick Woo and Ryan Williams.) Let’s consider a

special case of Quantified 3-SAT in which the underlying Boolean formula is monotone

(in the sense of Problem Set 5). Specifically, let Φ(x1, . . . , xn) be a Boolean formula of

the form

C1 ∧ C2 ∧ · · · ∧ Ck,

where each Ci is a disjunction of three terms. We say Φ is monotone if each term in

each clause consists of a non-negated variable — i.e. each term is equal to xi, for some

i, rather than xi.

We define Monotone QSAT to be the decision problem

∃x1∀x2 · · · ∃xn−2∀xn−1∃xnΦ(x1, . . . , xn)?

where the formula Φ is monotone.

Do one of the following two things: (a) prove that Monotone QSAT is PSPACE-

complete; or (b) give an algorithm to solve arbitrary instances of Monotone QSAT

that runs in time polynomial in n. (Note that in (b), the goal is polynomial time, not

just polynomial space.)

2. Self-avoiding walks are a basic object of study in the area of statistical physics; they can

be defined as follows. Let L denote the set of all points in R2 with integer coordinates.

A self-avoiding walk W of length n is a sequence of points (p1, p2, . . . , pn) ∈ Ln so that

(i) p1 = (0, 0). (The walk starts the origin.)

(ii) No two of the points are equal. (The walk “avoids” itself.)

(iii) For each i = 1, 2, . . . , n − 1, the points pi and pi+1 are at distance 1 from each

other. (The walk moves between neighboring points in L.)

Self-avoiding walks (in both two and three dimensions) are used in physical chemistry

as a simple geometric model for the possible conformations of long-chain polymer

molecules. Such molecules can be viewed as a flexible chain of beads that flop around

in solution, adopting different geometric layouts, and self-avoiding walks are a simple

combinatorial abstraction for these layouts.

A famous unsolved problem in this area is the following. For a natural number n ≥ 1,

let A(n) denote the number of distinct self-avoiding walks of length n. Note that we

318 CHAPTER 8. PSPACE

view walks as sequences of points rather than sets; so two walks can be distinct even if

they pass through the same set of points, provided that they do so in different orders.

(Formally, the walks (p1, p2, . . . , pn) and (q1, q2, . . . , qn) are distinct if there is some i

(1 ≤ i ≤ n) for which pi 6= qi.) See the figure below for an example. In polymer

models based on self-avoiding walks, A(n) is directly related to the entropy of a chain

molecule, and so it appears in theories concering the rates of certain metabolic and

organic synthesis reactions.

(0,0) (1,0)

(1,1)(0,1)

(0,0) (1,0)

(1,1)(0,1)

(0,0) (1,0) (2,0)

(2,1)

Figure 8.3: Three distinct self-avoiding walks of length 4. Note that although walks (a) and
(b) involve the same set of points, they are considered different walks because they pass
through them in a different order.

Despite its importance, no simple formula is known for the value A(n). Indeed, no

algorithm is known for computing A(n) that runs in time polynomial in n.

(a) Show that A(n) ≥ 2n−1 for all natural numbers n ≥ 1.

(b) Give an algorithm that takes a number n as input, and outputs A(n) as a number

in binary notation, using space (i.e. memory) that is polynomial in n.

(Thus the running time of your algorithm can be exponential, as long as its space

usage is polynomial. Note also that “polynomial” here means “polynomial in n,” not

“polynomial in log n”. Indeed, by part (a), we see that it will take at least n − 1 bits

to write the value of A(n), so clearly n − 1 is a lower bound on the amount of space

you need for producing a correct answer.)

Chapter 9

Extending the Limits of Tractability

Although we started the course by studying a number of techniques for solving problems effi-

ciently, we’ve been looking for a while at classes of problems — NP-complete and PSPACE-

complete problems — for which no efficient solution is believed to exist. And because of the

insights we’ve gained this way, we’ve implicitly arrived at a two-pronged approach to deal-

ing with new computational problems we encounter: try for a while to develop an efficient

algorithm; and if this fails, then try to prove it NP-complete (or even PSPACE-complete).

Assuming one of the two approaches works out, you end up either with a solution to the

problem (an algorithm), or a potent “reason” for its difficulty: it is as hard as many of the

famous problems in computer science.

Unfortunately, this strategy will only get you so far. If this is a problem that someone

really wants your help in solving, they won’t be particularly satisfied with the resolution that

it’s NP-hard1 and so they should give up on it. They’ll still want a solution that’s as good

as possible, even if it’s not the exact, or optimal, answer. For example, in the independent

set problem, even if we can’t find the largest independent set in a graph, it’s still natural to

want to compute for as much time as we have available, and output as large an independent

set as we can find.

The next few topics in the course will be focused on different aspects of this notion.

In subsequent lectures, we’ll look at algorithms that provide approximate answers with

guaranteed error bounds in polynomial time; we’ll also consider local search heuristics that

are often very effective in practice, even when we are not able to establish any provable

guarantees about their behavior.

But to start, we explore some situations in one can exactly solve instances of NP-complete

problems with reasonable efficiency. How do these situations arise? The point is to recall

the basic message of NP-completeness — the worst-case instances of these problems are

very difficult, and not likely to be solvable in polynomial time. On a particular instance,

1We use the term NP-hard to mean, “At least as hard as an NP-complete problem.” We avoid referring
to optimization problems as “NP-complete,” since technically this term applies only to decision problems.

319

320 CHAPTER 9. EXTENDING THE LIMITS OF TRACTABILITY

however, it’s possible that we are not really in the “worst case” — maybe, in fact, the

instance we’re looking at has some special structure that makes our task easier. Thus, the

crux of this chapter is to look at situations in which it is possible to quantify some precise

senses in which an instance may be easier than the worst case, and to take advantage of

these situations when they occur.

We’ll look at this principle in two concrete settings. First we’ll consider the Vertex Cover

problem, in which there are two natural “size” parameters for a problem instance — the size

of the graph, and the size of the vertex cover being sought. The NP-completeness of Vertex

Cover suggests that we will have to be exponential in (at least) one of these parameters; but

judiciously choosing which one can have an enormous affect on the running time.

Next, we’ll explore the idea that many NP-complete graph problems become polynomial-

time solvable if we require the input to be a tree — this is a concrete illustration of the way

in which an input with “special structure” can help us avoid many of the difficulties can

make the worst case intractable. Armed with this insight, one can generalize the notion of a

tree to a more general class of graphs — those with small tree-width — and show that many

NP-complete problems are tractable on this more general class as well.

Having said this, we should stress that our basic point remains the same as it has always

been — Exponential algorithms scale very badly. The current chapter represents ways off

staving off this problem that can be effective in various settings, but there is clearly no way

around it in the fully general case. This will motivate our focus on approximation algorithms

and local search in subsequent chapters.

9.1 Finding Small Vertex Covers

Let us briefly recall the Vertex Cover problem, which we saw when we covered NP-completeness.

Given a graph G = (V, E) and an integer k, we would like to find a vertex cover of size at

most k, i.e., a set of nodes S ⊆ V of size |S| ≤ k, such that every edge e ∈ E has at least

one end in S.

Like many NP-complete decision problems, Vertex Cover comes with two parameters: n,

the number of nodes in the graph, and k, the allowable size of a vertex cover. This means

that the range of possible running time bounds is much richer, since it involves the interplay

between these two parameters.

First of all, we notice that if k is a fixed constant (e.g. k = 2 or k = 3) then we can solve

Vertex Cover in polynomial time: we simply try all subsets of V of size k, and see whether

any of them constitutes a vertex cover. There are
(

n
k

)

subsets, and each takes time O(kn) to

check whether each is a vertex cover, for a total time of O(kn
(

n
k

)

) = O(knk+1). So from this

we see that the intractability of Vertex Cover only sets in for real once k grows as a function

of n.

9.1. FINDING SMALL VERTEX COVERS 321

However, even for moderately small values of k, a running time of O(knk+1) is quite

impractical. For example, if n = 1000 and k = 10, then on our computer executing a million

high-level instructions per second, it would take at least 1024 seconds to decide if G has a

k-node vertex cover — this is several orders of magnitude larger than the age of the universe.

And this was for a small value of k, where the problem was supposed to be more tractable!

It’s natural to start asking whether we can do something that is practically viable when k

is a small constant.

It turns out that a much better algorithm can be developed, with a running time bound

of O(2k · kn). There are two things worth noticing about this. First, plugging in n = 1000

and k = 10, we see that our computer should be able to execute the algorithm in a few

seconds. Second, we see that as k grows, the running time is still increasing very rapidly;

it’s simply that the exponential dependence on k has been moved out of the exponent on n

and into a separate function. From a practical point of view, this is much more appealing.

Designing the Improved Algorithm. As a first observation, we notice that if a graph

has a small vertex cover, then it cannot have very many edges. Recall that the degree of a

node is the number of edges that are incident to it.

(9.1) If G = (V, E) has n nodes, the maximum degree of any node is at most d, and

there is a vertex cover of size at most k, then G has at most kd edges.

Proof. Let S be a vertex cover in G of size k′ ≤ k. Every edge in G has at least one end in

S; but each node in S can cover at most d edges. Thus, there can be at most k′d ≤ kd edges

in G.

Since the degree of any node in a graph can be at most n − 1, we have the following

simple consequence of (9.1) .

(9.2) If G = (V, E) has n nodes and a vertex cover of size k, then G has at most

k(n− 1) ≤ kn edges.

So as a first step in our algorithm, we can check if G contains more than kn edges; if it

does, then we know that the answer to the decision problem — is there a vertex cover of size

at most k? — is “no.” Having done this, we will assume that G contains at most kn edges.

The idea behind the algorithm is conceptually very clean. We begin by considering any

edge e = (u, v) in G. In any k-node vertex cover S of G, one of u or v must belong to S.

Suppose that u belongs to such a vertex cover S. Then if we delete u and all its incident

edges, it must be possible to cover the remaining edges by at most k − 1 nodes. That is,

defining G−{u} to be the graph obtained by deleting u and all its incident edges, there must

be a vertex cover of size at most k − 1 in G−{u}. Similarly, if v belongs to S, this would

imply there is a vertex cover of size at most k − 1 in G−{v}.
Here is a concrete way to formulate this idea.

322 CHAPTER 9. EXTENDING THE LIMITS OF TRACTABILITY

(9.3) Let e = (u, v) be any edge of G. G has a vertex cover of size at most k if and only

if at least one of the graphs G−{u} and G−{v} has a vertex cover of size at most k − 1.

Proof. First, suppose G has a vertex cover S of size at most k. Then S contains at least one

of u or v; suppose that it contains u. Then the set S−{u} must cover all edges that have

neither end equal to u. Therefore S−{u} is a vertex cover of size at most k−1 for the graph

G−{u}.
Conversely suppose that one of G−{u} and G−{v} has a vertex cover of size at most

k− 1 — suppose in particular that G−{u} has such a vertex cover T . Then the set T ∪ {u}
covers all edges in G, so it is a vertex cover for G of size at most k.

(9.3) directly establishes the correctness of the following recursive algorithm for deciding

whether G has a k-node vertex cover.

To search for a k-node vertex cover in G:

If G contains no edges then the empty set is a vertex cover.

If G contains ≥ k|V | edges then it has no k-node vertex cover

Else let e = (u, v) be an edge of G.

Recursively check if either of G−{u} or G−{v}
has a vertex cover of size k − 1.

If neither of them does, then G has no k-node vertex cover

Else, one of them (say G−{u}) has a (k−1)-node vertex cover T.
In this case, T ∪ {u} is a k-node vertex cover of G.

Endif

Endif

Now we bound the running time of this algorithm. Intuitively, we are searching a “tree

of possibilities”; we can picture the recursive execution of the algorithm as giving rise to a

tree, in which each node corresponds to a different recursive call. A node corresponding to a

recursive call with parameter k has, as children, two nodes corresponding to recursive calls

with parameter k − 1. Thus the tree has a total of at most 2k+1 nodes. In each recursive

call, we spend O(kn) time.

Thus, we can prove the following.

(9.4) The running time of the Vertex Cover algorithm on an n-node graph, with param-

eter k, is O(2k · kn).

We could also prove this by a recurrence as follows. If T (n, k) denotes the running time

on an n-node graph with parameter k, then T (·, ·) satisfies the following recurrence, for some

absolute constant c:

T (n, 1) ≤ ckn,

T (n, k) ≤ 2T (n, k − 1) + ckn,

9.2. SOLVING NP-HARD PROBLEM ON TREES 323

By induction on k ≥ 1, it is easy to prove that T (n, k) ≤ c · 2kkn. Indeed, if this is true for

k − 1, then

T (n, k) ≤ 2T (n− 1, k − 1) + ckn

≤ 2c · 2k−1(k − 1)n + ckn

= c · 2kkn− c · 2kn + ckn

≤ c · 2kkn

In summary, this algorithm is a powerful improvement on the simple brute-force approach.

However, no exponential algorithm can scale well for very long, and that includes this one.

Suppose we want to know whether there is a vertex cover with at most 30 nodes, rather than

10; then on the same machine as before, our algorithm will take several years to terminate.

9.2 Solving NP-hard Problem on Trees

In the previous lecture we designed an algorithm for the Vertex Cover problem that works

well when the size of the desired vertex cover is not too large. We saw that finding a relatively

small vertex cover is much easier than the Vertex Cover problem in its full generality.

In this lecture we consider special cases of NP-complete graph problems with a different

flavor — not when the natural “size” parameters are small, but when the input graph is

structurally “simple.” Perhaps the simplest types of graphs are trees — recall that an

undirected graph is a tree if it is connected and has no cycles. Not only are they structurally

easy to understand, but it has been found that many NP-hard graph problems can be solved

efficiently when the underlying graph is a tree. Here we will see why this is true for variants

of the Independent Set problem; however, it is important to keep in mind that this principle is

quite general, and we could equally well have considered other NP-complete graph problems

on trees.

First, we will see that the Independent Set problem itself can be solved by a greedy

algorithm on a tree. Then we will consider the a generalization called the Maximum-Weight

Independent Set problem, in which nodes have weight, and we seek an independent set of

maximum weight. We’ll see that the Maximum-Weight Independent Set problem can be

solved on trees via dynamic programming.

A Greedy Algorithm for Independent Set on Trees

The starting point of our algorithm is to consider the way a solution looks from the perspec-

tive of a single edge — this is a variant on an idea from the previous lecture. Specifically,

consider an edge e = (u, v) in G. In any independent set S of G, at most one of u or v can

324 CHAPTER 9. EXTENDING THE LIMITS OF TRACTABILITY

belong to S. We’d like to find an edge e for which we can greedily decide which of the two

ends to place in our independent set.

For this we exploit a crucial property of trees that we’ve seen earlier in the course: every

tree has at least one leaf — a node of degree 1. Consider a leaf v, and let (u, v) be the unique

edge incident to v. How might we “greedily” evaluate the relative benefits of including u or

v in our independent set S? If we include v, the only other node that is directly “blocked”

from joining the independent set is u. If we include u, it blocks not only v but all the other

nodes joined to u as well. So if we’re trying to maximize the size of the independent set, it

seems that including v should be better than — or at least as good as — including u.

(9.5) If T = (V, E) is a tree and v is a leaf of the tree, then there exists a maximum-size

independent set that contains v.

Proof. Consider a maximum-size independent set S, and let e = (u, v) be the unique edge

incident to node v. Clearly at least one of u or v is in S; for if neither is present, then we

could add v to S, thereby increasing its size. Now, if v ∈ S, then we are done; and if u ∈ S,

then we can obtain another independent set S ′ of the same size by deleting u from S and

inserting v.

We will use (9.5) repeatedly to identify and delete nodes that can be placed in the

independent set. As we do this deletion, the tree T may become disconnected. So to handle

things more cleanly, we actually describe our algorithm for the more general case in which

the underlying graph is a forest — a graph in which each connected component is a tree.

We can view the problem of finding a maximum-size independent set for a forest as really

being the same as the problem for trees: an optimal solution for a forest is simply the union

of optimal solutions for each tree component, and we can still use (9.5) to think about the

problem in any component.

Specifically, suppose we have a forest F ; then (9.5) allows us to make our first decision

in the following greedy way. Consider again an edge e = (u, v), where v is a leaf. We will

include node v in our independent set S, and not include node u. Given this decision, we can

delete the node v — since it’s already been included — and the node u — since it cannot

be included — and obtain a smaller forest. We continue recursively on this smaller forest to

get a solution.

To find a maximum-size independent set in a forest F:

Let S be the independent set to be constructed (initially empty).

While F has at least one edge

Let e = (u, v) be an edge of F such that v is a leaf.

Add v to S
Delete from F nodes u and v, and all edges incident to them.

Endwhile

Return S

9.2. SOLVING NP-HARD PROBLEM ON TREES 325

(9.6) The above algorithm finds a maximum-size independent set in forests (and hence

in trees as well).

Although (9.5) was a very simple fact, it really represents an application of one of

the design principles for greedy algorithms that we saw earlier in the course: an exchange

argument. In particular, the crux of our independent set algorithm is the observation that

any solution not containing a particular leaf can be “transformed” into a solution that is

just as good and contains the leaf.

To implement this algorithm so it runs quickly, we need to maintain the current forest

F in a way that allows us to find an edge incident to a leaf efficiently. It is not hard to

implement this algorithm in linear time: we need to maintain the forest in a way that allows

us to do on one iteration of the While loop in time proportional to the number of edges

deleted when u and v are removed.

The greedy algorithm on more general graphs. The greedy algorithm specified above

is not guaranteed to work on general graphs, because we cannot be guaranteed to find a leaf

in every iteration. However, (9.5) does apply to any graph: if we have an arbitrary graph

G with an edge (u, v) such that u is the only neighbor of v, then it’s always safe to put v in

the independent set, delete u and v, and iterate on the smaller graph.

So if, by repeatedly deleting degree-1 nodes and their neighbors, we’re able to eliminate

the entire graph, then we’re guaranteed to have found an independent set of maximum size

— even if the original graph was not a tree. And even if we don’t manage to eliminate

the whole graph, we may succeed in running a few iterations of the algorithm in succession,

thereby shrinking the size of the graph and making other approaches more tractable. Thus,

our greedy algorithm is a useful heuristic to try “opportunistically” on arbitrary graphs, in

the hope of making progress toward finding a large independent set.

Maximum-Weight Independent Set on Trees

Next we turn to the more complex problem of finding a maximum-weight independent set.

As before we assume that our graph is a tree T = (V, E). Now we also have a positive weight

wv associated with each node v ∈ V . The Maximum-Weight Independent Set problem is to

find an independent set S in the graph T = (V, E) so that the total weight
∑

v∈S wv is as

large as possible.

First we try the idea we used before to build a greedy solution for the case without

weights. Consider an edge e = (u, v), such that v is a leaf. Including v blocks fewer nodes

from entering the independent set; so if the weight of v is at least as large as the weight of

u, then we can indeed make a greedy decision just as we did in the case without weights.

However, if wv < wu we face a dilemma: we acquire more weight by including u, but we

326 CHAPTER 9. EXTENDING THE LIMITS OF TRACTABILITY

retain more options down the road if we include v. There seems to be no easy way to resolve

this locally, without considering the rest of the graph. However, there is still something we

can say. If node u has many neighbors v1, v2, . . . that are leaves, than we should make the

same decision for all of them: Once we decide not to include u in the independent set, we

may as well go ahead an include all its adjacent leaves. So for the sub-tree consisting of u

and its adjacent leaves, we really have only two “reasonable” solutions to consider: including

u, or including all the leaves.

We will use the ideas above to design a polynomial time algorithm using dynamic pro-

gramming. As we recall, dynamic programming allows us to record a few different solutions,

build these up through a sequence of sub-problems, and thereby decide only at the end which

of these possibilities will be used in the final solution.

The first thing to decide for a dynamic programming algorithm is what our sub-problems

will be. For Maximum-Weight Independent Set, we will construct sub-problems by rooting

the tree T at an arbitrary node r; recall that this is the operation of “orienting” all the tree’s

edges away from r. Specifically, for any node u 6= r, the parent p(u) of u is the node adjacent

to u along the path to the root r. The other neighbors of u are the children, and we will

use children(u) to denote the set of children of u. The node u and all its descendents form

a sub-tree Tu whose root is u.

We will base our sub-problems on these sub-trees Tu. The tree Tr is our original problem.

If u 6= r is a leaf, then Tu consists of a single node. For a node u all of whose children are

leaves, we observe that Tu is the kind of sub-tree discussed above.

To solve the problem by dynamic programming, we will start at the leaves and gradually

work our way up the tree. For a node u we want to solve the sub-problem associated with the

tree Tu after we have solved the sub-problems for all its children. To get a maximum-weight

independent set S for the tree Tu we will consider two cases: we either include the node u

in S or we do not. If we include u, then we cannot include any of its children; if we do not

include u, then we have the freedom to include or omit these children. This suggests that we

should define two sub-problems for each sub-tree Tu: OPTin(u) will denote the maximum

weight of an independent set of Tu that includes u, and OPTout(u) will denote the maximum

weight of an independent set of Tu that does not include u.

Now that we have our sub-problems, it is not hard to see how to compute these values

recursively. For a leaf u 6= r we have that OPTout(u) = 0 and OPTin(u) = wu. For all

other nodes u we get the following recurrence that defines OPTout(u) and OPTin(u) using

the values for u’s children.

(9.7) For a node u that has children, the following recurrence defines the values of the

sub-problems:

• OPTin(u) = wu +
∑

v∈children(u)

OPTout(v)

9.3. TREE DECOMPOSITIONS OF GRAPHS 327

• OPTout(u) =
∑

v∈children(u)

max(OPTout(v), OPTin(v)).

Using this recurrence, we get a dynamic programming algorithm by building up the

optimal solutions over larger and larger sub-trees. We define arrays Mout[u] and Min[u],

which hold the values OPTout(u) and OPTin(u) respectively. For building up solutions, we

need to process all the children of a node before we process the node itself; in the terminology

of tree traversal, we visit the nodes in post-order.

To find a maximum-weight independent set of a tree T:
Root the tree at a node r.
For all nodes u of T in post-order

If u is a leaf then set the values:

Mout[u] = 0
Min[u] = wu

Else set the values:

Mout[u] =
∑

v∈children(u)

max(Mout[u], Min[u])

Min[u] = wu +
∑

v∈children(u)

Mout[u].

Endif

Endfor

Return max(Mout[r], Min[r]).

This gives us the value of the maximum-weight independent set. Now, as is standard

in the dynamic programming algorithms we’ve seen before, it’s easy to recover an actual

independent set of maximum weight by recording the decision we make for each node, and

then tracing back through these decisions to decide which nodes should be included. Thus

we have

(9.8) The above algorithm finds a maximum-weight independent set in trees in linear

time.

9.3 Tree Decompositions of Graphs

Although Maximum-Weight Independent Set is NP-complete, we now have a polynomial-

time algorithm that solves the problem on trees. When you find yourself in this situation

— able to solve an NP-complete problem in a reasonably natural special case — it’s worth

asking why the approach doesn’t work in general. Our algorithm in the previous section was

indeed taking advantage of a special property of (rooted) trees: once we decide whether or

not to include a node u in the independent set, the sub-problems in each sub-tree become

completely separated; we can solve each as though the others did not exist. We don’t

328 CHAPTER 9. EXTENDING THE LIMITS OF TRACTABILITY

Figure 9.1: Two different drawings of a tree-like graph.

encounter such a nice situation in general graphs, where there might not be a node that

“breaks the communication” between sub-problems in the rest of the graph. Rather, for the

independent set problem in general graphs, decisions we make in one place seem to have

complex repercussions all across the graph.

So we can ask a weaker version of our question instead: is the algorithm from the previous

section useful only on trees, or can we generalize it to a larger class of graphs? All we really

needed, after all, was this notion of breaking the communication between sub-problems —

we needed a recursive way to delete a small set of nodes, check all possibilities for these

nodes exhaustively, and end up with a set of sub-problems that can be solved completely

independently.

In fact, there is a larger class of graphs that supports this type of algorithm; they are

essentially “generalized trees,” and for reasons that will become clear shortly, we will refer to

them as graphs of bounded tree-width. Just as with trees, many NP-complete problems are

tractable on graphs of bounded tree-width; and the class of graphs of bounded tree-width

turns out to have considerable practical value, since it includes many real-world networks

on which NP-complete graph problems arise. So in a sense, this type of graph serves as a

nice example of finding the “right” special case of a problem that simultaneously allows for

efficient algorithms and also includes graphs that arise in practice.

Defining Tree-Width

We now give a precise definition for this class of graphs that is designed to generalize trees.

The definition is motivated by two considerations. First, we want to find graphs that we

can decompose into disconnected pieces by removing a small number of nodes; this allows

us to implement dynamic programming algorithms of the type we discussed above. Second,

we want to make precise the intuition conveyed by Figure 9.1.

9.3. TREE DECOMPOSITIONS OF GRAPHS 329

We want to claim that the graph G pictured in this figure is decomposable in a “tree-

like” way, along the lines that we’ve been considering. If we were to encounter G as it drawn

on the left, it might not be immediately clear why this is so. In the drawing on the right,

however, we see that G is really composed of ten interlocking triangles; and seven of the

ten triangles have the property that if we delete them, then the remainder of G falls apart

into disconnected pieces that recursively have this interlocking-triangle structure. The other

three triangles are attached at the extremities, and deleting them is sort of like deleting the

leaves of a tree.

So G is “tree-like” if we view it not as being composed of twelve nodes, as we usually

would, but instead as being composed of ten triangles. Although G clearly contains many

cycles, it seems — intuitively — to lack cycles when viewed at the level of these ten triangles;

and based on this, it inherits many of the nice decomposition properties of a tree. How can

we make this precise?

We do this by introducing the idea of a tree decomposition of a graph G, so named because

we will seek to decompose G according to a tree-like pattern. Formally, a tree decomposition

of G = (V, E) consists of a tree T (on a different node set), and a subset Vt ⊆ V associated

with each node t of T . (We will call these subsets Vt the “pieces” of the tree decomposition.)

We will sometimes write this as the ordered pair (T, {Vt : t ∈ T}). The tree T and the

collection of pieces {Vt : t ∈ T} must satisfy the following three properties.

• (Node Coverage.) Every node of G belongs to at least one piece Vt.

• (Edge Coverage.) For every edge e of G, there is some piece Vt containing both ends

of e.

• (Coherence.) Let t1, t2, and t3 be three nodes of T such that t2 lies on the path from

t1 to t3. Then if a node v of G belongs to both Vt1 and Vt3 , then it also belongs to Vt2 .

It’s worth checking that there is a tree decomposition of the graph in Figure 9.1 using a tree

T with ten nodes, and using the ten triangles as the pieces.

If we consider the definition more closely, we see that the Node Coverage and Edge

Coverage properties simply ensure that the collection of pieces corresponds to the graph G

in a minimal way. The crux of the definition is in the Coherence property. While it is not

obvious from its statement that Coherence leads to tree-like separation properties, in fact it

does so quite naturally.

It we think about, trees have two nice separation properties, closely related to each other,

that get used all the time. One says that if we delete an edge e from a tree, it falls apart

into exactly two connected components. The other says that if we delete a node t from a

tree, then this is like deleting all the incident edges, and so the tree falls apart into a number

of components equal to the degree of t. The central fact about tree decompositions is that

330 CHAPTER 9. EXTENDING THE LIMITS OF TRACTABILITY

Vx Vy

Vx Vy Vx VyGX \ GY \

Vx Vy

no edge (u,v)

u v

Figure 9.2: Separations of the tree T translate to separations of the graph G.

separations of T , of both these types, correspond naturally to separations of G as well. If

T ′ is a subgraph of T , we use GT ′ to denote the subgraph of G induced by the nodes in all

pieces associated with nodes of T ′, i.e. the set ∪t∈T ′Vt.

Now, if we delete an edge (x, y) from T , then T falls apart into two components: X,

containing x, and Y , containing y. Let’s establish the corresponding way in which G is

separated by this operation.

(9.9) As above, let X and Y be the two components of T after the deletion of the

edge (x, y). Then deleting the set Vx ∩ Vy from V disconnects G into the two subgraphs

GX−(Vx ∩ Vy) and GY−(Vx ∩ Vy) More precisely, these two subgraphs do not share any

nodes, and there is no edge with one end in each of them.

Proof. We refer to Figure 9.2 for a general view of what the separation looks like. We

first prove that the two subgraphs GX−(Vx ∩Vy) and GY−(Vx ∩Vy) do not share any nodes.

Indeed, any such node v would need to belong to both GX and GY . So such a node v belongs

to some piece Vx′ with x′ ∈ X, and to some piece Vy′ with y′ ∈ Y . Since both x and y lie

on the x′-y′ path in T , it follow from the Coherence property that v lies in both Vx and Vy.

Thus v belongs to Vx∩Vy, and hence belongs to neither of GX−(Vx∩Vy) nor GY−(Vx∩Vy).

Now we must show that there is no edge e = (u, v) in G with one end u in GX−(Vx∩Vy)

and the other end v in GY−(Vx∩Vy). If there were such an edge, then by the Edge Coverage

property, there would need to be some piece Vz containing both u and v. Suppose by

9.3. TREE DECOMPOSITIONS OF GRAPHS 331

symmetry that z ∈ X. Then since the node v belongs to both Vy and Vz, and since x lies on

the y-z path in T , it follows that v also belongs to Vx. Hence v ∈ Vx ∩ Vy, and so it does not

lie in GY−(Vx ∩ Vy) as required.

It follows from (9.9) that if t is a node of T , then deleting Vt from G has a similar

separating effect.

(9.10) Suppose that T−t has components T1, . . . , Td. Then the subgraphs

GT1−Vt, GT2−Vt, . . . , GTd
−Vt

have no nodes in common, and there are no edges between them.

So tree decompositions are useful in that the separation properties of T carry over to

G. At this point, one might think that the key question is: “Which graphs have tree

decompositions?” But this is not the point, for if we think about it, we see that of course

every graph has a tree decomposition; given any G, we can let T be a tree consisting of a

single node t, and let the single piece Vt be equal to the entire node set of G. This easily

satisfies the three properties required by the definition; and such a tree decomposition is no

more useful to us than the original graph.

The crucial point, therefore, is to look for a tree decomposition in which all the pieces

are small — this is really what we’re trying to carry over from trees, by requiring that the

deletion of a very small set of nodes break apart the graph into disconnected subgraphs. So

we define the width of a tree decomposition (T, {Vt}) to be one less than the maximum size

of any piece Vt:

width(T, {Vt}) = max
t
|Vt| − 1.

We then define the tree-width of G to the minimum width of any tree decomposition of G.

Thus we can talk about the set of all graphs of tree-width 1, the set of all graphs of

tree-width 2, and so forth. The following fact establishes that our definitions here indeed

generalize the notion of a tree; the proof also provides a good way for us to exercise some of

the basic properties of tree decompositions.

(9.11) A connected graph G has tree-width 1 if and only if it is a tree.

Proof. First, if G is a tree, then we can build a tree decomposition of it as follows. The

underlying tree T has a node tv for each node v of G, and a node te for each edge e of G. T

has an edge (tv, te) when v is an end of e. Finally, if v is a node, then we define the piece

Vtv = {v}; and if e = (u, v) is an edge, then we define the piece Vte = {u, v}. One can now

check that the three properties in the definition of a tree decomposition are satisfied.

To prove the converse, we first establish the following useful fact: if H is a subgraph of

G, then the tree-width of H is at most the tree-width of G. This is simply because, given a

332 CHAPTER 9. EXTENDING THE LIMITS OF TRACTABILITY

tree decomposition (T, {Vt}) of G, we can define a tree-decomposition of H by keeping the

same underlying tree T , and replacing each piece Vt with Vt∩H. It is easy to check that the

required three properties still hold. (The fact that certain pieces may now be equal to the

empty set does not pose a problem.)

Now, suppose by way of contradiction that G is a connected graph of tree-width 1 that

is not a tree. Since G is not a tree, it has a subgraph consisting of a simple cycle C. By

our argument from the previous paragraph, it is now enough for us to argue that the graph

C does not have tree-width 1. Indeed, suppose it had a tree decomposition (T, {Vt}) in

which each piece had size at most 2. Choose any two edges (u, v) and (u′, v′) of C; by the

Edge Coverage property, there are pieces Vt and Vt′ containing them. Now, on the path in

T from t to t′ there must be an edge (x, y) such that the pieces Vx and Vy are unequal. It

follows that |Vx ∩ Vy| ≤ 1. We now invoke (9.9) : defining X and Y to be the components

of T−(x, y) containing x and y respectively, we see that deleting Vx ∩ Vy separates C into

CX−(Vx ∩ Vy) and CY−(Vx ∩ Vy). Neither of these two subgraphs can be empty, since one

contains {u, v}−(Vx ∩ Vy) and the other contains {u′, v′}−(Vx ∩ Vy). But it is not possible

to disconnect a cycle into two non-empty subgraphs by deleting a single node, and so this

yields a contradiction.

In fact, the somewhat puzzling “-1” in the definition of the width of a tree-decomposition

is precisely so that trees would turn out to have tree-width 1, rather than 2. We also observe

that the graph in Figure 9.1 is thus, according to the notion of tree-width, a member of the

next “simplest” class of graphs after trees — it is a graph of tree-width 2.

When we use tree decompositions in the context of dynamic programming algorithms,

we would like — for the sake of efficiency — that they not have too many pieces. Here is

a simple way to do this. If we are given a tree decomposition (T, {Vt}) of a graph G, and

we see an edge (x, y) of T such that Vx ⊆ Vy, then we can contract the edge (x, y) (folding

the piece Vx into the piece Vy) and obtain a tree decomposition of G based on a smaller

tree. Repeating this process as often as necessary, we end up with a non-redundant tree

decomposition: there is no edge (x, y) of the underlying tree such that Vx ⊆ Vy.

Once we’ve reached such a tree decomposition, we can be sure that it does not have too

many pieces:

(9.12) Any non-redundant tree decomposition of an n-node graph has at most n pieces.

Proof. We prove this by induction on n, the case n = 1 being clear. Let’s consider the case

in which n > 1. Given a non-redundant tree decomposition (T, {Vt}) of an n-node graph,

we first identify a leaf t of T . By the non-redundancy condition, there must be at least

one node in Vt that does not appear in the neighboring piece, and hence (by the Coherence

property) does not appear in any other piece. Let U be the set of all such nodes. We

now observe that by deleting t from T , and removing Vt from the collection of pieces, we

9.3. TREE DECOMPOSITIONS OF GRAPHS 333

obtain a non-redundant tree decomposition of G−U . By our inductive hypothesis, this tree

decomposition has at most n− |U | ≤ n− 1 pieces, and so (T, {Vt}) has at most n pieces.

While (9.12) is very useful for making sure one has a small tree decomposition, it is often

easier in the course of analyzing a graph to start by building a redundant tree decomposition,

and only later “condensing” it down to a non-redundant one. For example, the proof of (9.11)

started by constructing a redundant tree decomposition; it would not have been as simple

to directly describe a non-redundant one.

Having thus laid the groundwork, we now turn to the algorithmic uses of tree decompo-

sitions.

Dynamic Programming over a Tree Decomposition

We began by claiming that the Maximum-Weight Independent Set could be solved efficiently

on any graph for which the tree-width was bounded; now it’s time to deliver on this promise.

Specifically, we will develop an algorithm that closely follows the linear-time algorithm for

trees; given an n-node graph with an associated tree decomposition of width w, it will run

in time O(f(w) · n), where f(·) is an exponential function that depends only on the width

w, not on the number of nodes n. And as in the case of trees, although we are focusing

on Maximum-Weight Independent Set, the approach here is useful for many NP-complete

problems.

So in a very concrete sense, the complexity of the problem has been pushed off of the

size of the graph and into the tree-width, which may be much smaller. As we mentioned

earlier, large networks in the real world often have very small tree-width; and often this

is not coincidental, but a consequence of the structured or modular way in which they are

designed. So if we encounter a 1000-node network with a tree decomposition of width 4, the

approach discussed here takes a problem that would have been hopelessly intractable and

makes it potentially quite manageable.

Of course, this is all somewhat reminiscent of the Vertex Cover algorithm from the first

section of this chapter. There we pushed the exponential complexity into the parameter k,

the size of the vertex cover being sought. Here we did not have an obvious parameter other

than n lying around, so we were forced to invent a fairly non-obvious one — the tree-width.

To design the algorithm, we recall what we did for the case of a tree T . After rooting T ,

we built the independent set by working our way up from the leaves. At each internal node

u, we enumerated the possibilities for what to do with u — include it or not include it —

since once this decision was fixed, the problems for the different sub-trees below u became

independent.

The generalization for a graph G with a tree decomposition (T, {Vt}) of width w looks

very similar. We root the tree T , and build the independent set by considering the pieces

334 CHAPTER 9. EXTENDING THE LIMITS OF TRACTABILITY

Vt from the leaves upward. At an internal node t of T , we confront the following basic

question: the optimal independent set intersects the piece Vt in some subset U , but we don’t

know which set U it is. So we enumerate all the possibilities for this subset U — i.e., all

possibilities for which nodes to include from Vt and which to leave out. Since Vt may have

size up to w + 1, this may be 2w+1 possibilities to consider. But we now can exploit two

key facts: first, that the quantity 2w+1 is a lot more reasonable than 2n when w is much

smaller than n; and second, that once we fix a particular one of these 2w+1 possibilities —

once we’ve decided which nodes in the piece Vt to include — the separation properties (9.9)

and (9.10) ensure that the problems in the different subtrees of T below t can be solved

independently. So while we settle for doing brute-force search at the level of a single piece,

we have an algorithm that is quite efficient at the global level when the individual pieces are

small.

Defining the Sub-Problems. More precisely, we root the tree T at a node r. For any

node t, let Tt denote the sub-tree rooted at t. Recall that GTt
denotes the subgraph of G

induced by the nodes in all pieces associated with nodes of Tt; for notational simplicity, we

will also write this subgraph as Gt. For a subset U of V , we use w(U) to denote the total

weight of nodes in U ; that is, w(U) =
∑

u∈U wu.

We define a set of sub-problems for each sub-tree Tt, one corresponding to each possible

subset U of Vt that may represent the intersection of the optimal solution with Vt. Thus,

for each independent set U ⊆ Vt, we write ft(U) to denote the maximum weight of an

independent set S in Gt, subject to the requirement that S ∩ Vt = U . The quantity ft(U) is

undefined if U is not an independent set, since in this case we know that U cannot represent

the intersection of the optimal solution with Vt.

There are at most 2w+1 sub-problems associated with each node t of T , since this is the

maximum possible number of independent subsets of Vt. By (9.12) , we can assume we are

working with a tree decomposition that has at most n pieces, and hence there are a total of at

most 2w+1n sub-problems overall. Clearly, if we have the solutions to all these sub-problems,

we can determine the maximum weight of an independent set in G by looking at the sub-

problems associated with the root r: we simply take the maximum, over all independent sets

U ⊆ Vr, of fr(U).

Building up Solutions. Now we must show how to build up the solutions to these sub-

problems via a recurrence. It’s easy to get started: When t is a leaf, ft(U) is equal to w(U)

for each independent set U ⊆ Vt.

Now suppose that t has children t1, . . . , td, and we have already determined the values of

fti(W) for each child ti and each independent set W ⊆ Vti . How do we determine the value

of ft(U) for an independent set U ⊆ Vt?

9.3. TREE DECOMPOSITIONS OF GRAPHS 335

parent(t)Vt

Vt Vt

U

1
2

no edge

no edge

Figure 9.3: The sub-problem ft(U) in the subgraph Gt.

Let S be the maximum-weight independent set in Gt subject to the requirement that

S ∩ Vt = U ; i.e. w(S) = ft(U). The key is to understand how this set S looks when

intersected with each of the subgraphs Gti , as suggested in Figure 9.3. We let Si denote the

intersection of S with the nodes of Gti .

(9.13) Si is a maximum-weight independent set of Gti , subject to the constraint that

Si ∩ Vt = U ∩ Vti .

Proof. Suppose there were an independent set S ′
i of Gti with the property that S ′

i ∩ Vt =

U ∩ Vti and w(S ′
i) > w(Si). Then consider the set S ′ = (S−Si) ∪ S ′

i. Clearly w(S ′) > w(S).

Also, it is easy to check that S ′ ∩ Vt = U .

We claim that S ′ is an independent set in G; this will contradict our choice of S as

the maximum-weight independent set in Gt subject to S ∩ Vt = U . For suppose S ′ is not

independent, and let e = (u, v) be an edge with both ends in S ′. It cannot be that u and

v both belong to S, or that they both belong to S ′
i, since these are both independent sets.

Thus we must have u ∈ S−S ′
i and v ∈ S ′

i−S, from which it follows that u is not a node of

Gti while v ∈ Gti−(Vt ∩ Vti). But then, by (9.9) , there cannot be an edge joining u and v.

(9.13) is exactly what we need to design a recurrence relation for our sub-problems — it

says that the information needed to compute ft(U) is implicit in the values already computed

336 CHAPTER 9. EXTENDING THE LIMITS OF TRACTABILITY

for the subtrees. Specifically, for each child ti, we need simply determine the value of the

maximum-weight independent set Si of Gti , subject to the constraint that Si ∩ Vt = U ∩ Vti .

This constraint does not completely determine what Si ∩ Vti should be; rather, it says that

it can be any independent set Ui ⊆ Vti such that Ui ∩ Vt = U ∩ Vti . Thus, the weight of the

optimal Si is equal to

max w(U) + {fti(Ui) : Ui ∩ Vt = U ∩ Vti and Ui ⊆ Vti is independent}.
Finally, the value of ft(U) is simply w(U) plus these maxima added over the d children of t

— except that to avoid over-counting the nodes in U , we exclude them from the contribution

of the children. Thus we have

(9.14) The value of ft(U) is given by the following recurrence:

ft(U) =
d
∑

i=1

max{fti(Ui)− w(Ui ∩ U) : Ui ∩ Vt = U ∩ Vti and Ui ⊆ Vti is independent}.

The overall algorithm now just builds up the values of all the sub-problems from the

leaves of T upward.

To find a maximum-weight independent set of G,

given a tree decomposition (T, {Vt}) of G:

Modify the tree decomposition if necessary so it is non-redundant.

Root T at a node r.
For each node t of T in post-order

If t is a leaf then

For each independent set U of Vt

ft(U) = w(U)
Else

For each independent set U of Vt

ft(U) is determined by the recurrence in (9.14)

Endif

Endfor

Return max{fr(U) : U ⊆ Vr is independent}.
An actual independent set of maximum weight can be found, as usual, by tracing back

through the execution.

We can determine the time required for computing ft(U) as follows: for each of the d

children ti, and for each independent set Ui in Vti, we spend time O(w) determining whether

it should be considered in the computation of (9.14) . This is a total time of O(2w+1wd) for

ft(U); since there are at most 2w+1 sets U associated with t, the total time spent on node t is

O(4w+1wd). Finally, we sum this over all nodes t to get the total running time. We observe

that the sum, over all nodes t, of the number of children of t is O(n) — since each node is

counted as a child once. Thus the total running time is O(4w+1wn).

9.3. TREE DECOMPOSITIONS OF GRAPHS 337

Constructing a Tree Decomposition

There is still a crucial missing piece in our algorithmic use of tree-width — thus far, we have

simply provided an algorithm for Maximum-Weight Independent Set on a graph G, provided

we have been given a low-width tree decomposition of G. What if we simply encounter G “in

the wild,” and no one has been kind enough to hand us a good tree decomposition of it? Can

we compute one on our own, and then proceed with the dynamic programming algorithm?

The answer is basically “yes,” with some caveats. First, we must warn that given a graph

G, it is NP-hard to determine its tree-width. However, the situation for us is not actually

so bad, because we are only interested here in graphs for which the tree-width is a small

constant. And in this case, we will describe an algorithm with the following guarantee: given

a graph G of tree-width w, it will produce a tree decomposition of G of width at most 4w

in time O(f(w) · mn), where m and n are the number of edges and nodes of G, and f(·)
is a function that depends only on w. So essentially, when the tree-width is small, there’s

a reasonably fast way to produce a tree decomposition whose width is almost as small as

possible.

An obstacle to low tree-width. The first step in designing an algorithm for this problem

is to work out a reasonable “obstacle” to a graph G having low tree-width. In other words,

as we try to construct a tree decomposition of low width for G = (V, E), might there be some

“local” structure we could discover that will tell us the tree-width must in fact be large?

The following idea turns out to provide us with such an obstacle. First, given two sets

Y, Z ⊆ V of the same size, we say they are separable if some strictly smaller set can completely

disconnect them — specifically, if there is a set S ⊆ V such that |S| < |Y | = |Z| and there

is no path from Y−S to Z−S in G−S. (In this definition, Y and Z need not be disjoint.)

Next, we say that a set X of nodes in G is w-linked if |X| ≥ w and X does not contain

separable subsets Y and Z, such that |Y | = |Z| ≤ w.

For later algorithmic use of w-linked sets, we make note of the following fact.

(9.15) Let G = (V, E) have m edges, let X be a set of k nodes in G, and let w ≤ k be a

given parameter. Then we can determine whether X is w-linked in time O(f(k) ·m), where

f(·) depends only on k. Moreover, if X is not w-linked, we can return a proof of this in the

form of sets Y, Z ⊆ X and S ⊆ V such that |S| < |Y | = |Z| ≤ w and there is no path from

Y−S to Z−S in G−S.

Proof. We are trying to decide whether X contains separable subsets Y and Z such that

|Y | = |Z| ≤ w. We can first enumerate all pairs of sufficiently small subsets Y and Z; since

X only has 2k such subsets, there are at most 4k such pairs.

Now, for each pair of subsets Y, Z, we must determine whether they are separable. Let

` = |Y | = |Z| ≤ w. But this is exactly the Max-Flow Min-Cut theorem when we have an

338 CHAPTER 9. EXTENDING THE LIMITS OF TRACTABILITY

t

t

t

t

t

1

2

3

4

between w and 2w elements of X

more than

of X
2w elements

G

G

G

G

G

Figure 9.4: The final step in the proof of (9.16) .

undirected graph with capacities on the nodes: Y and Z are separable if and only there do

not exist ` node-disjoint paths, each with one end in Y and the other in Z. We can determine

whether such paths exist using an algorithm for flow with (unit) capacities on the nodes;

this takes time O(`m).

One should imagine a w-linked set as being highly self-entwined — it has no two small

parts that can be easily split off from one another. At the same time, a tree decomposition

cuts up a graph using very small separators; and so it is intuitively reasonable that these

two structures should be in opposition to one another.

(9.16) If G contains a (w + 1)-linked set of size at least 3w, then G has tree-width at

least w.

Proof. Suppose by way of contradiction that G has a (w + 1)-linked set X of size at least

3w, and it also has a tree decomposition (T, {Vt}) of width less than w; in other words, each

piece Vt has size at most w. We may further assume that (T, {Vt}) is non-redundant.

The idea of the proof is to find a piece Vt that is “centered” with respect to X, so that

when some part of Vt is deleted from G, one small subset of X is separated from another.

Since Vt has size at most w, this will contradict our assumption that X is (w + 1)-linked.

So how do we find this piece Vt? We first root the tree T at a node r; using the same

notation as before, we let Tt denote the sub-tree rooted at a node t, and write Gt for GTt
.

9.3. TREE DECOMPOSITIONS OF GRAPHS 339

Now, let t be a node that is far from the root r as possible subject to the condition that Gt

contains more than 2w nodes of X.

Clearly, t is not a leaf (or else Gt could contain at most w nodes of X); so let t1, . . . , td be

the children of t. Note that since each ti is farther than t from the root, each subgraph Gti

contains at most 2w nodes of X. If there is a child ti so that Gti contains at least w nodes

of X, then we can define Y to be w nodes of X belonging to Gti , and Z to be w nodes of X

belonging to G−Gti . Since (T, {Vt}) is non-redundant, S = Vti ∩ Vt has size at most w − 1;

but by (9.9), deleting S disconnects Y−S from Z−S. This contradicts our assumption that

X is (w + 1)-linked.

So we consider the case in which there is no child ti such that Gti contains at least w

nodes of X; Figure 9.4 suggests the structure of the argument in this case. We begin with

the node set of Gt1 , combine it with Gt2 , then Gt3 , and so forth, until we first obtain a set of

nodes containing more than w members of X. This will clearly happen by the time we get

to Gtd, since Gt contains more than 2w nodes of X, and at most w of them can belong to

Vt. So suppose our process of combining Gt1 , Gt2 , . . . first yields more than w members of X

once we reach index i ≤ d. Let W denote the set of nodes in the subgraphs Gt1 , Gt2, . . . , Gti .

By our stopping condition, we have |W ∩X| > w. But since Gti contains fewer than w nodes

of X, we also have |W ∩X| < 2w. Hence we can define Y to be w + 1 nodes of X belonging

to W , and Z to be w + 1 nodes of X belonging to V−W . By (9.10) , the piece Vt is now a

set of size at most w whose deletion disconnects Y−Vt from Z−Vt. Again this contradicts

our assumption that X is (w + 1)-linked, completing the proof.

An algorithm to search for a low-width tree decomposition. Building on these

ideas, we now give a greedy algorithm for constructing a tree decomposition of low width.

The algorithm will not precisely determine the tree-width of the input graph G = (V, E);

rather, given a parameter w, it will either produce a tree decomposition of width at most 4w,

or it will discover a (w+1)-linked set of size at least 3w. In the latter case, this constitutes a

proof that the tree-width of G is at least w, by (9.16); so our algorithm is essentially capable

of narrowing down the true tree-width of G to within a factor of 4. As discussed above, the

running time will have the form O(f(w) ·mn), where m and n are the number of edges and

nodes of G, and f(·) depends only on w.

Having worked with tree decompositions for a little while now, one can start imagining

what might be involved in constructing one for an arbitrary input graph G. The process

is depicted at a high level in Figure 9.5. Our goal is to make G fall apart into tree-like

portions; we begin the decomposition by placing the first piece Vt anywhere. Now, hopefully,

G−Vt consists of several disconnected components; we recursively move into each of these

components, placing a piece in each so that it partially overlaps the piece Vt that we’ve

already defined. We hope that these new pieces cause the graph to break up further, and

340 CHAPTER 9. EXTENDING THE LIMITS OF TRACTABILITY

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������

�������������
�������������
�������������
�������������
�������������
�������������

	�	�	�	�	�	�	
	�	�	�	�	�	�	
	�	�	�	�	�	�	
	�	�	�	�	�	�	
	�	�	�	�	�	�	
	�	�	�	�	�	�	

Step 1

Step 2Step 3

Figure 9.5: Constructing a tree decomposition: a schematic view.

we thus continue in this way, pushing forward with small sets while the graph breaks apart

in front of us. The key to making this algorithm work is to argue the following: if at some

point we get stuck, and our small sets don’t cause the graph to break up any further, then

we can extract a large (w + 1)-linked set that proves the tree-width was in fact large.

Given how vague this intuition is, the actual algorithm follows it more closely than you

might think. We start by assuming that there is no (w + 1)-linked set of size at least 3w;

our algorithm will produce a tree decomposition provided this holds true, and otherwise we

can stop with a proof that the tree-width of G is at least w. We grow the underlying tree

T of the decomposition, and the pieces Vt, in a greedy fashion. At every intermediate stage

of the algorithm, we will maintain the property that we have a partial tree decomposition:

by this we mean that if U ⊆ V denotes the set of nodes of G that belong to at least one

of the pieces already constructed, then our current tree T and pieces Vt should form a tree

decomposition of the subgraph of G induced on U .

If C is a connected component of G−U , we say that u ∈ U is a neighbor of C if there is

some node v ∈ C with an edge to u. The key behind the algorithm is to not simply maintain a

partial tree decomposition of width at most 4w, but to also make sure the following invariant

is enforced the whole time:

(∗) At any stage in the execution of the algorithm, each component C of G−U

has at most 3w neighbors, and there is a single piece Vt that contains all of them.

9.3. TREE DECOMPOSITIONS OF GRAPHS 341

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�������������
�������������
�������������
�������������

�
�
�

�
�
�

�
�
�

�����
�����
�����

�������
�������
�������

�������
�������
�������

C

S

Vt

Y Z

X

Figure 9.6: Adding a new piece to the partial tree decomposition.

Why is this invariant so useful? It’s useful because it will let us add a new node s to T , and

grow a new piece Vs in the component C, with the confidence that s can be a leaf hanging

off t in the larger partial tree decomposition. Moreover, (∗) requires there be at most 3w

neighbors, while we are trying to produce a tree decomposition of width at most 4w; this

extra w gives our new piece “room” to expand by a little as it moves into C.

Specifically, we now describe how to add a new node and a new piece so that we still

have a partial tree decomposition, the invariant (∗) is still maintained, and the set U has

grown strictly larger. In this way, we make at least one node’s worth of progress, and so

the algorithm will terminate in at most n iterations with a tree decomposition of the whole

graph G.

Let C be any component of G−U , let X be the set of neighbors of U , and let Vt be a

piece that, as guaranteed by (∗), contains all of X. We know, again by (∗), that X contains

at most 3w nodes. If X in fact contains strictly fewer than 3w nodes, we can make progress

right away: for any node v ∈ C we define a new piece Vs = X ∪ {v}, making s a leaf of t.

Since all the edges from v into U have their ends in X, it is easy to confirm that we still

have a partial tree decomposition obeying (∗), and U has grown.

Thus, let’s suppose that X has exactly 3w nodes. In this case, it is less clear how to

proceed; for example, if we try to create a new piece by arbitrarily adding a node v ∈ C

to X, we may end up with a component of C−{v} (which may be all of C−{v}) whose

neighbor set includes all 3w + 1 nodes of X ∪ {v}, and this would violate (∗).

342 CHAPTER 9. EXTENDING THE LIMITS OF TRACTABILITY

There’s no simple way around this; for one thing, G may not actually have a low-width

tree decomposition. So this is precisely the place where it makes sense to ask whether X

poses a genuine obstacle to the tree decomposition or not: we test whether X is a (w + 1)-

linked set. By (9.15) , we can determine the answer to this in time O(f(w) · m), since

|X| = 3w. If it turns out that X is (w + 1)-linked, then we are all done; we can halt with

the conclusion that G has tree-width at least w, which was one acceptable outcome of the

algorithm. On the other hand, if X is not (w + 1)-linked, then we end up with Y, Z ⊆ X

and S ⊆ V such that |S| < |Y | = |Z| ≤ w + 1 and there is no path from Y−S to Z−S in

G−S. The sets Y , Z, and S will now provide us with a means to extend the partial tree

decomposition.

Let S ′ consist of the nodes of S that lie in Y ∪Z ∪C. The situation is now as pictured in

Figure 9.6. We observe that S ′ cannot be empty: Y and Z each have edges into C, and so

if S ′ = φ then there would be a path from Y−S to Z−S in G−S that started in Y , jumped

immediately into C, traveled through C, and finally jumped back into Z. At the same time,

|S ′| ≤ |S| ≤ w.

We define a new piece Vs = X∪S ′, making s a leaf of t. All the edges from S ′ into U have

their ends in X, and |X ∪ S ′| ≤ 3w + w = 4w, so we still have a partial tree decomposition.

Moreover, the set of nodes covered by our partial tree decomposition has grown since S ′ is

not empty. So we will be done if we can show that the invariant (∗) still holds. This brings

us exactly the intuition we tried to capturing when discussing Figure 9.5 — as we add the

new piece X ∪ S ′, we are hoping that the component C breaks up into further components

in a nice way.

Concretely, our partial tree decomposition now covers U ∪ S ′; and where we previously

had a component C of G−U , we now may have several components C ′ ⊆ C of G−(U ∪ S ′).

Each of these components C ′ has all its neighbors in X ∪S ′; but we must additionally make

sure there are at most 3w such neighbors, so that the invariant (∗) continues to hold. So

consider one of these components C ′. We claim that all its neighbors in X ∪ S ′ actually

belong to one of the two subsets (X−Z) ∪ S ′ or (X−Y) ∪ S ′ — and each of these sets has

size at most |X| ≤ 3w. For if this did not hold, then C ′ would have a neighbor in both Y−S

and Z−S, and hence there would be a path, through C ′, from Y−S to Z−S in G−S. But

we know there cannot be such a path. This establishes that (∗) still holds after the addition

of the new piece, and completes the argument that the algorithm works correctly.

Finally, what is the running time of the algorithm? The time to add a new piece to

the partial tree decomposition is dominated by the time required to check whether X is

(w + 1)-linked, which is O(f(w) ·m). We do this for at most n iterations, since we increase

the number of nodes of G that we cover in each iteration. So the total running time is

O(f(w) ·mn).

9.4. EXERCISES 343

9.4 Exercises

1. Earlier, we considered an exercise in which we claimed that the Hitting Set problem

was NP-complete. To recap the definitions, Consider a set A = {a1, . . . , an} and a

collection B1, B2, . . . , Bm of subsets of A. We say that a set H ⊆ A is a hitting set for

the collection B1, B2, . . . , Bm if H contains at least one element from each Bi — that

is, if H ∩ Bi is not empty for each i. (So H “hits” all the sets Bi.)

Now, suppose we are given an instance of this problem, and we’d like to determine

whether there is a hitting set for the collection of size at most k. Furthermore, suppose

that each set Bi has at most c elements, for a constant c. Give an algorithm that

solves this problem with a running time of the form O(f(c, k) · p(n, m)), where p(·) is

a polynomial function, and f(·) is an arbitrary function that depends only on c and k,

not on n or m.

2. Consider a network of workstations modeled as an undirected graph G, where each

node is a workstation, and the edges represent direct communication links. We’d like

to place copies of a database at nodes in G, so that each node is close to at least one

copy.

Specifically, assume that each node v in G has a cost cv charged for placing a copy of

the database at node v. The Min-Cost Server Placement problem is as follows.

Given the network G, and costs {cv}, find a set of nodes S ⊆ V of minimum total

cost
∑

v∈S cv, so that if we place copies of a database at each node in S, then every

workstation either has a copy of the database, or is connected by a direct link to a

workstation that has a copy of the database.

Give a polynomial time algorithm for the special case of the Min-Cost Server

Placement where the graph G is a tree.

Note the difference between Server Placement and Vertex Cover. If the graph

G is a path of consisting of 6 nodes, then Vertex Cover needs to select at least 3 of

the 6 nodes, while the second and the 5th node form a valid solution of the Min-Cost

Server Placement problem, requiring only two nodes.

3. Suppose we are given a directed graph G = (V, E), with V = {v1, v2, . . . , vn}, and we

want to decide whether G has a Hamiltonian path from v1 to vn. (That is, is there a

path in G that goes from v1 to vn, passing through every other vertex exactly once?)

Since the Hamiltonian path problem is NP-complete, we do not expect that there is

a polynomial-time solution for this problem. However, this does not mean that all

non-polynomial-time algorithms are equally “bad.” For example, here’s the simplest

brute-force approach: for each permutation of the vertices, see if it forms a Hamiltonian

344 CHAPTER 9. EXTENDING THE LIMITS OF TRACTABILITY

path from v1 to vn. This takes time roughly proportional to n!, which is about 3×1017

when n = 20.

Show that the Hamiltonian path problem can in fact be solved in time O(2n · p(n)),

where p(n) is a polynomial function of n. This is a much better algorithm for moderate

values of n; 2n is only about a million when n = 20.

4. (∗) Give a polynomial time algorithm for the following problem. We are given a binary

tree T = (V, E) with an even number of nodes, and a non-negative cost on each edge.

Find a partition of the nodes V into two sets of equal size so that the weight of the

cut between the two sets is as large as possible. (I.e. the total weight of edges with

one end in each set is as large as possible.) Note that the restriction that the graph is

a tree crucial here, but the assumption that the tree is binary is not. The problem is

NP-hard in general graphs.

5. We say that a graph G = (V, E) is a triangulated cycle graph if it consists of the vertices

and edges of a triangulated convex n-gon in the plane — in other words, if it can be

drawn in the plane as follows.

The vertices are all placed on the boundary of a convex set in the plane (we may assume

on the boundary of a circle), with each pair of consecutive vertices on the circle joined

by an edge. The remaining edges are then drawn as straight line segments through the

interior of the circle, with no pair of edges crossing in the interior. If we let S denote

the set of all points in the plane that lie on vertices or edges of the drawing, then each

bounded component of R2 − S is bordered by exactly three edges. (This is the sense

in which the graph is a “triangulation.”)

A triangulated cycle graph is pictured below.

Prove that every triangulated cycle graph has a tree decomposition of width at most

2, and describe an efficient algorithm to construct such a decomposition.

6. The Minimum-cost Dominating Set Problem is specified by an undirected graph G =

(V, E) and costs c(v) on the nodes v ∈ V . A subset S ⊂ V is said to be a dominating

9.4. EXERCISES 345

set if all nodes u ∈ V−S have an edge (u, v) to a node v in S. (Note the difference

between dominating sets and vertex covers: in a dominating set, it is fine to have an

edge (u, v) with neither u nor v in the set S as long as both u and v have neighbors in

S.)

(a.) Give a polynomial time algorithm for the Dominating Set problem for the special

case in which G is a tree.

(b.) Give a polynomial time algorithm for the Dominating Set problem for the special

case in which G has tree-width 2, and we are also given a tree-decomposition of

G with width 2.

7. The Node-Disjoint Paths Problem is given by an undirected graph G and k pairs of

nodes (si, ti) for i = 1, . . . , k. The problem is to decide whether there are a node-

disjoint paths Pi so that path Pi connects si to ti. Give a polynomial time algorithm

for the Node-Disjoint Paths Problem for the special case in which G has tree-width 2,

and we are also given a tree-decomposition T of G with width 2.

8. A k-coloring of an undirected graph G = (V, E) is an assignment of one of the numbers

{1, 2, . . . , k} to each node, so that if two nodes are joined by an edge, then they are

assigned different numbers. The chromatic number of G is the minimum k such that it

has a k-coloring. For k ≥ 3, it is NP-complete to decide whether a given input graph

has chromatic number ≤ k. (You don’t have to prove this.)

(a) Show that for every natural number w ≥ 1, there is a number k(w) so that the

following holds. If G is a graph of tree-width at most w, then G has chromatic number

at most k(w). (The point is that k(w) depends only on w, not on the number of nodes

in G.)

(b) Given an undirected n-node graph G = (V, E) of tree-width at most w, show

how to compute the chromatic number of G in time O(f(w) · p(n)), where p(·) is a

polynomial but f(·) can be an arbitrary function.

346 CHAPTER 9. EXTENDING THE LIMITS OF TRACTABILITY

Chapter 10

Approximation Algorithms

Following our encounter with NP-completeness — and the idea of computational intractabil-

ity in general — we’ve been dealing with a fundamental question: How should we design

algorithms for problems where polynomial time is probably an unattainable goal?

In this chapter, we focus on a new theme related to this question — approximation

algorithms, which run in polynomial time and find solutions that are guaranteed to be close

to optimal. There are two key words to notice in this definition: “close,” and “guaranteed.”

Unlike our approach via improved exponential algorithms, we will not be seeking the optimal

solutions; as a result, it becomes feasible to aim for a polynomial running time.

10.1 Load Balancing Problems: Bounding the Opti-

mum

The first problem we consider here from the perspective of approximation is the following

load balancing problem. We are given a set of m machines M1, . . . , Mm, and a set of n jobs;

each job j has a processing time tj. We seek to assign each job to one of the machines.

In any assignment, we can let A(i) denote the set of jobs assigned to machine Mi; under

this assignment, machine Mi needs to work for a total time of

Ti =
∑

j∈A(i)

tj.

Our goal will be to assign the jobs to the machines that all these loads Tj are roughly the

same.

There are many objective functions that we can use to formalize this goal. Here we will

focus on a particularly natural one that we call the makespan; it is defined as the latest time

T at which any job finishes. Notice that T = maxi Ti. We will look for an assignment with

a makespan that is as small as possible. Although we will not prove this, the problem of

finding the minimum possible makespan is an NP-hard optimization problem.

347

348 CHAPTER 10. APPROXIMATION ALGORITHMS

We first consider a very simple greedy algorithm for the problem. The algorithm makes

one pass through the jobs in any order; when it come to job j, it assigns j to the machine

whose load is smallest so far.

Greedy-Balance

Start with no jobs assigned

Set Ti = 0 and A(i) = ∅ for all machines Mi

For j = 1, . . . , n
Let Mi be a machine that achieves the minimum mink Tk

Assign job j to machine Mi

Set A(i)← A(i) ∪ {j}
Set Ti ← Ti + tj

Endfor

Let T denote the makespan of the resulting schedule; we want to show that T is not

much larger than the minimum possible makespan T ∗. Of course, in trying to do this, we

immediately encounter an obvious problem: We need to compare ourselves to the optimal

value T ∗, even though we don’t what this value is. For the analysis, therefore, we will need

a lower bound on the optimum — a quantity with the guarantee that no matter how good

the optimum is, it cannot be less than this.

There are many possible lower bounds on the optimum. One idea for a lower bound is

based on considering the total processing time
∑

j tj. One of the m machines must do at

least a 1/m fraction of the total work, and so we have

(10.1) The optimal makespan is at least

T ∗ ≥ 1

m

∑

j

tj.

There is a particular kind of case in which this lower bound is much too weak to be

useful. Suppose we have one job that is extremely long relative to the sum of all processing

times. In a sufficiently extreme version of this, the optimal solution will place this job on a

machine by itself, and it will be the last one to finish. In such a case, our greedy algorithm

would actually produce the optimal solution; but the lower bound in (10.1) isn’t strong

enough to establish this.

This suggests the following additional lower bound on T ∗.

(10.2) The optimal makespan is at least T ∗ ≥ maxj tj.

Now we are ready to evaluate the schedule obtained by our greedy algorithm. Let Ti

denote the processing time on machine Mi, so that T = maxi Ti is the makespan of our

schedule.

10.1. LOAD BALANCING PROBLEMS: BOUNDING THE OPTIMUM 349

(10.3) Algorithm Greedy-Balance produces an assignment of jobs to machines with

makespan T ≤ 2T ∗.

Proof. Here is the overall plan for the proof. In analyzing an approximation algorithm, one

compares the solution obtained to what one knows about the optimum — in this case, our

lower bounds (10.1) and (10.2) . We consider a machine Mi that works for the full T units

of time in our schedule, and we ask: what was the last job j to be placed on Mi? If tj is not

too large relative to most of the other jobs, then we are not too far above the lower bound

(10.1) . And if tj is a very large job, then we can use (10.2) .

Here is how we can quantify this. When we assigned job j to Mi, Mi had the smallest

load of any machine — this is the key property of our greedy algorithm. Its load just before

this assignment was Ti − tj, and so it follows that Tk ≥ Ti − tj for all k, including k = i. If

we add up these inequalities over all m machines, we get
∑

k Tk ≥ m(Ti − tj). Equivalently,

Ti − tj ≤
1

m

∑

k

Tk.

But the value
∑

k Tk is just the total load of all jobs, and so the quantity on the right-

hand-side of this inequality is exactly our lower bound on the optimal value, from (10.1) .

Thus,

Ti − tj ≤ T ∗.

But we also know that tj ≤ T ∗ — here we use the other lower bound from (10.2) . Adding

up these two inequalities, we see that

Ti = (Ti − tj) + tj ≤ 2T ∗.

Since our makespan T is equal to Ti, this is the result we want.

It is not hard to give an example in which the solution is indeed close to a factor of 2

away from optimal. Suppose we have m machines and n = m(m − 1) + 1 jobs. The first

m(n − 1) = n − 1 jobs each require time tj = 1. The last job is much larger; it requires

time tn = m− 1. What does our greedy algorithm do with this sequence of jobs? It evenly

balances the first n−1 jobs, and then has to add the giant job n to one of them; the resulting

makespan is T = 2(m− 1).

What does the optimal solution look like in this example? It assigns the large job to

one of the machines, say M1, and evenly spreads the remaining jobs over the other m − 1

machines. This results in a makespan of m. Thus the ratio between the greedy algorithm’s

solution and the optimal solution is 2(m − 1)/m = 2− 2/m, which is close to a factor of 2

when m is large. (In fact, with a little care, we could improve the analysis in (10.3) to show

that the greedy algorithm with m machines is within exactly this factor of 2− 2/m on every

instance; the example above is really as bad as possible.)

350 CHAPTER 10. APPROXIMATION ALGORITHMS

An Improved Approximation

Now let’s think about how we might develop a better approximation algorithm — in other

words, one for which we are always within a factor of strictly less than 2 compared to the

optimum. To do this, it helps to think about the worst cases for our current approximation

algorithm. Essentially, the bad example above had the following flavor: we spread everything

out very evenly across the machines, and then one last, giant, job arrives to mess everything

up. Intuitively, it looks like it would help to get the largest jobs arranged nicely first, with

the idea that later, small jobs can only do so much damage. And in fact, this idea does lead

to a measurable improvement.

Thus, we now analyze the variant of the greedy algorithm which first sorts the jobs in

decreasing order of processing time, and then proceeds as before. We will prove that the

resulting assignment has a makespan that is at most 1.5 times the optimum.

Sorted-Balance

Start with no jobs assigned,

Set Ti = 0 and A(i) = ∅ for all machines Mi

Sort jobs in decreasing order of processing times tj.

Assume that t1 ≥ t2 ≥ . . . ≥ tn
For j = 1, . . . , n
Let Mi be the machine that achieves the minimum mink Tk

Assign job j to machine Mi

Set A(i)← A(i) ∪ {j}
Set Ti ← Ti + tj

Endfor

The improvement comes from the following observation. If we have fewer than m jobs,

then the greedy solution will clearly be optimal, since it puts each job on its own machine.

And if we have more than m jobs, then the lower bound from (10.2) can strengthened.

(10.4) If there are more than m jobs, then T ∗ ≥ 2tm+1.

Proof. Consider only the first m + 1 jobs in the sorted order. They each take at least tm+1

time. There are m + 1 jobs and only m machines, so there must be a machine that gets

assigned two of these jobs. This machine will have processing time at least 2tm+1.

(10.5) Algorithm Sorted-Balance produces an assignment of jobs to machines with

makespan T ≤ 3
2
T ∗.

Proof. The proof will be very similar to the analysis of the previous algorithm. As before

we will consider a machine Mi that has the maximum load. If Mi only holds a single job,

then the schedule is optimal.

10.2. THE CENTER SELECTION PROBLEM 351

So let’s assume that machine Mi has at least two jobs, and let tj be the last job assigned

to the machine. Note that j ≥ m + 1, since the algorithm will assign the first m jobs to m

distinct machines. Thus, tj ≤ tm+1 ≤ 1
2
T ∗, where the second inequality is (10.4) .

We now proceed as in the proof of (10.3) , with the following single change. At the end

of that proof, we had inequalities Ti − tj ≤ T ∗ and tj ≤ T ∗, and we added them up to get

the factor of 2. But in our case here, the second of these inequalities is in fact tj ≤ 1
2
T ∗; so

adding the two inequalities gives us the bound

Ti ≤
3

2
T ∗.

10.2 The Center Selection Problem

Consider the following scenario. We have a set S of n sites, say n little towns in upstate

New York. We want to select k centers for building large shopping malls We expect that all

of the n towns will shop at one of these malls, and we want to select the sites of the k malls

to be central.

Let us start by defining the input to our problem more formally. We are given an integer

k, a set S of n sites, and a distance function. What do we mean by distances? Distance

dist(s, z) can mean the travel time from point s to point z, or the physical distance, or driving

distance (i.e., distance along the roads), or even the cost of traveling. We will assume that

the distances satisfy the following natural properties:

• dist(s, s) = 0 for all s ∈ S.

• the distance is symmetric: dist(s, z) = dist(z, s) for all sites s, z ∈ S.

• the triangle inequality: dist(s, z) + dist(z, h) ≥ dist(s, h).

The first and third of these properties are naturally satisfied by all notions of distance.

Although there are applications with asymmetric distances (e.g., one-way streets), most

applications also satisfy the second property. Our greedy algorithm will apply to any distance

function that satisfies these three properties, though it will depend on all three.

Next we still have to clarify what we mean by the goal of wanting the centers to be central.

Let C be a set of centers. Naturally, people of town s would shop at the closest mall. This

suggests we define the distance of a site s to the centers as dist(s, C) = minc∈C dist(s, c).

We say that C forms an r-cover if all sites are within distance at most r from all from one

of the centers, i.e., if

r ≥ dist(s, C)

352 CHAPTER 10. APPROXIMATION ALGORITHMS

for all sites s ∈ S. The minimum r for which C is an r-cover will be called the covering

radius of C and will be denoted by r(C). Our goal will be to select a set of k centers that

we call C with r(C) as small as possible.

Next we discuss a greedy algorithm for this problem. As before, our meaning of “greedy”

is necessarily a little fuzzy; we mean that we will select sites one-by-one in a myopic fashion,

i.e., not think about where the remaining sites would go as we choose each one. We would

put the first center at the best possible location for a single center, then add a new center

always at the best location without any consideration of where future centers might go. We

have not exactly clarified what “best” means here; but before spending too much time on

this direction, we stop to show that this simple greedy approach is not a good idea: it can

lead to really bad solutions.

Simple Greedy Algorithm Can Be Bad. To show that the simple greedy approach

can be really bad, consider an example with only two sites s and z, and k = 2. Assume

that s and z are at distance d from each other. The best location for a single center c1 is

half way between s and z, and the covering radius of this one center is r({c1}) = d/2. The

greedy algorithm would start with c1 as the first center. No matter where we add a second

center, either s of z will have the center c1 as closest, and so the covering radius of the set of

two centers will still be d/2. Note that the optimum solution with k = 2 is to select s and z

themselves as the centers. This will lead to a covering radius of 0. A more complex example

that shows the same problem can be obtained by having two dense “clusters” of sites, one

around s and one around z. Here, our proposed greedy algorithm would start by opening

a center halfway between the clusters, while the optimum solution would open a separate

center for each cluster.

Knowing the Optimal Radius Helps. Assume for a minute that someone told us what

the optimum radius r is. Would this information help? Suppose we know that there is a

set of k centers C ′ that have radius r(C ′) ≤ r, and our job is to find some set of k centers

C whose radius is not much more than r. It turns out that finding a set of k centers with

radius at most 2r is can be done relatively easily.

Here is the idea: we can use the existence of this solution C ′ in our algorithm even though

we do not know what C ′ is. Here is how. Consider any site s ∈ S. There must be a center

c′ ∈ C ′ that covers site s, hence center c′ is at distance at most r from s. Now our idea would

be to take this site s as a center in our solution instead of c′, as we have no idea what c′ is.

We would like to make s cover all the sites that c′ used to cover in the unknown solution C ′.

This is accomplished by expanding the ratio from r to 2r. All the sites that were at distance

at most r from center c′ are at distance at most 2r from s.

Let S ′ be the active sites, and set S ′ = S.

10.2. THE CENTER SELECTION PROBLEM 353

Let C = ∅
While S 6= ∅

Select any site s ∈ S ′ and add s to C.

Delete all sites from S ′ that are at distance at most 2r from s.
EndWhile

If |C| ≤ k then

Return C as the selected set of sites

Else

Return claim "k centers cannot have covering radius at most r"
EndIf

If this algorithm returns a set of centers, than we have what we wanted

(10.6) The set of centers C returned by the algorithm has covering radius r(C) ≤ 2r.

Next we argue that if the algorithm fails to return a set of centers, than its conclusion that

no set can have covering radius at most r is indeed correct.

(10.7) If the algorithm selects a set |C| > k than for any set C ′ of size at most k the

covering radius is r(C ′) > r.

Proof. Assume the opposite, that there is a set C ′ of centers with covering radius r(C ′) ≤ r.

Each center c ∈ C is one of the original sites in S, so there must be a center c′ ∈ C ′ that is

at most r distance from c, i.e., dist(c, c′) ≤ r. We want to claim that each center in C has a

different center in C ′ at most r away. This will imply that |C ′| ≥ |C|, so if there is a set of

at most k centers C ′ with covering radius at most r, that our algorithm will select at most

k centers.

To see that each center c ∈ C has a separate center in c′ ∈ C ′ at most r away we notice

that each pair is centers in C are at least 2r away from each other, as all closer sites were

deleted after the first of the two was selected. So there cannot be any location c′ that is at

most r from two of the selected centers.

Greedy Algorithm That Works. Now we return to the original question: how do we

select a good set of k centers without knowing what the optimal covering radius might be.

Surprisingly, we can in essence run the above algorithm without knowing what r is. What

the algorithm does is to select one of the original sites s as the new center, making sure that

it is at least 2r away from all previously selected sites. We can do essentially this without

knowing what r is: we select the site that is furthest away from all previously selected centers:

if there are any active sites in S ′ in the original algorithm, than this furthest away site s is

one of them. Here is the resulting algorithm, which is in essence a greedy algorithm.

Assume k ≤ |S| (else define C = S).

354 CHAPTER 10. APPROXIMATION ALGORITHMS

Select any site s and let C = {s}.
While |C| < k

Select a site s ∈ S that maximizes dist(s, C)
Add site s to C

EndWhile

Return C as the selected set of sites

(10.8) The above greedy algorithm returns a set C of k points such that r(C) ≤ 2r(C ′),

where C ′ is any other set of k points.

Proof. Let r = r(C ′) denote the minimum possible radius of a set of k centers. The proof is

by contradiction. Assume that we obtained a set of k centers C with r(C) > 2r. Let s be a

site that is more than 2r away from C.

Consider an iteration when we add new center c′ to the set of previously selected centers

C ′. We claim that c′ is at least 2r away from all sites in C ′. This follows as site s is more than

2r away from all sites in the larger set C, and we select a site c that is the furthest site from

all previously selected centers. More formally, we used the following chain of inequalities

dist(c′, C ′) ≥ dist(s, C ′) ≥ dist(s, C) > 2r.

We got that our greedy algorithm is a correct implementation of the first k iteration of

the while loop of the previous algorithm with parameter r. The previous algorithm would

have S ′ 6= ∅ after selecting k centers, as we would have s ∈ S ′ at this point, and so it would

go on and select more than k centers, and eventually conclude that k centers cannot have

covering radius at most r. This is contradicts to our choice of r, and the contradiction proves

that r(C) ≤ 2r.

Our greedy algorithm found a solution with covering radius at most twice the minimum

possible. We call such an algorithm a 2-approximation algorithm.

Note the surprising fact that our final greedy 2-approximation algorithm is a very simple

modification of the first greedy algorithm that did not work. Maybe the most important

change is that our algorithm always selects the sites as centers (i.e., every mall will be built

in one of the little towns, and not half way between two of them).

10.3 Set Cover: A General Greedy Heuristic

As our second topic in approximation algorithms, we consider a version of the Set Cover

problem. Recall from our discussion of NP-completeness that the Set Cover problem is

based on a set U of n elements, and a list S1, . . . , Sm of subsets of U ; we say that a set cover

is a collection of these sets whose union is equal to all of U .

10.3. SET COVER: A GENERAL GREEDY HEURISTIC 355

In the version of the problem we consider here, each set Si has an associated weight

wi ≥ 0. The goal is to find a set cover C so that the total weight

∑

Si∈C

wi

is minimized. Note that this problem is at least as hard as the decision version of Set Cover

we encountered earlier; if we set all wi = 1, then the minimum weight of a set cover is at

most k if and only if there is a collection of at most k sets that covers U .

We will develop and analyze a greedy algorithm for this problem. The algorithm will

have the property that it builds the cover one set at a time; to choose its next set, it looks

for one that seems to make the most progress toward the goal. What is a natural way to

define “progress” in this setting? Desirable sets have two properties: they have small weight

wi, and they cover lots of elements. It is natural to combine these two criteria into the single

measure wi/|Si| — by selecting Si, we cover |Si| elements at a cost of wi, and so this ratio

gives the “cost per element covered,” a very reasonable thing to use as a guide.

Of course, once some sets have already been selected, we are only concerned with the how

we are doing on the elements still left uncovered. So we will maintain the set R of remaining

uncovered elements, and choose the set Si that minimizes wi/|Si ∩R|.

Greedy-Set-Cover

Start with R = U and no sets selected

While R 6= ∅
Select set Si that minimizes wi/|Si ∩ R|
Delete set Si from R

Endwhile

Return the selected sets

The sets selected by the algorithm clearly form a set cover. The question we want to

address is: How much larger is the weight of this set cover than the weight w∗ of an optimal

set cover?

As in the previous section, our analysis will require a good lower bound on this optimum.

In the case of the load balancing problem we used lower bounds that emerged naturally from

the statement of the problem: the average load, and the maximum job size. The Set Cover

cover problem will turn out to be more subtle; “simple” lower bounds are not very useful,

and instead we will use a lower bound that the greedy algorithm implicitly constructs as a

by-product.

Recall the intuitive meaning of the ratio wi/|Si∩R| used by the algorithm; it is the “cost

paid” for covering each new element. Let’s record this cost paid for element s in the quantity

cs. We add the following line to the code immediately after selecting the set Si.

Set cs = wi/|Si ∩ R| for all s ∈ Si ∩R

356 CHAPTER 10. APPROXIMATION ALGORITHMS

y = 1/x

1

1 2 3 4

1/2
1/3

Figure 10.1: Upper and lower bounds for the Harmonic Function H(n).

The values cs do not affect the behavior of the algorithm at all; we view them as a book-

keeping device to help in our comparison to the optimum w∗. As each set Si is selected, its

weight is distributed over the costs cs of the elements that are newly covered. Thus, these

costs completely account for the total weight of the set cover, and so we have

(10.9) If C is the set cover obtained by Greedy-Set-Cover then
∑

Si∈C wi =
∑

s∈U cs.

The key to the analysis is to ask how much total cost any single set Sk can account for

— in other words, to give a bound on
∑

s∈Sk
cs relative to the weight wk of the set, even for

sets not selected by the greedy algorithm. Giving an upper bound on the ratio
∑

s∈Sk
cs

wk

that holds for every set says, in effect, “To cover a lot of cost, you must use a lot of weight.”

We know that the optimum solution must cover the full cost
∑

s∈U cs via the sets it selects;

so this type of bound will establish that it needs to use at least a certain amount of weight.

This is a lower bound, just as we need for the analysis.

Our analysis will use the Harmonic Function

H(n) =
n
∑

i=1

1

i
.

To understand its asymptotic size as a function of n, we can interpret it as a Riemann sum

approximating the area under the curve y = 1/x. Figure 10.1 shows how it is naturally

bounded above by 1 +
∫ n
1 dx/x = 1 + ln n, and bounded below by

∫ n+1
1 dx/x = ln(n + 1).

Thus we see that H(n) = Θ(lnn).

Here is the key to establishing a bound on the performance of the algorithm.

(10.10) For every set Sk, the sum
∑

s∈Sk
cs is at most H(|Sk|) · wk.

10.3. SET COVER: A GENERAL GREEDY HEURISTIC 357

Proof. To simplify the notation, we will assume that the elements of Sk are the first

d = |Sk| elements of the set U ; that is, Sk = {s1, . . . , sd}. Furthermore, let us assume that

these elements are labeled in the order in which they are assigned a cost csj
by the greedy

algorithm (with ties broken arbitrarily). There is no loss of generality in doing this, since it

simply involves a renaming of the elements in U .

Now consider the iteration in which element sj is covered by the greedy algorithm, for

some j ≤ d. At the start of this iteration, sj, sj+1, . . . , sd ∈ R by our labeling of the elements.

This implies that |Sk ∩ R| is at least d − j + 1, and so the average cost of the set Sk is at

most
wk

|Sk ∩ R| ≤
wk

d− j + 1
.

Note that this is not necessarily an equality, since sj may be covered in the same iteration

as some of the other elements sj′ for j ′ < j. In this iteration, the greedy algorithm selected

a set Si of minimum average cost; so this set Si has average cost at most that of Sk. It is

the average cost of Si that gets assigned to sj, and so we have

csj
=

wi

|Si ∩R| ≤
wk

|Sk ∩ R| ≤
wk

d− j + 1
.

We now simply add up these inequalities for all elements s ∈ Sk:

∑

s∈Sk

cs =
d
∑

j=1

csj
≤

d
∑

j=1

wk

d− j + 1
=

wk

d
+

wk

d− 1
+ . . . +

wk

1
= H(d) · wk.

We now continue with our plan for using the bound in (10.10) to compare the greedy

algorithm’s set cover to the optimal one. The optimum solution pays wi for including certain

sets Si. The greedy algorithm pays at most a factor of H(|Si|) more than this to cover all

the elements in Si. Letting d∗ = maxi |Si| denote the maximum size of any set, we have the

following approximation result.

(10.11) The set cover C selected by Greedy-Set-Cover has weight at most H(d∗) times

the optimal weight w∗.

Proof. Let C∗ denote the optimum set cover. We have that w∗ =
∑

Si∈C∗ wi. For each of

these sets, (10.10) implies

wi ≥
1

H(d∗)

∑

s∈Si

cs,

and because they form a set cover, we have

∑

Si∈C∗

∑

s∈Si

cs ≥
∑

s∈U

cs.

358 CHAPTER 10. APPROXIMATION ALGORITHMS

Combining these with (10.9) , we obtain the desired bound:

w∗ =
∑

Si∈C∗

wi ≥
∑

Si∈C∗

1

H(d∗)

∑

s∈Si

cs ≥
1

H(d∗)

∑

s∈U

cs =
1

H(d∗)

∑

Si∈C

wi.

10.4 Vertex Cover: An Application of Linear Program-

ming

Finally, we consider a version of the Vertex Cover problem. As we develop an approximation

algorithm, we will focus on two additional issues. First, Vertex Cover is easily reducible

to Set Cover, and so we have to consider some of the subtle ways in which approximation

results interact with polynomial-time reductions. Second, we will use this opportunity to

introduce a powerful technique from operations research — linear programming. Linear

programming is the subject of entire courses, and we will not be attempting to provide any

kind of comprehensive overview of it here. (You can learn more about linear programming

and its applications in courses in the OR&IE department.) In this section, we will introduce

some of the basic ideas underlying linear programming, and show how these can be used to

approximate NP-hard optimization problems.

Recall that a vertex cover in a graph G = (V, E) is a set S ⊆ V so that each edge has at

least one end in S. In the version of the problem we consider here, each vertex i ∈ V has

a weight wi ≥ 0, with the weight of a set S of vertices denoted w(S) =
∑

i∈S wi. We would

like to find a vertex cover S for which w(S) is minimum. Even when all weights are equal

to 1, deciding if there is a vertex cover of weight at most k is the standard decision version

of Vertex Cover.

Approximations via Reductions? First consider the special case in which all weights

are equal to 1 — i.e., we are looking for a vertex cover of minimum size. We will call this

the unweighted case. Recall that we showed Set Cover to be NP-complete using a reduction

from the decision version of unweighted Vertex Cover. That is,

Vertex Cover ≤P Set Cover

This reduction says: “If we had a polynomial time algorithm that solves the Set Cover prob-

lem, then we could use this algorithm to solve the Vertex Cover problem in polynomial time”.

Now we have a polynomial time algorithm for the Set Cover problem that approximates the

solution. Does this imply that we can use it to formulate an approximation algorithm for

Vertex Cover?

(10.12) One can use the Set Cover approximation algorithm to give an H(d)-approximation

algorithm for the unweighted Vertex Cover problem, where d is the maximum degree of the

graph.

10.4. VERTEX COVER: AN APPLICATION OF LINEAR PROGRAMMING 359

Proof. The proof is based on the reduction that showed Vertex Cover≤P Set Cover. Consider

an instance of the unweighted Vertex Cover problem, specified by a graph G = (V, E). We

define an instance of Set Cover as follows. The underlying set U is equal to E. For each

node i, we define a set Si consisting of all edges incident to node i. Collections of sets that

cover U now correspond precisely to vertex covers. Note that the maximum size of any Si is

precisely the maximum degree d.

Hence we can use the approximation algorithm for Set Cover to find a vertex cover whose

size is within a factor of H(d) of minimum.

This H(d)-approximation is quite good when d is small; but it gets worse as d gets larger,

approaching a bound that is logarithmic in the number of vertices. Below, we will develop

a stronger approximation algorithm that comes within a factor of 2 of optimal.

Before turning to the 2-approximation algorithm, we pause to make the following ob-

servation: One has to be careful when trying to use reductions for designing approximation

algorithms. Here is a cautionary example. We used Independent Set to prove that the Vertex

Cover problem is NP-complete. Specifically, we proved

Independent Set ≤P Vertex Cover,

which states that “if we had a polynomial time algorithm that solves the Vertex Cover

problem then we could use this algorithm to solve the Independent Set problem in polynomial

time”. Can we use an approximation algorithm for the minimum-size vertex cover to design

a comparably good approximation algorithm for the maximum-size independent set?

The answer is no. Recall that a set I of vertices is independent if an only if its complement

S = V − I is a vertex cover. Given a minimum-size vertex cover S∗, we obtain a maximum-

size independent set by taking the complement I∗ = V − S. Now suppose we use an

approximation algorithm for the vertex cover problem to get an approximately minimum

vertex cover S. The complement I = V − S is indeed an independent set — there’s no

problem there. The trouble is when we try to determine our approximation factor for the

maximum independent set problem; I can be very far from optimal. Suppose, for example,

that the optimal vertex cover S∗ and the optimal independent set I∗ both have size |V |/2. If

we invoke a 2-approximation algorithm for the vertex cover problem, we may perfectly well

get back the set S = V . But in this case, our “approximately maximum independent set’

I = V − S has no elements.

Linear Programming as a General Technique

Our 2-approximation algorithm for the weighted version of Vertex Cover will be based on

linear programming. As suggested above, we describe linear programming here not just to

give the approximation algorithm, but also to illustrate its power as a very general technique.

So what is linear programming? To answer this, it helps to first recall, from linear

algebra, the problem of simultaneous linear equations. Using matrix-vector notation, we

360 CHAPTER 10. APPROXIMATION ALGORITHMS

have a vector x of unknown real numbers, a given matrix A, and a given vector b; and we

want to solve the equation Ax = b. Gaussian elimination is a well-known efficient algorithm

for this problem.

The basic Linear Programming problem can be viewed as a more complex version of this,

with inequalities in place of equations. Specifically, consider the problem of determining

a vector x that satisfy Ax ≥ b. By this notation, we mean that each coordinate of the

vector Ax should be greater than or equal to the corresponding coordinate of the vector b.

Such systems of inequalities define regions in space. For example, suppose x = (x1, x2) is a

2-dimensional vector, and we have the three inequalities x1 ≥ 0, x2 ≥ 0 and x1 + x2 ≤ 1.

Then set the of solutions is a triangle in the plane, with corners at (1, 0), (0, 1) and (0, 0).

Given a region defined by Ax ≥ b, linear programming seeks to minimize a linear combi-

nation of the coordinates of x, over all x belonging to the region. Such a linear combination

can be written ctx, where c is a vector of coefficients, and ctx denotes the inner product of

two vectors. Thus our standard form for Linear Programming, as an optimization problem,

will be the following.

Given an m by n matrix A, and vectors b ∈ Rm and c ∈ Rn, find a vector x ∈ Rn

to solve the following optimization problem:

min(ctx such that x ≥ 0; Ax ≥ b).

ctx is often called the objective function of the linear program, and Ax ≥ b is called the set

of constraints. We can phrase Linear Programming as a decision problem in the following

way.

Given a matrix A, vectors b and c, and a bound γ, does there exist x so that

x ≥ 0, Ax ≥ b and ctx ≤ γ?

To avoid issues related to how we represent real numbers, we can assume that the coordinates

of the vectors and matrices involved are integers.

The decision version of Linear Programming is in NP. This is intuitively very believable

— we just have to exhibit a vector x satisfying the desired properties. The one concern is

that even if all the input numbers are integers, x may contain rational numbers requiring

very large precision — how do we know that we’ll be able to read and manipulate it in

polynomial time? But in fact, one can show that if there is a solution, then there is one that

needs only a polynomial number of bits to write down; so this is not a problem.

Linear Programming was also known to be in co−NP for a long time, though this is

not so easy to see. Students who have taken a linear programming course before may notice

that this fact follows from linear programming duality. For a long time, indeed, Linear

Programming was the most famous example of a problem in both NP and in co−NP that

10.4. VERTEX COVER: AN APPLICATION OF LINEAR PROGRAMMING 361

was not known to have a polynomial-time solution. In 1981 Leonid Khachiyan, who at

a time was a young researcher in the Soviet Union, gave a polynomial-time algorithm for

the problem. His initial algorithm was quite slow and impractical; but since then practical

polynomial-time algorithms — so-called interior point methods — have also been developed

following the work of Narendra Karmarkar in 1984.

Linear programming is an interesting example also for another reason. The most widely

used algorithm for this problem is the simplex method. It works very well in practice, and is

competitive with polynomial-time interior methods on real-world problems. Yet its worst-

case running time is known to be exponential — apparently this exponential behavior does

not show up in practice.

In summary, linear programming problems can be solved in polynomial time. You can

learn a lot more about all this in OR&IE courses on linear programming. The question we

ask here is this: How can linear programming help us when we want to solve combinatorial

problems like Vertex Cover?

Vertex Cover as an Integer Program

We now try to formulate a linear program that is in close correspondence with the vertex

cover problem. Thus, we consider a graph G = (V, E) with a weight wi ≥ 0 on each node i.

Linear programming is based on the use of vectors of variables; in our case, we will have a

decision variable xi for each node i ∈ V to model the choice of whether to include node i in

the vertex cover. xi = 0 will indicate that node i is not in the vertex cover, and xi = 1 will

indicate that node i is in the vertex cover. We can create a single n-dimensional vector x in

which the ith coordinate corresponds to the ith decision variable xi.

We use linear inequalities to encode the requirement that the selected nodes form a vertex

cover; we use the objective function to encode the goal of minimizing the total weight. For

each edge (i, j) ∈ E, it must have one end in the vertex cover, and we write this as the

inequality xi + xj ≥ 1. Finally, to express the minimization problem, we write the set of

node weights as an n-dimensional vector w, with the ith coordinate corresponding to wi; we

then seek to minimize wtx. In summary, we have formulated the Vertex Cover problem as

follows.
(VCIP) Min

∑

i∈V wixi

s.t. xi + xj ≥ 1 (i, j) ∈ E
xi ∈ {0, 1} i ∈ V.

We claim that the vertex covers of G are in one-to-one correspondence with the solutions

x to this system of linear inequalities in which all coordinates are equal to 0 or 1.

(10.13) S is a vertex cover in G if and only if the vector x defined as xi = 1 for i ∈ S,

and xi = 0 for i /∈ S satisfies the constraints in (VCIP). Further, we have that w(S) = wtx.

362 CHAPTER 10. APPROXIMATION ALGORITHMS

We can put this system into the matrix form we used for linear programming as follows.

We define a matrix A whose columns correspond to the nodes in V and whose rows correspond

to the edges in E; entry A[e, i] = 1 if node i is an end of the edge e, and 0 otherwise. (Note

that each row has exactly two non-zero entries.) If we use ~1 to denote the vector of with all

coordinates equal to 1, and ~0 to denote the vector of with all coordinates equal to 0, then

the above system of inequalities can be written as

Ax ≥ ~1

~1 ≥ x ≥ ~0.

But keep in mind that this is not just a linear programming problem — we have crucially

required that all coordinates in the solution vector be either 0 or 1. So our formulation

suggests that we should solve the problem

min(wtx subject to ~1 ≥ x ≥ ~0, Ax ≥ ~1, x has integer coordinates.)

This is an instance of a linear programming problem in which we require the coordinates

of x to take integer values; without this extra constraint, the coordinates of x could be

arbitrary real numbers. We call this problem Integer Programming, as we are looking for

integer-valued solutions to a linear program.

Integer Programming is considerably harder than Linear Programming; indeed, the dis-

cussion above really constitutes a reduction from Vertex Cover to the decision version of

Integer Programming. In other words, we have proved

(10.14) Vertex Cover ≤P Integer Programming.

To show the NP-completeness of Integer Programming, we would still have to establish

that the decision version is in NP. There is a complication here, as with Linear Program-

ming, since we need to establish that there is always a solution x that can be written using

a polynomial number of bits. But this can indeed be proven. Of course, for our purposes,

the integer program we are dealing with is explicitly constrained to have solutions in which

each coordinate is either 0 or 1. Thus it is clearly in NP, and our reduction from Vertex

Cover establishes that even this special case is NP-complete.

Using Linear Programming for Vertex Cover

We have yet to resolve whether our foray into linear and integer programming will turn out

be useful, or simply a dead end. Trying to solve the integer programming problem (VCIP)

optimally is clearly not the right way to go, as this is NP-hard.

The way to make progress is to exploit the fact that linear programming is not as hard

as integer programming. Suppose we take (VCIP) and modify it, dropping the requirement

10.4. VERTEX COVER: AN APPLICATION OF LINEAR PROGRAMMING 363

that each xi ∈ {0, 1} and reverting to the constraint that each xi is an arbitrary real number

between 0 and 1. This gives us a linear programming problem that we could call (VCLP),

and we can solve it in polynomial time: we can find a set of values {x∗
i } between 0 and 1 so

that x∗
i + x∗

j ≥ 1 for each edge (i, j), and
∑

i wix
∗
i is minimized. Let x∗ denote this vector,

and wLP = wtx∗ denote the value of the objective function.

We note the following basic fact.

(10.15) Let S∗ denote a vertex cover of minimum weight. Then wLP ≤ w(S∗).

Proof. Vertex covers of G correspond to integer solutions of (VCIP), so the minimum of

min(wtx : ~1 ≥ x ≥ 0, Ax ≥ 1) over all integer x vectors is exactly the minimum weight

vertex cover. To get the minimum of the linear program (VCLP) we allow x to take arbitrary

real-number values — i.e., we minimize over many more choices of x — and so the minimum

of (VCLP) is no larger than that of (VCIP).

Note that (10.15) is one of the crucial ingredients we need for an approximation algorithm

— a good lower bound on the optimum, in the form of the efficiently computable quantity

wLP .

However, wLP can definitely be smaller than w(S∗). For example, if the graph G is a

triangle and all weights are 1, then the minimum vertex cover has a weight of 2. But in

a linear programming solution we can set xi = 1
2

for all three vertices, and so get a linear

programming solution of weight only 3
2
. As a more general example, consider a graph on n

nodes, with each pair of nodes connected by an edge. Again, all weights are 1. Then the

minimum vertex cover has weight n − 1, but we can find a linear programming solution of

value n/2 by setting xi = 1
2

for all vertices i.

So the question is: how can solving this linear program help us actually find a near-

optimal vertex cover. The idea is to work with the values x∗
i , and infer a vertex cover S from

them. It is natural that if x∗
i = 1 for some node i, then we should put it in the vertex cover

S; and if x∗
i = 0, then we should leave it out of S. But what should we do with fractional

values in between? What should we do if x∗
i = .4 or x∗

i = .5? The natural approach here is

to round. Given a fractional solution {x∗
i }, we define S = {i ∈ V : x∗

i ≥ 1
2
} — that is, we

round values at least 1
2

up, and those below 1
2

down.

(10.16) The set S defined in this way is a vertex cover, and w(S) ≤ 2wtx∗.

Proof. First we argue that S is a vertex cover. Consider an edge e = (i, j). We claim that

at least one of i and j must be in S. Recall that one of our inequalities is xi + xj ≥ 1. So in

any solution x∗ that satisfies this inequality, either x∗
i ≥ 1

2
or x∗

j ≥ 1
2
. Thus, at least one of

these two will be rounded up, and i or j will placed in S.

364 CHAPTER 10. APPROXIMATION ALGORITHMS

Now we consider the weight w(S) of this vertex cover. The set S only has vertices with

x∗
i ≥ 1

2
; thus the linear program “paid” at least 1

2
wi for node i, and we only pay wi — at

most twice as much. More formally, we have the following chain of inequalities.

wtx∗ =
∑

i

wix
∗
i ≥

∑

i∈S

wix
∗
i ≥

1

2

∑

i∈S

wi =
1

2
w(S).

Thus, we have a produced a vertex cover S of weight at most 2wLP . The lower bound in

(10.15) showed that the optimal vertex cover has weight at least wLP , and so we have the

following result.

(10.17) The algorithm described above produces a vertex cover S of at most twice the

minimum possible weight.

10.5 Arbitrarily Good Approximations for the Knap-

sack Problem

Often, when you talk to someone faced with an NP-complete optimization problem, they’re

hoping you can give them something that will produce a solution within, say, 1% of the

optimum — or at least, within a small percentage of optimal. Viewed from this perspective,

the approximation algorithms we’ve seen thus far come across as quite weak: solutions within

a factor of 2 of the minimum for Center Selection and Vertex Cover(i.e. 100% more than

optimal). The set-cover algorithm in Section 10.3 is even worse: its cost is not even within

a fixed constant factor of the minimum possible!

Here is an important point underlying this state of affairs: NP-complete problems, as

you well know, are all equivalent with respect to polynomial-time solvability; but assuming

P 6= NP, they differ considerably in the extent to which their solutions can be efficiently

approximated. In some cases, it is actually possible to prove limits on approximability.

For example, if P 6= NP, then the guarantee provided by our Center Selection algorithm

is the best possible for any polynomial-time algorithm. Similarly, the guarantee provided

by the Set Cover algorithm, however bad it may seem, is very close to the best possible,

unless P = NP. For other problems, such as the Vertex Cover problem, the approximation

algorithm we gave is the best known, but it is an open question whether there could be

polynomial-time algorithms with better guarantees. We will not discuss the topic of lower

bounds on approximability in this course; while some lower bounds of this type are not so

difficult to prove (such as for Center Selection), many are extremely technical.

In this lecture, we discuss an NP-complete problem for which it is possible to design

a polynomial-time algorithm providing a very strong approximation. We will consider a

10.5. ARBITRARILY GOOD APPROXIMATIONS FOR THE KNAPSACK PROBLEM365

slightly more general version of the Knapsack (or Subset Sum) problem. Suppose you have

n items that you consider packing in a knapsack. Each item i = 1, . . . , n has two integer

parameters: a weight wi and a value vi. Given a knapsack capacity W , the goal of the

Knapsack Problem is to find a subset S of items of maximum value subject to the restriction

that the total weight of the set should not exceed W . In other words, we wish to maximize
∑

i∈S vi subject to the condition
∑

i∈S wi ≤ W .

How strong an approximation can we hope for? Our algorithm will take as input the

weights and values defining the problem, and will also take an extra parameter ε, the desired

precision. It will find a subset S whose total weight does not exceed W , with value
∑

i∈S vi

at most an (1+ ε) factor below the maximum possible. The algorithm will run in polynomial

time for any fixed choice of ε > 0; however, the dependence on ε will not be polynomial. We

call such an algorithm a polynomial time approximation scheme.

You may ask: how could such a strong kind of approximation algorithm be possible in

polynomial time when the Knapsack problem is NP-hard? With integer values, if we get

close enough to the optimum value, we must reach the optimum itself! The catch is in the

non-polynomial dependence on the desired precision: for any fixed choice of ε, such as ε = .5,

ε = .2 or even ε = .01 the algorithm runs in polynomial time, but as we change ε to smaller

and smaller values, the running time gets larger. By the time we make ε small enough to

make sure we get the optimum value, it is no longer a polynomial time algorithm.

The Approximation Algorithm

Earlier in this class we considered the subset sum problem, the special case of the Knapsack

problem when vi = wi for all items i. We gave a dynamic programming algorithm for this

special case that ran in O(nW) time assuming the weights are integers. This algorithm

naturally extends to the more general Knapsack problem (see the end of Section 5.4 for this

extension). The algorithm given in Section 5.4 works well when the weights are small (even

if the values may be big). It is also possible to extend our dynamic programming algorithm

for the case when the values are small, even if the weights may be big. At the end of this

handout we give a dynamic programming algorithm for that case running in time O(n2v∗),

where v∗ = maxi vi. Note that this algorithm does not run in polynomial time: it is only

pseudo-polynomial, because of its dependence on the size of the values vi.

Algorithms that depend on the values in a pseudo-polynomial way can often be used to

design polynomial time approximation schemes, and the algorithm we develop here is a very

clean example of the basic strategy. In particular, we will use the dynamic programming

algorithm with running time O(n2v∗) to design a polynomial time approximation scheme;

the idea is as follows. If the values are small integers, then v∗ is small and the problem can

be solved in polynomial time already. On the other hand, if the values are large, then we do

not have to deal with them exactly, as we only want an approximately optimum solution.

366 CHAPTER 10. APPROXIMATION ALGORITHMS

We will use a rounding parameter v (whose value we’ll set later), and will consider the values

rounded to an integer multiple of v. We will use our dynamic programming algorithm to

solve the problem with the rounded values. More precisely, for each item i let its rounded

value be ṽi = dvi/vev. Note that the rounded and the original value are quite close to each

other.

(10.18) For each item i we have that vi ≤ ṽi ≤ vi + v. For the item j of maximum value

vj = maxi vi we have vj = ṽj.

What did we gain by the rounding? If the values were big to start with, we did not make

them any smaller. However, the rounded values are all integer multiples of a common value

v. So instead of solving the problem with the rounded values ṽi we can change the units;

we can divide all values by v and get an equivalent problem. Let v̂i = ṽi/v = dvi/ve for

i = 1, . . . , n.

(10.19) The Knapsack problem with values ṽi and the scaled problem with values v̂i has

the same optimum solution, the optimum value differs exactly by a v factor, and the scaled

values are integral.

Now we are ready to state our approximation algorithm. We will assume that all items

have weight at most W (as items with weight wi > W are not in any solution, and hence

can be deleted).

Knapsack-Approx(ε).
Set v = (ε/n) maxi vi.

Solve the Knapsack problem with values v̂i (or equivalently ṽi).

Return the set S of items found.

First note that the solution found is at least feasible; that is,
∑

i∈S wi ≤ W . This is true

as we have rounded only the values and not the weights. This is why we had to consider the

more general Knapsack problem in this section, rather than the simpler subset sum problem

where the weights and values are equal.

(10.20) The set it items S returned by the algorithm has total weight at most W ,
∑

i∈S wi ≤ W .

Next we’ll prove that this algorithm runs in polynomial time.

(10.21) The algorithm Knapsack-Approx runs in polynomial time for any fixed ε > 0.

10.5. ARBITRARILY GOOD APPROXIMATIONS FOR THE KNAPSACK PROBLEM367

Proof. Setting v and rounding item values can clearly be done in polynomial time. The

time-consuming part of this algorithm is the dynamic programming to solve the rounded

problem. Recall that for problem with integer values, the dynamic programming algorithm

we use runs in time O(n2v∗), where v∗ = maxi vi.

Now, we are applying this algorithms for an instance in which each item i has weight

wi and value v̂i. To determine the running time, we need to determine maxi v̂i. The item

j with maximum value vj = maxi vi also has maximum value in the rounded problem, so

maxi v̂i = v̂j = dvj/ve = nε−1. Hence, the overall running time of the algorithm is O(n3ε−1).

Note that this is polynomial time for any fixed ε > 0 as claimed; but the dependence on the

desired precision ε is not polynomial as the running time includes ε−1 rather than log ε−1.

Finally, we need to consider the key issue: How good is the solution obtained by this

algorithm? (10.18) shows that the values ṽi we used are close to the real values vi, and this

suggests that the solution obtained may not be far from optimal.

(10.22) If S is the solution found by the Knapsack-Approx algorithm, and S∗ is any

other solution satisfying
∑

i∈S∗ wi ≤ W , then we have (1 + ε)
∑

i∈S vi ≥
∑

i∈S∗ vi.

Proof. Let S∗ be any set satisfying
∑

i∈S∗ wi ≤ W . Our algorithm finds the optimal solution

with values ṽi, so we know that
∑

i∈S

ṽi ≥
∑

i∈S∗

ṽi.

The rounded values ṽi and the real values vi are quite close by (10.18) so we get the following

chain of inequalities.

∑

i∈S∗

vi ≤
∑

i∈S∗

ṽi ≤
∑

i∈S

ṽi ≤
∑

i∈S

(vi + v) ≤ nv +
∑

i∈S

vi,

showing that the value
∑

i∈S vi of the solution we obtained is at most nv smaller than the

maximum value possible. We wanted to obtain a relative error showing that the value

obtained,
∑

i∈S vi is at most an (1 + ε) factor less than the maximum possible, so we need

to compare nv to the value
∑

i∈S vi. Recall from (10.18) that the item j with largest value

satisfies vj = ṽj. By our assumption that each item alone fits in the knapsack (that is,

wi ≤ W for all items i), we get that
∑

i∈S vi ≥ ṽj = maxi vi, and hence nv ≤ ε
∑

i∈S vi. Using

this bound, we conclude with

∑

i∈S∗

vi ≤
∑

i∈S

vi + nv ≤ (1 + ε)
∑

i∈S

vi,

as claimed.

368 CHAPTER 10. APPROXIMATION ALGORITHMS

The new dynamic programming algorithm

To solve a problem by dynamic programming we have to define a polynomial set of sub-

problems. The dynamic programming algorithm we defined when we studied the Knapsack

problem earlier uses subproblems of the form OPT (i, w): the subproblem of finding the max-

imum value of any solution using a subset of the items 1, . . . , i and a knapsack of weight w.

When the weights are large, this is a large set of problems. We need a set of subproblems that

work well when the values are reasonably small; this suggests that should use subproblems

associated with values, not weights. We define our subproblems as follows. The subproblem

is defined by i and a target value v, and OPT (i, V) is the smallest knapsack weight W so that

one can obtain a solution using a subset of items {1, . . . , i} with value at least V . We will

have a subproblem for all i = 0, . . . , n and values V = 0, . . . ,
∑i

j=1 vj. If v∗ denotes maxi vi,

then we see that the largest V can get in a sub-problem is
∑n

j=1 vj ≤ nv∗. Thus, assuming

the values are integral, there are at most O(n2v∗) subproblems. None of these subproblems

is the original instance of Knapsack but if we have the values of all subproblems OPT (n, V)

for V = 0, . . . ,
∑

i vi, then the value of the original problem can be obtained easily: it is the

largest value V such that OPT (n, V) ≤ W .

It is not hard to give a recurrence for solving these subproblems. By analogy with the

dynamic programming algorithm for Subset Sum, we consider cases depending whether or

not the last item n is included in the optimal solution O.

• If n 6∈ O then OPT (n, V) = OPT (n− 1, V).

• If n ∈ O is the only item in O then OPT (n, V) = wn

• If n ∈ O is not the only item in O then OPT (n, V) = wn + OPT (n− 1, V − vn).

These last two options can be summarized more compactly as

• If n ∈ O then OPT (n, V) = wn + OPT (n− 1, max(0, V − vn)).

This implies the following analogue of the recurrence (5.10) in the course packet.

(10.23) If V >
∑n−1

i=1 vi then OPT (n, V) = wn + OPT (n− 1, V − vn). Otherwise,

OPT (n, V) = min(OPT (n− 1, V), wn + OPT (n− 1, max(0, V − vn))).

We can then write down an analogous dynamic programming algorithm.

Knapsack(n, V)

Array M [0 . . . n, 0 . . . V]
For i = 0, . . . , n

M [i, 0] = 0
Endfor

10.6. EXERCISES 369

For i = 1, 2, . . . , n
For v = 0, . . . ,

∑i
j=1 vj

If v >
∑i−1

j=1 vj then

M [i, v] = wi + M [i− 1, v]
Else

M [i, v] = min(M [i − 1, v], wi + M [i − 1, max(0, v − vi)])
Endif

Endfor

Endfor

Return the maximum value v such that M [n, V] ≤ W

(10.24) Knapsack(n, V) takes O(nV) time, and correctly computes the optimal values

of the subproblems.

As was done before we can trace back through the table M containing the optimal values of

the subproblems, to find an optimal solution in O(n) time.

10.6 Exercises

1. Consider the following greedy algorithm for finding a matching in a bipartite graph:

As long as there is an edge whose endpoints are unmatched, add it to the

current matching.

(a) Give an example of a bipartite graph G for which this greedy algorithm does not

return the maximum matching.

(b) Let M and M ′ be matchings in a bipartite graph G. Suppose that |M ′| > 2|M |.
Show that there is an edge e′ ∈M ′ such that M ∪ {e′} is a matching in G.

(c) Use (b) to conclude that any matching constructed by the greedy algorithm in a

bipartite graph G is at least half as large as the maximum matching in G.

2. Recall the Shortest-First greedy algorithm for the Interval Scheduling problem: Given

a set of intervals, we repeatedly pick the shortest interval I, delete all the other intervals

I ′ that intersect I, and iterate.

In class, we saw that this algorithm does not always produce a maximum-size set of

non-overlapping intervals. However, it turns out to have the following interesting ap-

proximation guarantee. If s∗ is the maximum size of a set of non-overlapping intervals,

and s is the size of the set produced by the Shortest-First algorithm, then s ≥ 1
2
s∗.

(That is, Shortest-First is a 2-approximation.)

Prove this fact.

370 CHAPTER 10. APPROXIMATION ALGORITHMS

3. Suppose you are given a set of positive integers A = {a1, a2, . . . , an} and a positive

integer B. A subset S ⊆ A is called feasible if the sum of the numbers in S does not

exceed B:
∑

ai∈S

ai ≤ B.

The sum of the numbers in S will be called the total sum of S.

You would like to select a feasible subset S of A whose total sum is as large as possible.

Example. If A = {8, 2, 4} and B = 11, then the optimal solution is the subset

S = {8, 2}.

(a) Here is an algorithm for this problem.

Initially S = φ
Define T = 0
For i = 1, 2, . . . , n

If T + ai ≤ B then

S ← S ∪ {ai}
T ← T + ai

Endif

Endfor

Give an instance in which the total sum of the set S returned by this algorithm is less

than half the total sum of some other feasible subset of A.

(b) Give a polynomial-time approximation algorithm for this problem with the follow-

ing guarantee: It returns a feasible set S ⊆ A whose total sum is at least half as large

as the maximum total sum of any feasible set S ′ ⊆ A.

You should give a proof that your algorithm has this property, and give a brief analysis

of its running time.

(c) In this part, we want you to give an algorithm with a stronger guarantee than what

you produced in part (b). Specifically, give a polynomial-time approximation algorithm

for this problem with the following guarantee: It returns a feasible set S ⊆ A whose

total sum is at least (2/3) times as large as the maximum total sum of any feasible set

S ′ ⊆ A.

You should give a proof that your algorithm has this property, and give a brief analysis

of its running time.

4. In the bin packing problem, we are given a collection of n items with weights w1, w2, . . . , wn.

We are also given a collection of bins, each of which can hold a total of W units of

weight. (We will assume that W is at least as large as each individual wi.)

10.6. EXERCISES 371

You want to pack each item in a bin; a bin can hold multiple items, as long as the total

of weight of these items does not exceed W . The goal is to pack all the items using as

few bins as possible.

Doing this optimally turns out to be NP-complete, though you don’t have to prove

this.

Here’s a merging heuristic for solving this problem: We start with each item in a

separate bin and then repeatedly “merge” bins if we can do this without exceeding the

weight limit. Specifically:

Merging Heuristic:

Start with each item in a different bin

While there exist two bins so that the union of

their contents has total weight ≤ W
Empty the contents of both bins

Place all these items in a single bin.

Endwhile

Return the current packing of items in bins.

Notice that the merging heuristic sometimes has the freedom to choice several possible

pairs of bins to merge. Thus, on a given instance, there are multiple possible executions

of the heuristic.

Example. Suppose we have four items with weights 1, 2, 3, 4, and W = 7. Then in one

possible execution of the merging heuristic, we start with the items in four different

bins; then we merge the bins containing the first two items; then we merge the bins

containing the latter two items. At this point we have a packing using two bins, which

cannot be merged. (Since the total weight after merging would be 10, which exceeds

W = 7.)

(a) Let’s declare the size of the input to this problem to be proportional to

n + log W +
n
∑

i=1

log wi.

(In other words, the number of items plus the number of bits in all the weights.)

Prove that the merging heuristic always terminates in time polynomial in the size of the

input. (In this question, as in NP-complete number problems from class, you should

account for the time required to perform any arithmetic operations.)

372 CHAPTER 10. APPROXIMATION ALGORITHMS

(b) Give an example of an instance of the problem, and an execution of the merging

heuristic on this instance, where the packing returned by the heuristic does not use

the minimum possible number of bins.

(c) Prove that in any execution of the merging heuristic, on any instance, the number

of bins used in the packing returned by the heuristic is at most twice the minimum

possible number of bins.

5. Here’s a way in which a different heuristic for bin packing can arise. Suppose you’re

acting as a consultant for the Port Authority of a small Pacific Rim nation. They’re

currently doing a multi-billion dollar business per year, and their revenue is constrained

almost entirely by the rate at which they can unload ships that arrive in the port.

Here’s a basic sort of problem they face. A ship arrives, with n containers of weight

w1, w2, . . . , wn. Standing on the dock is a set of trucks, each of which can hold K units

of weight. (You can assume that K and each wi is an integer.) You can stack multiple

containers in each truck, subject to the weight restriction of K; the goal is to minimize

the number of trucks that are needed in order to carry all the containers. This problem

is NP-complete (you don’t have to prove this).

A greedy algorithm you might use for this is the following. Start with an empty

truck, and begin piling containers 1, 2, 3, . . . into it until you get to a container that

would overflow the weight limit. Now declare this truck “loaded” and send it off; then

continue the process with a fresh truck.

(a) Give an example of a set of weights, and a value of K, where this algorithm does

not use the minimum possible number of trucks.

(b) Show that the number of trucks used by this algorithm is within a factor of 2 of

the minimum possible number, for any set of weights and any value of K.

6. You are asked to consult for a business where clients bring in jobs each day for pro-

cessing. Each job has a processing time ti that is known when the job arrives. The

company has a set of 10 machines, and each job can be processed on any of these 10

machines.

At the moment the business is running the simple Greedy-Balance algorithm we dis-

cussed in class. They have been told that this may not be the best approximation

algorithm possible, and they are wondering if they should be afraid of bad perfor-

mance. However, they are reluctant to change the scheduling as they really like the

simplicity of the current algorithm: jobs can be assigned to machines as soon as they

arrive, without having to defer the decision until later jobs arrive.

10.6. EXERCISES 373

In particular, they have heard that this algorithm can produce solutions with makespan

as much as twice the minimum possible; but their experience with the algorithm has

been quite good: they have been running it each day for the last month, and they have

not observed it to produce a makespan more than 20% above the average load, 1
10

∑

i ti.

To try understanding why they don’t seem to be encountering this factor-of-two be-

havior, you ask a bit about the kind of jobs and loads they see. You find out that the

sizes of jobs range between 1 and 50, i.e., 1 ≤ ti ≤ 50 for all jobs i; and the total load
∑

i ti is quite high each day: it is always at least 3000.

Prove that on the type of inputs the company sees, the Greedy-Balance algorithm will

always find a solution whose makespan is at most 20% above the average load.

7. Consider an optimization version of the Hitting Set problem defined as follows. We

are given a set A = {a1, . . . , an} and a collection B1, B2, . . . , Bm of subsets of A. Also,

each element ai ∈ A has a weight wi ≥ 0. The problem is to find a hitting set H ⊆ A

such that the total weight of the elements in H,
∑

ai∈H wi, is as small as possible.

(Recall from Problem Set 7 that H is a hitting set if H ∩ Bi is not empty for each i).

Let b = maxi |Bi| denote the maximum size of any of the sets B1, B2, . . . , Bm. Give

a polynomial time approximation algorithm for this problem that finds a hitting set

whose total weight is at most b times the minimum possible.

8. Consider the following maximization version of the three-dimensional matching prob-

lem. Given disjoint sets X, Y , and Z, and given a set T ⊆ X×Y×Z of ordered triples, a

subset M ⊂ T is a three-dimensional matching if each element of X∪Y ∪Z is contained

in at most one of these triples. The maximum three-dimensional matching problem is

to find a three-dimensional matching M of maximum size. (The size of the matching,

as usual, is the number of triples it contains. You may assume |X| = |Y | = |Z| if you

want.)

Give a polynomial time algorithm that finds a three-dimensional matching of size at

least 1
3

times the maximum possible size.

9. At a lecture in a computational biology conference one of us attended about a year ago,

a well-known protein chemist talked about the idea of building a “representative set”

for a large collection of protein molecules whose properties we don’t understand. The

idea would be to intensively study the proteins in the representative set, and thereby

learn (by inference) about all the proteins in the full collection.

To be useful, the representative set must have two properties.

• It should be relatively small, so that it will not be too expensive to study it.

374 CHAPTER 10. APPROXIMATION ALGORITHMS

• Every protein in the full collection should be “similar” to some protein in the

representative set. (In this way, it truly provides some information about all the

proteins.)

More concretely, there is a large set P of proteins. We define similarity on proteins by

a distance function d — given two proteins p and q, it returns a number d(p, q) ≥ 0. In

fact, the function d(·, ·) most typically used is the edit distance, or sequence alignment

measure, which we looked at when we studied dynamic programming. We’ll assume

this is the distance being used here. There is a pre-defined distance cut-off ∆ that’s

specified as part of the input to the problem; two proteins p and q are deemed to be

“similar” to one another if and only if d(p, q) ≤ ∆.

We say that a subset of P is a representative set if for every protein p, there is a protein

q in the subset that is similar to it — i.e. for which d(p, q) ≤ ∆. Our goal is to find a

representative set that is as small as possible.

(a) Give a polynomial-time algorithm that approximates the minimum representative

set to within a factor of O(logn). Specifically, your algorithm should have the

following property: if the minimum possible size of a representative set is s∗, your

algorithm should return a representative set of size at most O(s∗ log n).

(b) Note the close similarity between this problem and the Center Selection problem

— a problem for which we considered approximation algorithms in the text. Why

doesn’t the algorithm described there solve the current problem?

10. Suppose you are given an n× n grid graph G, as in the figure below.

Figure 10.2: A grid graph.

Associated with each node v is a weight w(v), which is a non-negative integer. You may

assume that the weights of all nodes are distinct. Your goal is to choose an independent

set S of nodes of the grid, so that the sum of the weights of the nodes in S is as large

as possible. (The sum of the weights of the nodes in S will be called its total weight.)

10.6. EXERCISES 375

Consider the following greedy algorithm for this problem:

The "heaviest-first" greedy algorithm:

Start with S equal to the empty set.

While some node remains in G
Pick a node vi of maximum weight.

Add vi to S.
Delete vi and its neighbors from G.

end while

Return S

(a) Let S be the indepedent set returned by the “heaviest-first” greedy algorithm, and

let T be any other independent set in G. Show that for each node v ∈ T , either v ∈ S,

or there is a node v′ ∈ S so that w(v) ≤ w(v′) and (v, v′) is an edge of G.

(b) Show that the “heaviest-first” greedy algorithm returns an independent set of total

weight at least 1/4 times the maximum total weight of any independent set in the grid

graph G.

376 CHAPTER 10. APPROXIMATION ALGORITHMS

Chapter 11

Local Search

Throughout this course we developed efficient algorithms techniques. In the previous two

topics we developed algorithms that extend the limits of tractability by running in polynomial

time on special cases of NP-complete problems; and algorithms that provide approximate

answers with guaranteed error bounds in polynomial time.

As a final topic of this course, we consider a very general family of techniques: local

search algorithms. Heuristics such as local search can be useful in dealing with NP-hard

problem, even though they are not able to provide any guarantees on the quality of the

solutions they find; indeed, for many examples, there are instances on which they perform

very badly. However, despite the bad examples, the approach has turned out to be very

useful in practice. We use the term local search to describe any algorithm that “explores”

the space of possible solutions in a sequential fashion, moving in one step from a current

solution to a “nearby” one.

Local search algorithms are generally heuristics designed to find good, but not necessarily

optimal, solutions to computational problems. Thus we seek to understand the quality of

the solutions found by a local search algorithm, and the running time it requires to find good

solutions. However, it is often very difficult to actually prove properties of these algorithms,

and much about their behavior remains an open question at a mathematical level. As a

result, some of our discussion in the next few lectures will have a somewhat different flavor

from what we’ve become familiar with in this course; we’ll introduce some algorithms, discuss

them qualitatively, but admit quite frankly that we can’t prove very much about them.

One useful intuitive motivation of local search algorithms arises from connections with

energy minimization principles in physics, and we explore this issue first.

11.1 The Landscape of an Optimization Problem

Potential Energy. Much of the core of local search was developed by people thinking in

terms of analogies with physics. Looking at the wide range of hard computational problems

377

378 CHAPTER 11. LOCAL SEARCH

that require the minimization of some quantity, they reasoned as follows. Physical systems

are performing minimization all the time, when they seek to minimize their potential energy.

What can learn from the ways in which nature performs minimization? Does it suggest new

kinds of algorithms?

Figure 11.1: A funnel.

If the world really looked like a freshman mechanics class suggests, it seems that it would

consist entirely of hockey pucks sliding on ice and balls rolling down inclined surfaces. Hockey

pucks usually slide because you push them; but why do balls roll downhill? One perspective

that we learn from Newtonian mechanics is that the ball is trying to minimize its potential

energy. In particular, if the ball has mass m and falls a distance of h, it loses an amount of

potential energy proportional to mh. So if we release a ball from the top of the funnel-shaped

landscape in Figure 11.1, its potential energy will be minimized at the lowest point.

If we make the landscape a little more complicated, some extra issues creep in. Consider

the “double funnel” in Figure 11.2. Point A is lower than point B, and so is a more desirable

place for the ball to come to rest. But if we start the ball rolling from point C, it will not be

able to get over the barrier between the two funnels, and it will end up at B. We say that

the ball has become trapped in a local minimum: it is at the lowest point if one looks in the

neighborhood of its current location; but stepping back and looking at the whole landscape,

we see that it has missed the global minimum.

Of course, enormously large physical systems must also try to minimize their energy.

Consider, for example, taking a few kilograms of some homogeneous substance, heating it

up, and studying its behavior over time. To capture the potential energy exactly, we would

in principle need to represent the behavior of each atom in the substance, as it interacts

with its nearby atoms. But it is also useful to speak of the potential energy of the system

11.1. THE LANDSCAPE OF AN OPTIMIZATION PROBLEM 379

C

B

A

Figure 11.2: A double funnel.

as a whole — as an aggregate — and this is the domain of statistical mechanics. We will

come back to statistical mechanics in a little while, but for now we simply observe that our

notion of an “energy landscape” provides useful visual intuition for the process by which

even a large physical system minimizes its energy. Thus, while it would in reality take a

huge number of dimensions to draw the true “landscape” that constrains the system, we can

use one-dimensional “cartoon” representations to discuss the distinction between local and

global energy minima, the “funnels” around them, and the “height” of the energy barriers

between them.

Figure 11.3: A jagged funnel.

380 CHAPTER 11. LOCAL SEARCH

Taking a molten material and trying to cool it to a perfect crystalline solid is really the

process of trying to guide the underlying collection of atoms to its global potential energy

minimum. This can be very difficult, and the large number of local minima in a typical energy

landscape represent the pitfalls that can lead the system astray in its search for the global

minimum. Thus, rather than the simple example of Figure 11.2, which simply contains a

single wrong choice, we should be more worried about landscapes with the schematic cartoon

representation depicted in Figure 11.3. This can be viewed as a “jagged funnel,” in which

there are local minima waiting to trap the system all the way along its journey to the bottom.

The Connection to Optimization. This perspective on energy minimization has really

been based on the following core ingredients: the physical system can be in one of a large

number of possible states; its energy is a function of its current state; and from a given state,

a small perturbation leads to a “neighboring” state. The way in which these neighboring

states are linked together, along with the structure of the energy function on them, defines

the underlying energy landscape.

It’s from this perspective that we again start to think about computational minimization

problems. In a typical such problem we have a large (typically exponential-size) set C of

possible solutions. We also have a cost function c(·) that measures the quality of each

solution; for a solution S ∈ C, we write its cost as c(S). The goal is to find a solution S∗ ∈ C
for which c(S∗) is as small as possible.

So far, this is just the way we’ve thought about it all along. We now add to this the

notion of a neighbor relation on solutions, to capture the idea that one solution S ′ can be

obtained by a small modification of another solution S. We write S ∼ S ′ to denote that S ′

is a neighboring solution of S, and we use N(S) to denote the neighborhood of S, the set

{S ′ : S ∼ S ′}. We will primarily be considering symmetric neighbor relations here, though

the basic points we discuss will apply to asymmetric neighbor relations as well. A crucial

point is that, while the set C of possible solutions and the cost function c(·) are provided by

the specification of the problem, we have the freedom to make up any neighbor relation that

we want.

A local search algorithm takes this set-up, including a neighbor relation, and works ac-

cording to the following high-level scheme. At all times it maintains a current solution S ∈ C.
In a given step, it chooses a neighbor S ′ of S, declares S ′ to be the new current solution,

and iterates. Throughout the execution of the algorithm, it remembers the minimum-cost

solution that it has seen thus far; so as it runs, it gradually finds better and better solutions.

The crux of a local search algorithm is in the choice of the neighbor relation, and in the

design of the rule for choosing a neighboring solution at each step.

Thus, one can think of a neighbor relation as defining a (generally undirected) graph on

the set of all possible solutions, with edges joining neighboring pairs of solutions. A local

11.1. THE LANDSCAPE OF AN OPTIMIZATION PROBLEM 381

search algorithm can then be viewed as performing a walk on this graph, trying to move

toward a good solution.

Example: The Vertex Cover Problem. This is still all somewhat vague without a

concrete problem to think about; so we’ll use the Vertex Cover problem as a running example

here and in much of what follows. It’s important to keep in mind that, while Vertex Cover

makes for a good example, there are many other optimization problems that would work

just as well for this illustration.

Thus, we are given a graph G = (V, E); the set C of possible solutions consists of all

subsets S of V that form vertex covers. Hence, for example, we always have V ∈ C. The cost

c(S) of a vertex cover S will simply be its size; in this way, minimizing the cost of a vertex

cover is the same as finding one of minimum size. Finally, we will focus our examples on

local search algorithms that use a particularly simple neighbor relation: we say that S ∼ S ′

if S ′ can be obtained from S by adding or deleting a single node. Thus, our local search

algorithms will be walking through the space of possible vertex covers, adding or deleting

a node to their current solution in each step, and trying to find as small a vertex cover as

possible.

One useful fact about this neighbor relation is the following.

(11.1) Each vertex cover S has at most n neighboring solutions.

The reason is simply that each neighboring solution of S is obtained by adding or deleting

a distinct node. A consequence of (11.1) is that we can efficiently examine all possible

neighboring solutions of S in the process of choosing which to select.

Let’s think first about a very simple local search algorithm, which we’ll term gradient

descent. Gradient descent starts with the full vertex set V , and uses the following rule for

choosing a neighboring solution:

Let S denote the current solution. If there is a neighbor S ′ of S with strictly

lower cost, then choose the neighbor whose cost is as small as possible. Otherwise,

terminate the algorithm.

So gradient descent moves strictly “downhill” as long as it can; once this is no longer possible,

it stops.

We can see that gradient descent terminates precisely at solutions that are local minima:

solutions S such that for all neighboring S ′, we have c(S) ≤ c(S ′). This definition corresponds

very naturally to our notion of local minima in energy landscapes: they are points from which

no one-step perturbation will improve the cost function.

How can we visualize the behavior of a local search algorithm in terms of the kinds of

energy landscapes we drew above? Let’s think first about gradient descent. The easiest

382 CHAPTER 11. LOCAL SEARCH

instance of Vertex Cover is surely an n-node graph with no edges. The empty set is the

optimal solution (since there are no edges to cover), and gradient does exceptionally well at

finding this solution: it starts with the full vertex set V , and keeps deleting nodes until there

are none left. Indeed, the set of vertex covers for this edge-less graph corresponds naturally

to the funnel we drew in Figure 11.1: the unique local minimum is the global minimum, and

there is a downhill path to it from any point.

When can gradient descent go astray? Consider a “star graph” G, consisting of nodes

x1, y1, y2, . . . , yn−1, with an edge from x1 to each yi. The minimum vertex cover for G is

the singleton set {x1}, and gradient descent can reach this solution by successively deleting

y1, . . . , yn−1 in any order. But if gradient descent deletes the node x1 first, then it is im-

mediately stuck: no node yi can be deleted without destroying the vertex cover property,

so the only neighboring solution is the full node set V , which has higher cost. Thus, the

algorithm has become trapped in the local minimum {y1, y2, . . . , yn−1}, which has very high

cost relative to the global minimum.

Pictorially, we see that we’re in a situation corresponding to the “double funnel” of

Figure 11.2. The deeper funnel corresponds to the optimal solution {x1}, while the shallower

funnel corresponds to the inferior local minimum {y1, y2, . . . , yn−1}. Sliding down the wrong

portion of the slope at the very beginning can send one into the wrong minimum. We can

easily generalize this situation to one in which the two minima have any relative depths we

want. Consider, for example, a bipartite graph G with nodes x1, x2, . . . , xk and y1, y2, . . . , y`,

where k < `, and there is an edge from every node of the form xi to every node of the form

yj. Then there are two local minima, corresponding to the vertex covers {x1, . . . , xk} and

{y1, . . . , y`}. Which one is discovered by a run of gradient descent is entirely determined by

whether it first deletes an element of the form xi or yj.

With more complicated graphs, it’s often a useful exercise to think about the kind of

landscape they induce; and conversely, one sometimes may look at a landscape and consider

whether there’s a graph that gives rise to something like it.

For example, what kind of graph might yield a Vertex Cover instance with a landscape

like the “jagged funnel” in Figure 11.3? One such graph is simply an n-node path, where n is

an odd number, with nodes labeled v1, v2, . . . , vn in order. The unique minimum vertex cover

S∗ consists of all nodes vi where i is even. But there are many local optima. For example,

consider the vertex cover {v2, v3, v5, v6, v8, v9, . . .} in which every third node is omitted. This

is a vertex cover that is significantly larger than S∗; but there’s no way to delete any node

from it while still covering all edges. Indeed, it’s very hard for gradient descent to find the

minimum vertex cover S∗ starting from the full vertex set V — once it’s deleted just a single

node vi with an even value of i, it’s lost the chance to find the global optimum S∗. Thus,

the even/odd parity distinction in the nodes captures a plethora of different wrong turns in

the local search, and hence gives the overall funnel its “jagged” character. Of course, there

11.2. THE METROPOLIS ALGORITHM AND SIMULATED ANNEALING 383

is not a direct correspondence between the ridges in the drawing and the local optima; as

we warned above, Figure 11.3 is ultimately just a “cartoon” rendition of what’s going on.

We see here that even for graphs that are structurally very simple, gradient descent is

much too straightforward a local search algorithm. We now look at some more refined local

search algorithms that use the same type of neighbor relation, but include a method for

“escaping” from local minima.

11.2 The Metropolis Algorithm and Simulated Anneal-

ing

The first idea for an improved local search algorithm comes from work of Metropolis, Rosen-

bluth, Rosenbluth, Teller, and Teller. They considered the problem of simulating the behav-

ior of a physical system according to principles of statistical mechanics. A basic model from

this field asserts that the probability of finding a physical system in a state with energy E

is proportional to the Gibbs-Boltzmann function e−E/(kT), where T > 0 is the temperature

and k > 0 is a constant. Let’s look at this function. For any temperature T , the function

is monotone decreasing in the energy E, so this states that a physical system is more likely

to be in a lower energy state than in high energy states. Now, let’s consider the effect of

the temperature T . When T is small, the probability for a small energy state is significantly

smaller than the probability for a large energy state. However, if the temperature is high,

then the difference between these two probabilities is very small, and the system is almost

equally likely to be in any state.

Metropolis et al. proposed the following method for performing step-by-step simulation of

a system at a fixed temperature T . At all times, the simulation maintains a current state of

the system, and tries to produce a new state by applying a perturbation to this state. We’ll

assume that we’re only interested in states of the system that are “reachable” from some

fixed initial state by a sequence of small perturbations, and we’ll assume that there is only

a finite set C of such states. In a single step, we first generate a small random perturbation

to the current state S of the system, resulting in a new state S ′. Let E(S) and E(S ′) denote

the energies of S and S ′ respectively. If E(S ′) ≤ E(S), then we update the current state to

be S ′. Otherwise, let ∆E = E(S ′) − E(S) > 0. We update the current state to be S ′ with

probability e−∆E/(kT), and otherwise leave the current state at S.

Metropolis et al. proved that their simulation algorithm has the following property. To

prevent too long a digression, we omit the proof; it is actually a direct consequence of some

basic facts about random walks.

(11.2) Let

Z =
∑

S∈C

e−E(S)/(kT).

384 CHAPTER 11. LOCAL SEARCH

For a state S, let fS(t) denote the fraction of the first t steps in which the state of the

simulation is in S. Then the limit of fS(t) as t approaches∞ is almost surely 1
Z
·e−E(S)/(kT).

This is exactly the sort of fact one wants, since it says that the simulation spends roughly

the correct amount of time in each state, according to the Gibbs-Boltzmann equation.

If we want to use this overall scheme to design a local search algorithm for minimization

problems, we use the analogies of the previous section in which states of the system are

candidate solutions, with energy corresponding to cost. We then see that the operation of

the Metropolis algorithm has a very desirable pair of features in a local search algorithm: it is

biased toward “downhill” moves, but will also accept “uphill” moves with smaller probability.

In this way, it is able to make progress even when situated in a local minimum. Moreover,

as expressed in (11.2) , it is globally biased toward lower-cost solutions.

Here is a concrete formulation of the Metropolis algorithm for a minimization problem.

Start with an initial solution S0, and constants k and T.
In one step:

Let S be the current solution.

Let S ′ be chosen uniformly at random from the neighbors of S.
If c(S ′) ≤ c(S) then

Update S ← S ′.

Else

With probability e−(c(S′)−c(S))/(kT),

Update S ← S ′.

Otherwise

Leave S unchanged.

Endif

Thus, on the Vertex Cover instance consisting of the star graph in the previous section,

in which x1 is joined to each of y1, . . . , yn−1, we see that the Metropolis algorithm will quickly

bounce out of the local minimum that arises when x1 is deleted: the neighboring solution

in which x1 is put back in will be generated, and will be accepted with positive probability.

Even on the more complex graphs we considered, like the union of k disjoint stars, the

Metropolis algorithm is able to correct the wrong choices it makes as it proceeds.

At the same time, the Metropolis algorithm does not always behave the way one would

want, even in some very simple situations. Let’s go back to the very first graph we considered,

a graph G with no edges. Gradient descent solves this instance with no trouble, deleting

nodes in sequence until none are left. But while the Metropolis algorithm will start out this

way, it begins to go astray as it nears the global optimum. Consider the situation in which

the current solution contains only c nodes, where c is much smaller than the total number of

nodes, n. With very high probability, the neighboring solution generated by the Metropolis

11.2. THE METROPOLIS ALGORITHM AND SIMULATED ANNEALING 385

algorithm will have size c + 1, rather than c− 1, and with reasonable probability this uphill

move will be accepted. Thus, it gets harder and harder to shrink the size of the vertex cover

as the algorithm proceeds; it is exhibiting a sort of “flinching” reaction near the bottom of

the funnel.

This behavior shows up in more complex examples as well, and in more complex ways;

but it is certainly striking for it to show up here so simply. In order to figure out how we

might fix this behavior, we return to the physical analogy that motivated the Metropolis

algorithm, and ask: what’s the meaning of the temperature parameter T in the context of

optimization?

We can think of T as a one-dimensional knob that we’re able to turn, and it controls the

extent to which the algorithm is willing to accept uphill moves. As we make T very large, the

probability of accepting an uphill move approaches 1, and the Metropolis algorithm behaves

like a random walk that is basically indifferent to the cost function. As we make T very

close to 0, on the other hand, uphill moves are almost never accepted, and the Metropolis

algorithm behaves almost identically to gradient descent.

Neither of these extremes is an effective way to solve minimization problems in general,

and we can see this in physical settings as well. If we take a solid and heat it to a very

high temperature, we do not expect it to maintain a nice crystal structure, even if this is

energetically favorable; and this can be explained by the large value of kT in the expression

e−E(S)/(kT), which makes the enormous number of less favorable states too probable. This is

a way in which we can view the “flinching” behavior of the Metropolis algorithm on an easy

Vertex Cover instance: it’s trying to find the lowest-energy state at too high a temperature,

when all the competing states have too high a probability. On the other hand, if we take

a molten solid and freeze it very abruptly, we do not expect to get a perfect crystal either;

rather, we get a deformed crystal structure with many imperfections. This is because, with T

very small, we’ve come too close to the realm of gradient descent, and the system has become

trapped in one of the numerous ridges of its jagged energy landscape. It is interesting to

note that when T is very small, then the statement (11.2) above shows that in the limit,

the random walk spends most of its time in the lowest energy state. The problem is that the

random walk will take an enormous amount of time before getting anywhere near this limit.

In the early 1980’s, as people were considering the connection between energy minimiza-

tion and combinatorial optimization, Kirkpatrick, Gelatt, and Vecchi thought about the

issues we’ve been discussing, and they asked the following question: How do we solve this

problem for physical systems, and what sort of algorithm does this suggest? In physical

systems, one guides a material to a crystalline state by a process known as annealing: the

material is cooled very gradually from a high temperature, allowing it enough time to reach

equilibrium at a succession of intermediate lower temperatures. In this way, it is able to

escape from the energy minima that it encounters all the way through the cooling process,

386 CHAPTER 11. LOCAL SEARCH

eventually arriving at the global optimum.

We can thus try to mimic this process computationally, arriving at an algorithmic tech-

nique known as simulated annealing. Simulated annealing works by running the Metropolis

algorithm while gradually decreasing the value of T over the course of the execution. The

exact way in which T is updated is called, for natural reasons, a cooling schedule, and a

number of considerations go into the design of the cooling schedule. Formally, a cooling

schedule is a function τ from {1, 2, 3, . . .} to the positive real numbers; in iteration i of the

Metropolis algorithm, we use the temperature T = τ(i) in our definition of the probability.

Qualitatively, we can see that simulated annealing allows for large changes in the solution

in the early stages of its execution, when the temperature is high; as the search proceeds,

the temperature is lowered so that we are less likely to undo progress that has already

been made. We can also view simulated annealing as trying to optimize a trade-off that is

implicit in (11.2) . According to (11.2) , values of T arbitrarily close to 0 put the highest

probability on minimum-cost solutions; however, (11.2) by itself says nothing about the rate

of convergence of the functions fS(t) that it uses. It turns out that these functions converge,

in general, much more rapidly for large values of T ; and so to find minimum-cost solutions

quickly, it is useful to speed up convergence by starting the process with T large, and then

gradually reducing it so as to raise the probability on the optimal solutions. While we believe

that physical systems reach a minimum energy state via annealing, the simulated annealing

method has no guarantee of finding an optimal solution. To see why, consider the “double

funnel” of Figure 11.2. If the two funnels take equal area, than at high temperatures the

system is essentially equally likely to be in either funnel. Once we cool the temperature, it

will become harder and harder to switch between the two funnels. There appears to be no

guarantee that at the end of annealing, we will be at the bottom of the lower funnel.

There are many open problems associated with simulated annealing, both in proving

properties of its behavior and in determining the range of settings for which it works well in

practice. Some of the general questions that come up here involve probabilistic issues that

are beyond the scope of this course. In the next lectures we will turn to some fairly clean

settings in which one can prove properties of locally optimal solutions, and discuss some

of the issues that are important in making simulated annealing successful for a particular

application.

11.3 Application: Hopfield Neural Networks

Thus far we have been discussing local search as a method for trying to find the global

optimum in a computational problem. There are some cases, however, in which by examining

the specification of the problem carefully, we discover that it is really just an arbitrary local

optimum that is required. We now consider a problem that illustrates this phenomenon.

11.3. APPLICATION: HOPFIELD NEURAL NETWORKS 387

The problem is that of finding stable configurations in Hopfield neural networks. Hop-

field networks were proposed as a simple model of an associative memory, in which a large

collection of units are connected by an underlying network, and neighboring units try to

correlate their states. Concretely, a Hopfield network can be viewed as an undirected graph

G = (V, E), with an integer-valued weight we on each edge e; each weight may be positive

or negative. A configuration S of the network is an assignment of the value −1 or +1 to

each node u; we will refer to this value as the state su of the node u. The meaning of a con-

figuration is that each node u, representing a unit of the neural network, is trying to choose

between one of two possible states (‘on’ or ‘off’; ‘yes’ or ‘no’); and its choice is influenced

by those of its neighbors as follows. Each edge of the network imposes a requirement on its

endpoints: If u is joined to v by an edge of negative weight, then u and v want to have the

same state, while if u is joined to v by an edge of positive weight, then u and v want to have

opposite states. The absolute value |we| will indicate the strength of this requirement, and

we will refer to |we| as the absolute weight of edge e.

Unfortunately, there may be no configuration that respects the requirements imposed by

all the edges. For example, consider three nodes a, b, c all mutually connected to one another

by edges of weight 1. Then no matter what configuration we choose, two of these nodes

will have the same state, and thus will be violating the requirement that they have opposite

states.

In view of this, we ask for something weaker. With respect to a given configuration, we

say that an edge e = (u, v) is good if the requirement it imposes is satisfied by the states of its

two endpoints: either we < 0 and su = sv, or we > 0 and su 6= sv. Otherwise, we say e is bad.

Note that we can express the condition that e is good very compactly as follows: wesusv < 0.

Next, we say that a node u is satisfied in a given configuration if the total absolute weight of

all good edges incident to u is at least as large as the total absolute weight of all bad edges

incident to u. We can write this as

∑

v:e=(u,v)∈E

wesusv ≤ 0.

Finally, we call a configuration stable if all nodes are satisfied.

Why do we use the term “stable” for such configurations? This is based on viewing

network from the perspective of an individual node u. On its own, the only choice u has is

whether to take the state −1 or +1; and like all nodes, it wants to respect as many edge

requirements as possible (as measured in absolute weight). Suppose u asks: should I flip my

current state? We see that if u does flip its state (while all other nodes keep their states the

same), then all the good edges incident to u become bad, and all the bad edges incident to

u become good. So to maximize the amount of good edge weight under its direct control, u

should flip its state if and only if it is not satisfied. In other words, a stable configuration is

one in which no individual node has an incentive to flip its current state.

388 CHAPTER 11. LOCAL SEARCH

A basic question now becomes: does a Hopfield network always have a stable configura-

tion, and if so, how can we find one? Below, we will prove the following fact.

(11.3) Every Hopfield network has a stable configuration, and such a configuration can

be found in time polynomial in n and W =
∑

e |we|.
We will see that stable configurations in fact arise very naturally as the local optima of a

certain local search procedure on the Hopfield network.

To see that the statement of (11.3) is not entirely trivial, we note that it fails to remain

true if one changes the model in certain natural ways. For example, suppose we were to

define a directed Hopfield network exactly as above, except that each edge is directed, and

each node determines whether or not it is satisfied by looking only at edges for which it is

the tail. Then in fact, such a network need not have a stable configuration. Consider, for

example, a directed version of the three-node network we discussed above: there are nodes

a, b, c, with directed edges (a, b), (b, c), (c, a), all of weight 1. Then if all nodes have the same

state, they will all be unsatisfied; and if one node has a different state from the other two,

then the node directly in front of it will be unsatisfied. Thus, there is no configuration of

this directed network in which all nodes are satisfied.

It is clear that our proof will need to rely somewhere on the undirected nature of the

network.

Proof of (11.3) . We consider performing the following iterative procedure to search

for a stable configuration. As long as the current configuration is not stable, there is an

unsatisfied node; so we choose one such node u, flip its state, and iterate. Clearly, if this

process terminates, we will have a stable configuration. What is not as obvious is whether

it must in fact terminate. Indeed, in the directed example above, this process will simply

cycle through the three nodes, flipping their states sequentially forever.

The key to proving this process terminates is an idea we’ve used in several previous

situations: to look for a measure of progress; a quantity that strictly increases with every

flip and has an absolute upper bound. This can be used to bound the number of iterations.

Probably the most natural progress measure would be the number of satisfied nodes: if

this increased every time we flipped an unsatisfied node, the process would run for at most n

iterations before terminating with a stable configuration. Unfortunately, this does not turn

out to work. When we flip an unsatisfied node v, it’s true that it has now become satisfied

— but a potentially large number of its previously satisfied neighbors could now become

unsatisfied, resulting in a net decrease in the number of satisfied nodes.

However, there is a more subtle progress measure that does increase with each flip of an

unsatisfied node. Specifically, for a given configuration S, we define Φ(S) to be the total

absolute weight of all good edges in the network. That is,

Φ(S) =
∑

good e

|we|.

11.3. APPLICATION: HOPFIELD NEURAL NETWORKS 389

Clearly, for any configuration S, we have Φ(S) ≥ 0 (since Φ(S) is a sum of positive integers),

and Φ(S) ≤ W =
∑

e |we| (since at most, every edge is good).

Now, suppose that in a non-stable configuration S we choose a node u that is unsatisfied

and flip its state, resulting in a configuration S ′. What can we say about the relationship of

Φ(S ′) to Φ(S)? Recall that when u flips its state, all good edges incident to u become bad,

all bad edges incident to u become good, and all edges that don’t have u as an endpoint

remain the same. So if we let gu and bu denote the total absolute weight on good and bad

edges incident to u, respectively, then we have

Φ(S ′) = Φ(S)− gu + bu.

But since u was unsatisfied in S, we also know that bu > gu; and since bu and gu are both

integers, we in fact have bu ≥ gu + 1. Thus,

Φ(S ′) ≥ Φ(S) + 1.

Hence, the value of Φ begins at some non-negative integer, increases by at least 1 on

every flip, and cannot exceed W . Thus, our process runs for at most W iterations, and

when it terminates, we must have a stable configuration. Moreover, in each iteration we can

identify an unsatisfied node using a number of arithmetic operations that is polynomial in

n; thus, the running time bound follows as well.

So we see that, in the end, the existence proof for stable configurations was really about

local search. We first set up an objective function Φ that we sought to maximize. Configura-

tions were the possible solutions to this maximization problem, and we defined what it meant

for two configurations S and S ′ to be neighbors: S ′ should be obtainable from S by flipping

a single state. We then studied the behavior of a simple iterative improvement algorithm

for local search (the upside-down form of gradient descent, since we have a maximization

problem); and we found that any local maximum corresponds to a stable configuration.

It’s worth noting that while our algorithm proves the existence of a stable configuration,

the running time leaves something to be desired when the absolute weights are large. Specif-

ically, as we saw in the Subset Sum problem, and in our first algorithm for maximum flow,

the algorithm we obtain here is polynomial only in the actual magnitude of the weights, not

in the size of their binary representation. For very large weights, this can lead to running

times that are quite infeasible.

However, no simple way around this situation is currently known. It turns out to be an

open question to find an algorithm that constructs stable states in time polynomial in n and

log W (rather than n and W) — or in a number of primitive arithmetic operations that is

polynomial in n alone, independent of the value of W .

390 CHAPTER 11. LOCAL SEARCH

11.4 Choosing a Neighbor Relation

We began by saying that a local search algorithm is really based on two fundamental in-

gredients: the choice of the neighbor relation, and the the rule for choosing a neighboring

solution at each step. Thus far, we’ve spent more time thinking about the second of these:

both the Metropolis algorithm and simulated annealing took the neighbor relation as given,

and modified the way in which a neighboring solution should be chosen.

What are some of the issues that should go into our choice of the neighbor relation? This

can turn out to be quite subtle, though at a high level the trade-off is a basic one:

(i) The neighborhood of a solution should be rich enough that we do not tend to get stuck

in bad local optima; but

(ii) the neighborhood of a solution should not be too large, since we want to be able to

efficiently search the set of neighbors for possible local moves.

If the first of these points were the only concern, then it would seem that we should simply

make all solutions neighbors of one another — after all, then there would be no local optima,

and the global optimum would always be just one step away! The second point exposes the

(obvious) problem with doing this: if the neighborhood of the current solution consists of

every possible solution, then the local search paradigm gives us no leverage whatsoever; it

reduces simply to brute-force search of this neighborhood.

Actually, we’ve already encountered one case in which choosing the right neighbor relation

had a profound effect on the tractability of a problem, though we did not explicitly take note

of this at the time — this was in the bipartite matching problem. Probably the simplest

neighbor relation on matchings would be the following: M ′ is a neighbor of M if M ′ can be

obtained by the insertion or deletion of a single edge in M . Under this definition, we get

“landscapes” that are quite jagged, quite like the Vertex Cover examples we saw earlier; and

we can get locally optimal matchings under this definition that have only half the size of the

maximum matching.

But suppose we try defining a more complicated (indeed, asymmetric) neighbor relation:

we say that M ′ is a neighbor of M if, when we set up the corresponding flow network, M ′

can be obtained from M by a single augmenting path. What can we say about a matching

M if it is a local maximum under this neighbor relation? In this case there is no augmenting

path, and so M must in fact be a (globally) maximum matching. In other words, with this

neighbor relation, the only local maxima are global maxima, and so direct gradient ascent

will produce a maximum matching. If we reflect on what the Ford-Fulkerson algorithm is

doing in our reduction from bipartite matching to maximum flow, this makes sense: the size

of the bipartite matching strictly increases in each step, and we never need to “back out” of

a local maximum. By choosing the neighbor relation very carefully, we’ve turned a jagged

optimization landscape into a simple, tractable, funnel.

11.4. CHOOSING A NEIGHBOR RELATION 391

Of course, we do not expect that things will always work out this well; for example, since

Vertex Cover is NP-complete, it would be surprising if it allowed for a neighbor relation

that simultaneously produced “well-behaved” landscapes and neighborhoods that could be

searched efficiently. We now look at several possible neighbor relations in the context of

a different NP-complete problem — Maximum Cut — that is representative of a family of

computationally hard graph partitioning problems.

The Maximum Cut Problem

In the Maximum Cut problem, we are given an undirected graph G = (V, E), with a positive

integer weight we on each edge e. For a partition (A, B) of the vertex set, we use w(A, B)

to denote the total weight of edges with one end in A and the other in B:

w(A, B) =
∑

e=(u,v)

u∈A,v∈B

we.

The goal is to find a partition (A, B) of the vertex set so that w(A, B) is maximized. Max-

imum Cut is NP-complete, in the sense that given a weighted graph G and a bound B,

it is NP-complete to decide whether there is a partition (A, B) of the vertices of G with

w(A, B) ≥ B. At the same time, of course, Maximum Cut resembles the polynomially-

solvable minimum s-t cut problem for flow networks; the crux of its intractability comes

from the fact that we are seeking to maximize the edge weight across the cut, rather than

minimize it.

Although the problem of finding a stable configuration of a Hopfield network was not an

optimization problem per se, we can see that Maximum Cut is closely related to it. In the

language of Hopfield networks, Maximum Cut is an instance in which all edge weights are

positive (rather than negative), and configurations of nodes states S correspond naturally to

partitions (A, B) — nodes have state −1 if and only if they are in the set A, and state +1

if and only if they are in the set B. The goal is to assign states so that as much weight as

possible is on good edges — those whose endpoints have opposite states. Phrased this way,

Maximum Cut seeks to maximize precisely the quantity Φ(S) that we used in the proof of

(11.3) , in the case when all edge weights are positive.

The “state-flipping” algorithm used in that proof provides a local search algorithm to

approximate this objective function Φ(S) = w(A, B). In terms of partitions, it says the

following: if there exists a node u so that the total weight of edges from u to nodes in its

own side of the partition exceeds the total weight of edges from u to nodes on the other side

of the partition, then u itself should be moved to the other side of the partition.

We’ll call this the “single-flip” neighborhood on partitions: partitions (A, B) and (A′, B′)

are neighboring solutions if (A′, B′) can be obtained from (A, B) by moving a single node

from one side of the partition to the other. Let’s ask two basic questions. First, can we say

392 CHAPTER 11. LOCAL SEARCH

anything concrete about the quality of the local optima under the single-flip neighborhood?

And second, since the single-flip neighborhood is about as simple as one could imagine, what

other neighborhoods might yield stronger local search algorithms for Maximum Cut?

The following result addresses the first of these questions, showing that local optima

under the single-flip neighborhood provide solutions achieving a guaranteed approximation

bound.

(11.4) Let (A, B) be a partition that is a local optimum for Maximum Cut under the

single-flip neighborhood. Let (A∗, B∗) be a globally optimal partition. Then w(A, B) ≥
1
2
w(A∗, B∗).

Proof. Let W =
∑

e we. We also extend our notation a little: for two nodes u and v, we use

wuv to denote we if there is an edge e joining u and v, and 0 otherwise.

For any node u ∈ A, we must have

∑

v∈A

wuv ≤
∑

v∈B

wuv,

since otherwise u should be moved to the other side of the partition, and (A, B) would not

be locally optimal. Suppose we add up these inequalities for all u ∈ A; any edge that has

both ends in A will appear on the left-hand side of exactly two of these inequalities, while

any edge that has one end in A and one end in B will appear on the right-hand side of

exactly one of these inequalities. Thus, we have

2
∑

{u,v}⊆A

wuv ≤
∑

u∈A,v∈B

wuv = w(A, B). (11.1)

We can apply the same reasoning to the set B, obtaining

2
∑

{u,v}⊆B

wuv ≤
∑

u∈A,v∈B

wuv = w(A, B). (11.2)

If we add together inequalities (11.1) and (11.2), and divide by 2, we get

∑

{u,v}⊆A

wuv +
∑

{u,v}⊆B

wuv ≤ w(A, B). (11.3)

The left-hand side of inequality (11.3) accounts for all edge weight that does not cross from

A to B; so if we add w(A, B) to both sides of (11.3), the left-hand side becomes equal to W .

The right-hand side becomes 2w(A, B), so we have W ≤ 2w(A, B), or w(A, B) ≥ 1
2
W .

Since the globally optimal partition (A∗, B∗) clearly satisfies w(A∗, B∗) ≤ W , we have

w(A, B) ≥ 1
2
w(A∗, B∗).

Notice that we never really thought much about the optimal partition (A∗, B∗) in the

proof of (11.4); we really showed the stronger statement that in any locally optimal solution

11.4. CHOOSING A NEIGHBOR RELATION 393

under the single-flip neighborhood, at least half the total edge weight in the graph crosses

the partition.

Next let’s consider neighbor relations that produce larger neighborhoods than the single-

flip rule, and consequently attempt to reduce the prevalence of local optima. Perhaps the

most natural generalization is the k-flip neighborhood, for k ≥ 1: we say that partitions

(A, B) and (A′, B′) are neighbors under the k-flip rule if (A′, B′) can be obtained from

(A, B) by moving at most k nodes from one side of the partition to the other.

Now, clearly if (A, B) and (A′, B′) are neighbors under the k-flip rule, then they are also

neighbors under the k′-flip rule for every k′ > k. Thus, if (A, B) is a local optimum under

the k′-flip rule, it is also a local optimum under the k-flip rule for every k < k′. But reducing

the set of local optima by raising the value of k comes at a steep computational price: to

examine the set of neighbors of (A, B) under the k-flip rule, we must consider all Θ(nk) ways

of moving up to k nodes to the opposite side of the partition. This becomes prohibitive even

for small values of k.

Kernighan and Lin proposed an alternate method for generating neighboring solutions;

it is computationally much more efficient, but still allows large-scale transformations of

solutions in a single step. Their method, which we’ll call the K-L heuristic, defines the

neighbors of a partition (A, B) according the following n-phase procedure.

• In phase 1, we choose a single node to flip, in such a way that the value of the resulting

solution is as large as possible. We perform this flip even if the value of the solution

decreases relative to w(A, B). We mark the node that has been flipped, and let (A1, B1)

denote the resulting solution.

• At the start of phase k, for k > 1, we have a partition (Ak−1, Bk−1); and k − 1 of the

nodes are marked. We choose a single unmarked node to flip, in such a way that the

value of the resulting solution is as large as possible. (Again, we do this even if the

value of the solution decreases as a result.) We mark the node we flip, and let (Ak, Bk)

denote the resulting solution.

• After n phases, each node is marked, indicating that it has been flipped precisely once.

Consequently, the final partition (An, Bn) is actually the “mirror image” of the original

partition (A, B): we have An = B and Bn = A.

• Finally, the K-L heuristic defines the n− 1 partitions (A1, B1), . . . , (An−1, Bn−1) to be

the neighbors of (A, B). Thus, (A, B) is a local optimum under the K-L heuristic if

and only if w(A, B) ≥ w(Ai, Bi) for 1 ≤ i ≤ n− 1.

So we see that the K-L heuristic tries a very long sequence of flips, even while it appears

to be making things worse, in the hope that some partition (Ai, Bi) generated along the

394 CHAPTER 11. LOCAL SEARCH

way will turn out better than (A, B). But even though it generates neighbors very different

from (A, B), it only performs n flips in total, and each takes only O(n) time to perform.

Thus, it is computationally much more reasonable than the k-flip rule for larger values of k.

Moreover, the K-L heuristic has turned out to be very powerful in practice, despite the fact

that rigorous analysis of its properties has remained largely an open problem.

11.5 Exercises

1. Consider the load balancing problem from the chapter on approximation algorithms.

Some friends of yours are running a collection of Web servers, and they’ve designed a

local search heuristic for this problem, different from the algorithms described in that

chapter.

Recall that we have m machines M1, . . . , Mm, and we must assign each job to a machine.

The load of the ith job is denoted ti. The makespan of an assignment is the maximum

load on any machine:

max
machines Mi

∑

jobs j assigned to Mi

tj.

Your friends’ local search heuristic works as follows. They start with an arbitrary

assignment of jobs to machines, and they then repeatedly try to apply the following

type of “swap move”:

Let A(i) and A(j) be the jobs assigned to machines Mi and Mj respectively.

To perform a swap move on Mi and Mj, choose subsets of jobs B(i) ⊆ A(j)

and B(j) ⊆ A(j), and “swap” these jobs between the two machines. That is,

update A(i) to be A(i)∪B(j)−B(i) and update A(j) to be A(j)∪B(i)−B(j).

(One is allowed to have B(i) = A(i), or to have B(i) be the empty set; and

analogously for B(j).)

Consider a swap move applied to machines to machines Mi and Mj. Suppose the loads

on Mi and Mj before the swap are Ti and Tj respectively, and the loads after the swap

are T ′
i and T ′

j. We say that the swap move is improving if max(T ′
i , T

′
j) < max(Ti, Tj);

in other words, the larger of the two loads involved has strictly decreased. We say that

an assignment of jobs to machines is stable if there does not exist an improving swap

move, beginning with the current assignment.

Thus, the local search heuristic simply keeps executing improving swap moves until a

stable assignment is reached; at this point, the resulting stable assignment is returned

as the solution.

11.5. EXERCISES 395

Example: Suppose there are two machines: in the current assignment, the machine

M1 has jobs of sizes 1, 3, 5, 8, and machine M2 has jobs of sizes 2, 4. Then one possible

improving swap move would be to define B(1) to consist of the job of size 8, and define

B(2) to consist of the job of size 2. After these two sets are “swapped,” the resulting

assignment has jobs of size 1, 2, 3, 5 on M1, and jobs of size 4, 8 on M2. This assignment

is stable. (It also has an optimal makespan of 12.)

(a) As specified, there is no explicit guarantee that this local search heuristic will

always terminate — i.e., what if it keeps cycling forever through assignments that are

not stable?

Prove that in fact the local search heuristic terminates in a finite number of steps, with

a stable assignment, on any instance.

(b) Show that any stable assignment has a makespan that is within a factor of 2 of

the minimum possible makespan.

2. Consider an n-node complete binary tree T , where n = 2d− 1 for some d. Each node v

of T is labeled with a real number xv. You may assume that the real numbers labeling

the nodes are all distinct. A node v of T is a local minimum if the label xv is less than

the label xw for all nodes w that are joined to v by an edge.

You are given such a complete binary tree T , but the labeling is only specified in the

following implicit way: for each node v, you can determine the value xv by probing

the node v. Show how to find a local minimum of T using only O(log n) probes to the

nodes of T .

3. (∗) Suppose now that you’re given an n × n grid graph G. (An n × n grid graph

is just the adjacency graph of an n × n chessboard. To be completely precise, it is a

graph whose node set is the set of all ordered pairs of natural numbers (i, j), where

1 ≤ i ≤ n and 1 ≤ j ≤ n; the nodes (i, j) and (k, `) are joined by an edge if and only

if |i− k|+ |j − `| = 1.)

We use some of the terminology of the previous question. Again, each node v is labeled

by a real number xv; you may assume that all these labels are distinct. Show how to

find a local minimum of G using only O(n) probes to the nodes of G. (Note that G

has n2 nodes.)

396 CHAPTER 11. LOCAL SEARCH

Chapter 12

Randomized Algorithms

The idea that a process can be “random” is not a modern one; one can trace the notion far

back into the history of human thought, and certainly see its reflections in gambling and the

insurance business — each of which reach into ancient times. Yet while similarly intuitive

subjects like geometry and logic have been treated mathematically for several thousand

years, the mathematical study of probability is surprisingly young; the first known attempts

to seriously formalize it came about in the 1600’s. Of course, the history of computer science

plays out on a much shorter time scale, and the idea of randomization has been with it since

its early days.

Randomization and probabilistic analysis are themes that cut across many areas of com-

puter science, including algorithm design, and when one thinks about random processes in

the context of computation, it is usually in one of two distinct ways. One view is to consider

the world as behaving randomly: one can consider traditional algorithms that confront ran-

domly generated input. This approach is often termed average-case analysis, since we are

studying the behavior of an algorithm on an “average” input (subject to some underlying

random process), rather than a worst-case input.

A second view is to consider algorithms that behave randomly: the world provides the

same worst-case input as always, but we allow our algorithm to make random decisions as

it processes the input. Thus, the role of randomization in this approach is purely internal

to the algorithm, and does not require new assumptions about the nature of the input; it is

this notion of a randomized algorithm that we will be considering in this chapter.

Why might it be useful to design an algorithm that is allowed to make random decisions?

A first answer would be to observe that by allowing randomization, we’ve made our under-

lying model more powerful — efficient deterministic algorithms that always yield the correct

answer are a special case of efficient randomized algorithms that only need to yield the

correct answer with high probability; they are also a special case of randomized algorithms

that are always correct, and run efficiently in expectation. Even in a worst-case world, an

algorithm that does its own “internal” randomization may be able to offset certain worst-

397

398 CHAPTER 12. RANDOMIZED ALGORITHMS

case phenomena. So problems that may not have been solvable by efficient deterministic

algorithms may still be amenable to randomized algorithms.

But this is not the whole story, and in fact we’ll be looking at randomized algorithms

for a number of problems where there exist comparably efficient deterministic algorithms.

Nevertheless a randomized approach often exhibits considerable power for further reasons:

it may be conceptually much simpler; or it may allow the algorithm to function while main-

taining very little internal state or memory of the past. The advantages of randomization

seem to increase further as one considers larger computer systems and networks, with many

loosely interacting processes — in other words, a distributed system. Here, random behav-

ior on the part of individual processes can reduce the amount of explicit communication or

synchronization that is required; it is often valuable as a tool for symmetry-breaking among

processes, reducing the danger of contention and “hot spots.” A number of our examples

will come from settings like this: regulating access to a shared resource, balancing load on

multiple processors, or routing packets through a network. A small level of comfort with

randomized heuristics can give one considerable leverage in thinking about large systems.

A natural worry in approaching the topic of randomized algorithms is that it requires an

extensive knowledge of probability. Of course, it’s always better to know more rather than

less, and some algorithms are indeed based on complex probabilistic ideas. But one further

goal of this chapter is to try illustrating how little underlying probability is really needed

in order to understand many of the well-known algorithms in this area. We will see that

there is a small set of useful probabilistic tools that recur frequently, and this chapter will

try to develop the tools alongside the algorithms — ultimately, facility with these tools is as

valuable as an understanding of the specific algorithms themselves.

12.1 A First Application: Contention Resolution

We begin with a first application of randomized algorithm — contention resolution in a

distributed system — that illustrates the general style of analysis we will be using for many

of the algorithms that follow. In particular, it is a chance to work through some basic

manipulations involving events and their probabilities, analyzing intersections of events using

independence and unions of events using a simple Union Bound. For the sake of completeness,

we give a brief summary of these concepts in the appendix to this chapter.

A contention-resolution protocol. Suppose we have n processes P1, P2, . . . , Pn, each

competing for access to a single shared database. We imagine time as being divided into

discrete rounds. The database has the property that it can be accessed by at most one

process in a single round; if two or more processes attempt to access it simultaneously, then

all processes are “locked out” for the duration of that round. So while each process wants

12.1. A FIRST APPLICATION: CONTENTION RESOLUTION 399

to access the database as often as possible, it’s pointless for all of them to try accessing it in

every round; then everyone will be perpetually locked out. What’s needed is a way to divide

up the rounds among the processes in an equitable fashion, so that all processes get through

to the database on a regular basis.

If it is easy for the processes to communicate with each other, than one can imagine

all sorts of direct means for resolving the contention. But suppose that the processes can’t

communicate with each other at all; how then can they work out a protocol under which

they manage to “take turns” in accessing the database?

Randomization provides a natural protocol for this problem, which we can specify simply

as follows. For some number p > 0 that we’ll determine shortly, each process will attempt

to access the database in each round with probability p, independently of the decisions of

the other processes. So if exactly one process decides to make the attempt in a given round,

it will succeed; if two or more try, then they will all be locked out; and if none try, then

the round is in a sense “wasted.” This type of strategy, in which each of a set of identical

processes randomizes its behavior, is the core of the symmetry-breaking paradigm that we

mentioned initially: if all the processes operated in lock-step, repeatedly trying to access the

database at the same time, there’d be no progress; but by randomizing, they “smooth out”

the contention.

Some basic events. When confronted with a probabilistic system like this, a good first

step it to write down some basic events and think about their probabilities. Here’s a first

event to consider: for a given process Pi and a given round t, let A[i, t] denote the event

that Pi attempts to access the database in round t. We know that each process attempts

an access in each round with probability p, so the probability of this event, for any i and t,

is Pr [A[i, t]] = p. For every event, there is also a complementary event, indicating that the

event did not occur; here we have the complementary event A[i, t] that Pi does not attempt

to access the database in round t, with probability

Pr
[

A[i, t]
]

= 1− Pr [A[i, t]] = 1− p.

Our real concern is whether a process succeeds in accessing the database in a given round.

Let S[i, t] denote this event. Clearly the process Pi must attempt an access in round t in

order to succeed. Indeed, succeeding is equivalent to the following: process Pi attempts

to access the database in round t, and each other process does not attempt to access the

database in round t. Thus, S[i, t] is equal to the intersection of the event A[i, t] with the all

the complementary events A[j, t], for j 6= i:

S[i, t] = A[i, t] ∩




⋂

j 6=i

A[j, t]



 .

400 CHAPTER 12. RANDOMIZED ALGORITHMS

All the events in this intersection are independent, by the definition of the contention-

resolution protocol. Thus, to get the probability of S[i, t], we can multiply the probabilities

of all the events in the intersection:

Pr [S[i, t]] = Pr [A[i, t]] ·
∏

j 6=i

Pr
[

A[j, t]
]

= p(1− p)n−1.

We now have a nice, closed-form expression for the probability that Pi succeeds in ac-

cessing the database in round t; we can now ask how to set p so that this success probability

is maximized. Observe first that the success probability is 0 for the extreme cases p = 0 and

p = 1 (these correspond to the extreme case in which processes never bother attempting,

and the opposite extreme case in which every process tries accessing the database in every

round, so that everyone is locked out). The function f(p) = p(1−p)n−1 is positive for values

of p strictly between 0 and 1, and its derivative f ′(p) = (1− p)n−1 − (n− 1)p(1− p)n−2 has

a single zero at the value p = 1/n, where the maximum is achieved. Thus, we can maximize

the success probability by setting p = 1/n. (Notice that p = 1/n is a natural intuitive choice

as well, if one wants exactly one process to attempt an access in any round.)

When we set p = 1/n, we get Pr [S[i, t]] = 1
n

(

1− 1
n

)n−1
. It’s worth getting a sense for

the asymptotic value of this expression, with the help of the following extremely useful fact

from basic calculus.

(12.1) (a) The function
(

1− 1
n

)n
converges monotonically from 1

4
up to 1

e
as n increases

from 2.

(b) The function
(

1− 1
n

)n−1
converges monotonically from 1

2
down to 1

e
as n increases

from 2.

Using (12.1) , we see that 1/(en) ≤ Pr [S[i, t]] ≤ 1/(2n), and hence Pr [S[i, t]] is asymp-

totically equal to Θ(1/n).

Waiting for a particular process to succeed. Let’s consider this protocol with the

optimal value p = 1/n for the access probability. Suppose we are interested in how long

it will take process Pi to succeed in accessing the database at least once. We see from the

above calculation that the probability of its succeeding in any one round is not very good,

if n is reasonably large. How about if we consider multiple rounds?

Let F [i, t] denote the “failure event” that process Pi does not succeed in any of the

rounds 1 through t. This is clearly just the intersection of the complementary events S[i, r]

for r = 1, 2, . . . , t. Moreover, since each of these events is independent, we can compute the

probability of F [i, t] by multiplication:

Pr [F [i, t]] = Pr

[

t
⋂

r=1

S[i, r]

]

=
t
∏

r=1

Pr
[

S[i, r]
]

=

[

1− 1

n

(

1− 1

n

)n−1
]t

.

12.1. A FIRST APPLICATION: CONTENTION RESOLUTION 401

This calculation does give us the value of the probability; but at this point we’re in danger

of ending up with some extremely complicated-looking expressions, and so it’s important

to start thinking asymtotically. Recall that the probability of success was Θ(1/n) after one

round; specifically, it was bounded between 1/(en) and 1/(2n). Using the expression above,

we have

Pr [F [i, t]] =
t
∏

r=1

Pr
[

S[i, r]
]

≤
(

1− 1

en

)t

.

Now, we notice that if we set t = en, then we have an expression that be can plugged directly

into fact (12.1) . Of course en will not be an integer; so we can take t = dene and write:

Pr [F [i, t]] ≤
(

1− 1

en

)dene

≤
(

1− 1

en

)en

≤ 1

e
.

This is a very compact and useful asymptotic statement: the probability that process Pi

does not succeed in any of rounds 1 through dene is upper-bounded by the constant e−1,

independent of n. Now, if we increase t by some fairly small factors, the probability that Pi

does not succeed in any of rounds 1 through t drops precipitously: if we set t = dene·(c ln n),

then we have

Pr [F [i, t]] ≤
(

1− 1

en

)t

=

(

(

1− 1

en

)dene
)c ln n

≤ e−c ln n = n−c.

So asymptotically, we can view things as follows. After Θ(n) rounds, the probability

that Pi has not yet succeeded is bounded by a constant; and between then and Θ(n ln n) this

probability drops to a quantity that is extremely small — bounded by an inverse polynomial

in n.

Waiting for all processes to get through. Finally, we’re in a position to ask the

question that was implicit in the overall set-up: how many rounds must elapse before there’s

a high probability that all processes will have succeeded in accessing the database at least

once?

To address this, we say that the protocol “fails” after t rounds if some process has not

yet succeeded in accessing the database. Let Ft denote the event that the protocol fails after

t rounds; the goal is to find a reasonably small value of t for which Pr [Ft] is small.

The event Ft occurs if and only if one of the events F [i, t] occurs; so we can write

Ft =
n
⋃

i=1

F [i, t].

Previously we considered intersections of independent events, which were very simple to

work with; here, on the other hand, we have a union of events that are not independent.

Probabilities of unions like this can be very hard to compute exactly, and in many settings

it is enough to analyze them using a simple Union Bound, which says that the probability

of a union of events is upper-bounded by the sum of their individual probabilities:

402 CHAPTER 12. RANDOMIZED ALGORITHMS

(12.2) (The Union Bound.) Given events E1, E2, . . . , En, we have

Pr

[

n
⋃

i=1

Ei

]

≤
n
∑

i=1

Pr [Ei] .

Note that this is not an equality; but the upper bound is good enough when — as here —

the union on the left-hand side represents a “bad event” that we’re trying to avoid, and we

want a bound on its probability in terms of consituent “bad events” on the right-hand side.

For the case at hand, recall that Ft =
⋃n

i=1F [i, t], and so

Pr [Ft] ≤
n
∑

i=1

Pr [F [i, t]] .

The expression on the right-hand side is a sum of n terms, each with the same value; so to

make the probability of Ft small, we need to make each of the terms on the right significantly

smaller than 1/n. From our earlier discussion, we see that choosing t = Θ(n) will not be

good enough, since then each term on the right is only bounded by a constant. If we choose

t = dene · (c ln n), then we have Pr [F [i, t]] ≤ n−c for each i, which is what we want. Thus,

in particular, taking t = 2dene ln n gives us

Pr [Ft] ≤
n
∑

i=1

Pr [F [i, t]] ≤ n · n−2 = n−1,

and so all processes succeed in accessing the database within t rounds with probability at

least 1− n−1.

An interesting thing to notice is that if we had chosen a value of t equal to qn ln n

for a very small value of q (rather than the coefficient 2e that we actually used), then we

would have gotten an upper bound for Pr [F [i, t]] that was larger than n−1, and hence a

corresponding upper bound for the overall failure probability Pr [Ft] that was larger than 1

— in other words, a completely worthless bound. Yet, as we saw, by choosing larger and

larger values for the coefficient q, we can drive the upper bound on Pr [Ft] down to n−c for

any constant c we want; and this is really a very tiny upper bound. So in a sense, all the

“action” in the Union Bound takes place rapidly in the period when t = Θ(n lnn); as we vary

the hidden constant inside the Θ(·), the Union Bound goes from providing no information

to giving an extremely strong upper bound on the probability.

We can ask whether this is simply an artifact of using the Union Bound for our upper

bound, or whether it’s intrinsic to the process we’re observing. Although we won’t do

the (somewhat messy) calculations here, one can show that when t is a small constant

times n lnn, there really is a sizable probability that some process has not yet succeeded in

accessing the database. So a rapid falling-off in the value of Pr [Ft] genuinely does happen

over the range t = Θ(n lnn). For this problem, as in many problems of this flavor, we’re

really identifying the asymptotically “correct” value of t despite our use of the seemingly

weak Union Bound.

12.2. FINDING THE GLOBAL MINIMUM CUT 403

12.2 Finding the global minimum cut

Randomization naturally suggested itself in the previous example, since we were assuming a

model with many processes that could not directly communicate. We now look at a problem

on graphs for which a randomized approach comes as somewhat more of a surprise, since it

is a problem for which perfectly reasonable deterministic algorithms exist as well.

Given an undirected graph G = (V, E), we define a cut of G to be a partition of V into

two non-empty sets A and B. Earlier, when we looked at network flows, we worked with

the closely related definition of an s-t cut: there, given a directed graph G = (V, E) with

distinguished source and sink nodes s and t, an s-t cut was defined to be a partition of V

into sets A and B such that s ∈ A and t ∈ B. Our definition now is slightly different, since

the underlying graph is now undirected, and there is no source or sink.

For a cut (A, B) in an undirected graph G, we define the size of (A, B) to be the number

of edges with one end in A and the other in B. A global minimum cut (or “global min-cut”

for short) is a cut of minimum size. The term “global” here is meant to connote that any

cut of the graph is allowed; there is no source or sink. We first check that network flow

techniques are indeed to sufficient to find a global min-cut.

(12.3) There is a polynomial-time algorithm to find a global min-cut in an undirected

graph G.

Proof. We start from the similarity between cuts in undirected graphs and s-t cuts in

directed graphs — and the fact that we know how to find the latter optimally.

So given an undirected graph G = (V, E), we need to transform it so that there are

directed edges, and so that there is a source and sink. We first replace every undirected edge

e = (u, v) ∈ E with two oppositely oriented directed edges, e′ = (u, v) and e′′ = (v, u), each

of capacity 1. Let G′ denote the resulting directed graph.

Now suppose we pick two arbitrary nodes s, t ∈ V , and find the minimum s-t cut in G′.

It is easy to check that if (A, B) is this minimum cut in G′, then (A, B) is also a cut of

minimum size in G among all those that separate s from t. But we know that the global

min-cut in G must separate s from something, since both sides A and B are non-empty, and

s belongs to only one of them. So we fix any s ∈ V , and compute the minimum s-t cut in

G′ for every other node t ∈ V−{s}. This is n− 1 directed minimum cut computations, and

the best among these will be a global min-cut of G.

The algorithm in (12.3) gives the strong impression that finding a global min-cut in

an undirected graph is some sense a harder problem than finding a minimum s-t cut in a

flow network — we had to invoke a subroutine for the latter problem n − 1 times in our

method for solving the former. But it turns out that this is just an illusion. A sequence

of increasingly simple algorithms in the late 1980’s and early 1990’s showed that global

404 CHAPTER 12. RANDOMIZED ALGORITHMS

a

b

c

d

{a,b} c

d

{a,b,c}

d

Figure 12.1: The Contraction Algorithm applied to a four-node input graph.

min-cuts in undirected graphs could actually be computed just as efficiently as s-t cuts or

even more so, and by techniques that didn’t require augmenting paths or even a notion of

flow. The high point of this line of work came with David Karger’s discovery in 1992 of the

Contraction Algorithm, a randomized method that is qualitatively simpler than all previous

algorithms for global min-cuts — indeed it is sufficiently simple that, on a first impression,

it is very hard to believe that it actually works.

Here we describe the Contraction Algorithm in its simplest form. This version, while

polynomial-time, is not among the most efficient algorithms for global min-cuts. However,

subsequent optimizations to the algorithm have given it a much better running time.

The Contraction Algorithm works with a connected multigraph G = (V, E) — this is an

undirected graph that is allowed to have multiple “parallel” edges between the same pair of

nodes. It begins by choosing an edge e = (u, v) of G uniformly at random and contracting

it. This means we produce a new graph G′ in which u and v have been identified into a

single new node w; all other nodes keep their identity. Edges that had one end equal to u

and the other equal to v are deleted from G′. Each other edge e is preserved in G′, but if

one of its ends was equal to u or v, then this end is updated to be equal to the new node w.

See Figure 12.1 for an example of this process. Note that even if G had at most one edge

between any two nodes, G′ may end up with parallel edges.

The Contraction Algorithm then continues recursively on G′, choosing an edge uniformly

at random and contracting it. As these recursive calls proceed, the constituent vertices of

G′ should be viewed as super-nodes: each super-node w corresponds to the subset S(w) ⊆ V

that has been “swallowed up” in the contractions that produced w. The algorithm terminates

when it reaches a graph G′ that has only two super-nodes nodes v1 and v2 (presumably with

a number of parallel edges between them). Each of these super-nodes vi has a corresponding

subset S(vi) ⊆ V consisting of the nodes that have been contracted into it, and these two

sets S(v1) and S(v2) form a partition of V . We output (S(v1), S(v2)) as the cut found by

12.2. FINDING THE GLOBAL MINIMUM CUT 405

the algorithm.

The Contraction Algorithm applied to a multigraph G = (V, E):
For each node v, we will record

the set S(v) of nodes that have been contracted into v.
Initially S(v) = {v} for each v.

If G has two nodes v1 and v2, then return the cut (S(v1), S(v2)).
Else choose an edge e = (u, v) of G uniformly at random.

Let G′ be the graph resulting from the contraction of e,
with new node zuv replacing u and v.

Define S(zuv) = S(u) ∪ S(v).
Apply the Contracition Algorithm recursively to G′.

Endif

The algorithm is making random choices, so there is some probability that it will succeed

in finding a global min-cut, and some probability that it won’t. One might imagine at first

that the probability of success is exponentially small — after all, there are exponentially

many possible cuts of G; what’s favoring the minimum cut in the process? But we’ll show

first that in fact the success probability is only polynomially small. It will then follow that

by running the algorithm a polynomial number of times and returning the best cut found in

any run, we can actually produce a global min-cut with high probability.

(12.4) The Contraction Algorithm returns a global min-cut of G with probability at least

1/
(

n
2

)

.

Proof. We focus on a global min-cut (A, B) of G, and suppose it has size k; in other words,

there is a set F of k edges with one end in A and the other in B. We want to give a lower

bound on the probability that the Contraction Algorithm returns the cut (A, B).

Consider what could go wrong in the first step of the Contraction Algorithm — the

problem would be if an edge in F were contracted. For then, a node of A and a node of B

would get thrown together in the same super-node, and (A, B) could not be returned as the

output of the algorithm. Conversely, if an edge not in F is contracted, then there is still a

chance that (A, B) could be returned.

So what we want is an upper bound on the probability that an edge in F is contracted, and

for this we need a lower bound on the size of E. Notice that if any node v had degree less than

k, then the cut ({v}, V−{v}) would have size less than k, contradicting our assumption that

(A, B) is a global min-cut. Thus, every node in G has degree at least k, and so |E| ≥ 1
2
kn.

Hence, the probability that an edge in F is contracted is at most

k
1
2
kn

=
2

n
.

406 CHAPTER 12. RANDOMIZED ALGORITHMS

Now consider the situation after j iterations, when there are n − j super-nodes in the

current graph G′, and suppose that no edge in F has been contracted yet. Every cut of G′

is a cut of G, and so there are at least k edges incident to every super-node of G′. Thus, G′

has at least 1
2
k(n − j) edges, and so the probability that an edge of F is contracted in the

next iteration j + 1 is at most
k

1
2
k(n− j)

=
2

n− j
.

The cut (A, B) will actually be returned by the algorithm if no edge of F is contracted in

any of iterations 1, 2, . . . , n−2. If we write Ej for the event that an edge of F is not contracted

in iteration j, then we have shown Pr [E1] ≥ 1 − 2/n and Pr [Ej+1 | E1 ∩ E2 · · · ∩ Ej] ≥ 1 −
2/(n− j). We are interested in lower-bounding the quantity Pr [E1 ∩ E2 · · · ∩ En−2], and we

can check by unwinding the formula for conditional probability that this is equal to

Pr [E1] · Pr [E2 | E1] · · ·Pr [Ej+1 | E1 ∩ E2 · · · ∩ Ej] · · ·Pr [En−2 | E1 ∩ E2 · · · ∩ En−3]

≥
(

1− 2

n

)(

1− 2

n− 1

)

· · ·
(

1− 2

n− j

)

· · ·
(

1− 2

3

)

=
(

n− 2

n

)(

n− 3

n− 1

)(

n− 4

n− 2

)

· · ·
(

2

4

)(

1

3

)

=
2

n(n− 1)
= 1/

(

n

2

)

.

So we now know that a single run of the Contraction Algorithm fails to find a global

min-cut with probability at most (1 − 1/
(

n
2

)

). This number is very close to 1, of course,

but we can “amplify” our probability of success simply by repeatedly running the algorithm,

with different random choices, and taking the best cut we find. By fact (12.1) , if we run

the algorithm
(

n
2

)

times, then the probability we have failed to find a global min-cut in any

run is at most
(

1− 1/

(

n

2

))(n

2)
≤ 1

e
.

And it’s easy to drive the failure probability below 1/e with further repetitions: if we run

the algorithm
(

n
2

)

ln n times, then the probability we fail to find a global min-cut is at most

e− lnn = 1/n.

The overall running time required to get a high probability of success is polynomial in

n, since each run of the Contraction Algorithm takes polynomial time, and we run it a

polynomial number of times. Its running time will be fairly large compared to the best

network flow techniques, since we perform Θ(n2) iterations, and each takes at least Ω(m)

time. We have chosen to describe this version of the Contraction Algorithm since it is the

simplest and most elegant; and it has been shown that some clever optimizations to the way

in which multiple runs are performed can improve the running time considerably.

12.3. RANDOM VARIABLES AND THEIR EXPECTATIONS 407

The number of global minimum cuts. The analysis of the Contraction Algorithm

provides a surprisingly simple answer to the following question: given an undirected graph

G = (V, E) on n nodes, what is the maximum number of global min-cuts it can have (as a

function of n)?

For a directed flow network, it’s easy to see that the number of minimum s-t cuts can

be exponential in n. For example, consider a directed graph with nodes s, t, v1, v2, . . . , vn,

and unit-capacity edges (s, vi) and (vi, t) for each i. Then s together with any subset of

{v1, v2, . . . , vn} will constitute the source side of a minimum cut, and so there are 2n minimum

s-t cuts.

But for global min-cuts in an undirected graph, the situation looks quite different — if one

spends some time trying out examples, one finds that the n-node cycle has
(

n
2

)

global min-

cuts (obtained by cutting any two edges), and it is not clear how to construct an undirected

graph with more.

We know show how the analysis of the Contraction Algorithm settles this question im-

mediately, establishing that the n-node cycle is indeed an extreme case.

(12.5) An undirected graph G = (V, E) on n nodes has at most
(

n
2

)

global min-cuts.

Proof. The key point is that the proof of (12.4) actually established more than was claimed.

Suppose G is a graph, and let C1, . . . , Cr denote all its global min-cuts. Let Ei denotes the

event that Ci is returned by the Contraction Algorithm, and let E = ∪r
i=1Ei denote the event

that the algorithm returns any global min-cut.

Then although (12.4) simply asserts that Pr [E] ≥ 1/
(

n
2

)

, its proof actually shows that for

each i, we have Pr [Ei] ≥ 1/
(

n
2

)

. Now, each pair of events Ei and Ej are disjoint — since only

one cut is returned by any given run of the algorithm, so by the Union Bound for disjoint

events (12.26) , we have

Pr [E] = Pr [∪r
i=1Ei] =

r
∑

i=1

Pr [Ei] ≥ r/

(

n

2

)

.

But clearly Pr [E] ≤ 1, and so we must have r ≤
(

n
2

)

.

12.3 Random Variables and their Expectations

Thus far, our analysis of randomized algorithms and processes has been based on identifying

certain “bad events,” and bounding their probabilities. This is a qualitative type of analysis,

in the sense that the algorithm either succeeds or it doesn’t. A more quantitative style of

analysis would consider certain parameters associated with the behavior of the algorithm

— for example its running time, or the quality of the solution it produces — and seek

to determine the expected size of these parameters over the random choices made by the

408 CHAPTER 12. RANDOMIZED ALGORITHMS

algorithm. In order to make such analysis possible, we need the fundamental notion of a

random variable.

Given a probability space defined over a sample space Ω, A random variable is a function

X : Ω → N such that for each natural number j, the set X−1(j) = {ω : X(ω) = j} is an

event. Thus we can write Pr [X = j] as loose shorthand for Pr [X−1(j)]; it is because we can

ask about X’s probability of taking a given value that we think of it as a “random variable.”

Given a random variable X, we are often interested in determining its expectation — the

“average value” assumed by X. We define this as

E [X] =
∞
∑

j=0

j · Pr [X = j] ,

declaring this to have the value∞ if the sum diverges. Thus, for example, if X takes each of

the values in {1, 2, . . . , n} with probability 1/n, then E [X] = 1(1/n)+2(1/n)+· · ·+n(1/n) =
(

n+1
2

)

/n = (n + 1)/2.

Here’s a more useful example, in which we see how an appropriate random variable lets us

talk about something like the “running time” of a simple random process. Suppose we have a

coin that comes up heads with probability p > 0, and tails with probability 1−p. Different

flips of the coin have independent outcomes. If we flip the coin until we first get a heads,

what’s the expected number of flips we will perform? To answer this, we let X denote the

random variable equal to the number of flips performed. We have Pr [X = j] = (1− p)j−1p:

for the process to take exactly j steps, the first j − 1 flips must come up tails, and the j th

must come up heads. Now applying the definition, we have

E [X] =
∞
∑

j=0

j · Pr [X = j] =
∞
∑

j=1

j(1− p)j−1p =
p

1− p

∞
∑

j=1

j(1− p)j =
p

1− p
· (1− p)

p2
=

1

p
.

Thus we get the following intuitively sensible result:

(12.6) If we repeatedly perform independent trials of an experiment, each of which suc-

ceeds with probability p > 0, then expected number of trials we need to perform before the

first success is 1/p.

Linearity of Expectation. In previous lectures, we broke events down into unions of

much simpler events, and worked with the probabilities of these simpler events. This is

a powerful technique when working with random variables as well, and it is based on the

principle of linearity of expectation.

(12.7) Linearity of Expectation. Given two random variables X and Y defined over the

same probability space, we can define X +Y to be the random variable equal to X(ω)+Y (ω)

on a sample point ω ∈ Ω. For any X and Y , we have

E [X + Y] = E [X] + E [Y] .

12.3. RANDOM VARIABLES AND THEIR EXPECTATIONS 409

We omit the proof, which is not difficult. Much of the power of (12.7) comes from the fact

that it applies to the sum of any random variables; no restrictive assumptions are needed.

As a result, if we need to compute the expectation of a complicated random variable X, we

can first write it as a sum of simpler random variables X = X1 + X2 + · · ·+ Xn, compute

each E [Xi], and then determine E [X] =
∑

E [Xi]. We now look at some examples of this

principle in action.

Guessing Cards

Memoryless Guessing. To amaze your friends, you have them shuffle a deck of 52 cards

and then turn over one card at a time. Before each card is turned over, you predict its

identity. Unfortunately, you don’t have any particular psychic abilities — and you’re not so

good at remembering what’s been turned over already — so your strategy is to simply guess

a card uniformly at random from the full deck each time. On how many predictions do you

expect to be correct?

Let’s work this out for the more general setting in which the deck has n distinct cards,

using X to denote the random variable equal to the number of correct predictions. A surpris-

ingly effortless way to compute X is to define the random variable Xi, for i = 1, 2, . . . , n, to be

equal to 1 if the ith prediction is correct, and 0 otherwise. Notice that X = X1+X2+· · ·+Xn,

and

E [Xi] = 0 · Pr [Xi = 0] + 1 · Pr [Xi = 1] = Pr [Xi = 1] =
1

n
.

It’s worth pausing to note a useful fact that is implicitly demonstrated by the above calcula-

tion: if Z is any random variable that only takes the values 0 or 1, then E [Z] = Pr [Z = 1].

Since E [Xi] = 1
n

for each i, we have

E [X] =
n
∑

i=1

E [Xi] = n
(

1

n

)

= 1.

Thus,

(12.8) The expected number of correct predictions under the memoryless guessing strategy

is 1, independent of the number of cards n.

Trying to compute E [X] directly from the definition
∑∞

j=0 j · Pr [X = j] would be much

more painful; even working out Pr [X = j] for various values of j is not immediate. A

significant amount of complexity is hidden away in the seemingly innocuous statement of

(12.7) .

410 CHAPTER 12. RANDOMIZED ALGORITHMS

Guessing with Memory. Now let’s consider a second scenario. Your psychic abilities

have not developed any further since last time, but you have become very good at remem-

bering which cards have already been turned over. Thus, when you predict the next card

now, you only guess uniformly from among the cards not yet seen. How many correct pre-

dictions do you expect to make with this strategy?

Again, let the random variable Xi take the value 1 if the ith prediction is correct, and 0

otherwise. In order for the ith prediction to be correct, you need only guess the correct one

out of n− i + 1 remaining cards; hence

E [Xi] = Pr [Xi = 1] =
1

n− i + 1
,

and so we have

Pr [X] =
n
∑

i=1

E [Xi] =
n
∑

i=1

1

n− i + 1
=

n
∑

i=1

1

i
.

This last expression
∑n

i=1
1
i

= 1 + 1
2

+ 1
3

+ · · · + 1
n

is called the nth harmonic number, and

is denoted Hn. We saw it earlier in the course, when we studied approximation algorithms;

there, we showed how it closely shadows the value of
∫ n+1
1 dx/x = ln(n+1). For our purposes

here, we re-state the basic bound on Hn as follows.

(12.9) ln(n + 1) < Hn < 1 + ln n, and more loosely, Hn = Θ(log n).

Thus, once you are able to remember the cards you’ve already seen, the expected number

of correct predictions increases significantly above 1.

(12.10) The expected number of correct predictions under the guessing strategy with

memory is Hn = Θ(log n).

12.4 A Randomized Approximation Algorithm for MAX-

3-SAT

When we studied NP-completeness, a core problem was 3-SAT: Given a set of clauses

C1, . . . , Ck, each of length 3, over a set of variables X = {x1, . . . , xn}, does there exist a

satisfying truth assignment?

Intuitively, we can imagine such a problem arising in a system that tries to decide the

truth or falsehood of statements about the world (the variables {xi}), given pieces of infor-

mation that relate them (the clauses {Cj}). Now, the world is a fairly contradictory place,

and if our system gathers enough information, it could well end up with a set of clauses that

has no satisfying truth assignment. What then?

A natural approach, if we can’t find a truth assignment that satisfies all clauses, is

to turn the 3-SAT instance into an optimization problem: given the set of input clauses

12.4. A RANDOMIZED APPROXIMATION ALGORITHM FOR MAX-3-SAT 411

C1, . . . , Ck, find a truth assignment that satisfies as many as possible. We’ll call this the

Maximum 3-Satisfiability problem (or MAX 3-SAT for short). Of course, this is an NP-hard

optimization problem, since it’s NP-complete to decide whether the maximum number of

simultaneously satisfiable clauses is equal to k. Let’s see what can be said about polynomial-

time approximation algorithms.

A remarkably simple randomized algorithm turns out to give a strong performance guar-

antee for this problem. Suppose we set each variable x1, . . . , xn independently to 0 or 1

with probability 1
2

each. What is the expected number of clauses satisfied by such a random

assignment?

Let Z denote the random variable equal to the number of satisfied clauses. As in the

previous section, let’s decompose Z into a sum of random variables that each take the

value 0 or 1; specifically, let Zi = 1 if the clause Ci is satisfied, and 0 otherwise. Thus,

Z = Z1 + Z2 + · · · + Zk. Now, E [Zi] is equal to the probability that Ci is satisfied, and

this can be computed easily as follows. In order for Ci not to be satisfied, each of its three

variables must be assigned the value that fails to make it true; since the variables are set

independently, the probability of this is (1
2
)3 = 1

8
. Thus, clause Ci is satisfied with probability

1− 1
8

= 7
8
, and so E [Zi] = 7

8
.

Using linearity of expectation, we see that the expected number of satisfied clauses is

E [Z] = E [Z1] + E [Z2] + · · · + E [Zk] = 7
8
k. Since no assignment can satisfy more than k

clauses, we have the following guarantee.

(12.11) The expected number of clauses satisfied by a random assignment is within an

approximation factor 7
8

of optimal.

But if we look at what really happened in the (admittedly simple) analysis of the random

assignment, it’s clear that something stronger is going on. For any random variable, there

must be some point at which it assumes some value at least as large as its expectation. We’ve

shown that for every instance of 3-SAT, a random truth assignment satisfies a 7
8

fraction of

all clauses in expectation; so, in particular, there must exist a truth assignment that satisfies

a number of clauses that is at least as large as this expectation.

(12.12) For every instance of 3-SAT, there is a truth assignment that satisfies at least

a 7
8

fraction of all clauses.

There is something genuinely surprisingly about the statement of (12.12) . We have

arrived at a non-obvious fact about 3-SAT — the existence of an assignment satisfying

many clauses — whose statement has nothing to do with randomization; but we have done

so by a randomized construction. And in fact, the randomized construction provides what is

quite possibly the simplest proof of (12.12). This a fairly widespread principle in the area of

combinatorics, that one can show the existence of some structure by showing that a random

412 CHAPTER 12. RANDOMIZED ALGORITHMS

construction produces it with positive probability. Constructions of this sort are said to be

applications of the probabilistic method.

Here’s an cute but minor application of (12.12) : Every instance of 3-SAT with at most

seven clauses is satisfiable. Why? If the instance has k ≤ 7 clauses, then (12.12) implies

that there is an assignment satisfying at least 7
8
k of them. But when k ≤ 7, it follows that

7
8
k > k− 1; and since the number of clauses satisfied by this assignment must be an integer,

it must be equal to k. In other words, all clauses are satisfied.

Waiting to find a good assignment. Suppose we aren’t satisfied with a “one-shot”

algorithm that produces a single assignment with a large number of satisfied clauses in

expectation. Rather, we’d like a randomized algorithm whose expected running time is

polynomial, and which is guaranteed to output a truth assignment satisfying at least a 7
8

fraction of all clauses.

A simple way to do this is to generate random truth assignments until one of them

satisfies at least 7
8
k clauses. We know that such an assignment exists, by (12.12) ; but how

long will it take until we find one by random trials?

This is a natural place to apply the waiting time bound we derived in (12.6) . If we can

show that the probability a random assignment satisfies at least 7
8
k clauses is at least p, then

the expected number of trials performed by the algorithm is 1/p. So in particular, we’d like

to show that this quantity p is at least as large as an inverse polynomial in n and k.

For j = 0, 1, 2, . . . , k, let pj denote the probability that a random assignment satisfies

exactly j clauses. So the expected number of clauses satisfied, by the definition of expecta-

tion, is equal to
∑k

j=0 jpj; and by the analysis above, this is equal to 7
8
k. We are interested

in the quantity p =
∑

j≥7k/8

pj. How can we use the lower bound on the expected value to give

a lower bound on this quantity?

We start by writing

7

8
k =

k
∑

j=0

jpj =
∑

j<7k/8

jpj +
∑

j≥7k/8

jpj.

Now, let k′ denote the largest natural number that is strictly smaller than 7
8
k. The right-

hand side of the above equation only increases if we replace the terms in the first sum by

k′pj and the terms in the second sum by kpj. We also observe that p =
∑

j<7k/8

pj = 1− p,

and so
7

8
k ≤

∑

j<7k/8

k′pj +
∑

j≥7k/8

kpj = k′(1− p) + kp ≤ k′ + kp

and hence kp ≥ 7
8
k − k′. But 7

8
k − k′ ≥ 1

8
, since k′ is a natural number strictly smaller than

12.5. COMPUTING THE MEDIAN: RANDOMIZED DIVIDE-AND-CONQUER 413

7
8

times another natural number, and so

p ≥
7
8
k − k′

k
≥ 1

8k
.

This was our goal — to get a lower bound on p — and so by the waiting time bound (12.6)

, we see that the expected number of trials needed to find the satisfying assignment we want

is at most 8k.

(12.13) There is a randomized algorithm with polynomial expected running time that is

guaranteed to produce a truth assignment satisfying at least a 7
8

fraction of all clauses.

12.5 Computing the Median: Randomized Divide-and-

Conquer

We’ve seen the divide-and-conquer paradigm for designing algorithms at various earlier points

in the course. Divide-and-conquer often works well in conjunction with randomization, and

we illustrate this by giving a divide-and-conquer algorithm to compute the median of n

numbers. The “divide” step here is performed using randomization; consequently, we will

use expectations of random variables to analyze the time spent on recursive calls.

Suppose we are given a set of n numbers S = {a1, a2, . . . , an}. Their median is the number

that would be in the middle position if we were to sort them. There’s an annoying technical

difficulty if n is even, since then there is no “middle position”; thus, we define things precisely

as follows: the median of S = {a1, a2, . . . , an} is equal to the kth largest element in S, where

k = (n + 1)/2 if n is odd, and k = n/2 if n is even. In what follows, we’ll assume for the

sake of simplicity that all the numbers are distinct. Without this assumption, the problem

becomes notationally more complicated, but no new ideas are brought into play.

It is clearly easy to compute the median in time O(n log n) if we simply sort the numbers

first. But if one begins thinking about the problem, it’s far from clear why sorting is necessary

for computing the median, or even why Ω(n log n) time is necessary. In fact, we’ll show how

a simple randomized approach, based on divide-and-conquer, yields an expected running

time of O(n).

The first key step toward getting an expected linear running time is to move from median-

finding to the more general problem of selection. Given a set of n numbers S and a number

k between 1 and n, consider the function Select(S, k) that returns the kth largest ele-

ment in S. As special cases, Select includes the problem of finding the median of S via

Select(S, n/2) or Select(S, (n + 1)/2); it also includes the easier problems of finding the

minimum (Select(S, 1)) and the maximum (Select(S, n)). Our goal is to design an algo-

rithm that implements Select so that it runs in expected time O(n).

414 CHAPTER 12. RANDOMIZED ALGORITHMS

The basic structure of the algorithm implementing Select is as follows. We choose an

element ai ∈ S, the “splitter,” and form the sets S− = {aj : aj < ai} and S+ = {aj : aj > ai}.
We can then determine which of S− or S+ contains the kth largest element, and iterate only

on this one. Without specifying yet how we plan to choose the splitter, here’s a more concrete

description of how we form the two sets and iterate.

Select(S,k):
Choose a splitter ai ∈ S.
For each element aj of S

Put aj in S− if aj < ai.

Put aj in S+ if aj > ai.

End

If |S−| = k − 1 then

The splitter ai was in fact the desired answer.

Else if |S−| ≥ k then

The kth largest element lies in S−.

Recursively call Select(S−, k)
Else suppose |S−| = ` < k − 1.

The kth largest element lies in S+.

Recursively call Select(S+, k − 1− `)
Endif

Observe that the algorithm is always called recursively on a strictly smaller set, so it must

terminate. Also, observe that if |S| = 1, then we must have k = 1, and indeed the single

element in S will be returned by the algorithm. Finally, from the choice of which recursive

call to make, it’s clear by induction that the right answer will be returned when |S| > 1 as

well. Thus we have

(12.14) Regardless of how the splitter is chosen, the algorithm above returns the kth

largest element of S.

Now let’s consider the running time of Select. Assuming we can select a splitter in linear

time, the rest of the algorithm takes linear time plus the time for the recursive call. But how

is the running time of the recursive call affected by the choice of the splitter? Essentially, it’s

important that the splitter significantly reduce the size of the set being considered, so that

we don’t keep making passes through large sets of numbers many times. So a good choice

of splitter should produce sets S− and S+ that are approximately equal in size.

For example, if we could always choose the median as the splitter, then we could bound

the running as follows. Let cn be the running time for Select, not counting the time for the

recursive call. Then with medians as splitters, the running time T (n) would be bounded by

the recurrence T (n) ≤ T (n/2) + cn. Unwinding this recursively, we get

T (n) ≤ cn + cn/2 + cn/4 + cn/8 + · · · ≤ 2cn,

12.5. COMPUTING THE MEDIAN: RANDOMIZED DIVIDE-AND-CONQUER 415

since the sum in the middle is a geometric series that converges. Of course, hoping to be

able to use the median as the splitter is rather circular, since the median is what we want

to compute in the first place! But, in fact, we see that any “well-centered” element can

serve as a good splitter: if we had a way to choose splitters ai such that there were at least

εn elements both larger and smaller than ai, then the size of the sets in the recursive call

would shrink by a factor of at least (1− ε) each time. Thus, the running time T (n) would

be bounded by the recurrence T (n) ≤ T ((1− ε)n) + cn. Unwinding this, we get

T (n) ≤ cn + (1− ε)cn + (1− ε)2cn + · · · =
[

1 + (1− ε) + (1− ε)2 + · · ·
]

cn ≤ 1

ε
· cn,

since again we have a convergent geometric series.

Indeed, the only thing to really beware of is a very “off-center” splitter. For example, if

we always chose the minimum element as the splitter, then we may end up with a set in the

recursive call that’s only one element smaller than we had before. In this case, the running

time T (n) would be bounded by the recurrence T (n) ≤ T (n− 1) + cn. Unwinding this, we

see that there’s a problem:

T (n) ≤ cn + c(n− 1) + c(n− 2) + · · · = cn(n + 1)

2
= Ω(n2).

Choosing a “well-centered” splitter — in the sense defined above — is certainly similar

in flavor to our original problem of choosing the median; but the situation is really not so

bad, since any well-centered splitter will do. We observe that a fairly large fraction of the

numbers are reasonably well-centered, and so we will be likely to end up with one simply by

choosing a splitter uniformly at random. The analysis of the running time with a random

splitter is intuitively based on this idea; we expect the size of the set under consideration to

go down by a fixed constant fraction every iteration, so we should get a convergent series

and hence a linear bound as above. We now show how to make this precise.

We’ll say that the algorithm is in phase j when the size of the set under consideration is

at most n(3
4
)j but greater than n(3

4
)j+1. Let’s try to bound the expected time spent by the

algorithm in phase j. In a given iteration of the algorithm, we say that an element of the set

under consideration is central if at least a quarter of the elements are smaller than it, and

at least a quarter of the elements are larger than it.

Now, observe that if a central element is chosen as a splitter, then at least a quarter of

the set will be thrown away, the set will shrink by a factor of 3
4

or better, and the current

phase will come to an end. Moreover, half of all the elements in the set are central, and so

the probability that our random choice of splitter produces a central element is 1
2
. Hence,

by our simple waiting-time bound (12.6), the expected number of iterations before a central

element is found is two; and so the expected number of iterations spent in phase j, for any

j, is at most two.

416 CHAPTER 12. RANDOMIZED ALGORITHMS

This is pretty much all we need for the analysis. Let X be a random variable equal to the

number of steps taken by the algorithm. We can write it as the sum X = X0 +X1 +X2 + · · ·,
where Xj is the expected number of steps spent by the algorithm in phase j. When the

algorithm is in phase j, the set has size at most n(3
4
)j, and so the number of steps required

for one iteration in phase j is at most cn(3
4
)j for some constant c. Above, we argued that

the expected number of iterations spent in phase j is at most two, and hence we have

E [Xj] ≤ 2cn(3
4
)j. Thus, we can bound the total expected running time using linearity of

expectation:

E [X] =
∑

j

E [Xj] ≤
∑

j

2cn
(

3

4

)j

= 2cn
∑

j

(

3

4

)j

≤ 8cn,

since the sum
∑

j(
3
4
)j is a geometric series that converges. Thus we have the desired result:

(12.15) The expected running time of Select(n, k) is O(n).

12.6 Randomized Caching

In the most basic set-up of the cache maintenance problem, we consider a processor whose

full memory has n addresses; it is also equipped with a cache containing k slots of memory

that can be accessed very quickly. We can keep copies of k items from the full memory in

the cache slots, and when a memory location is accessed, the processor will first check the

cache to see if it can be quickly retrieved. We say the request is a cache hit if the cache

contains the requested item; in this case, the access is very quick. We say that request is

a cache miss if the requested item is not in the cache; in this case, the access takes much

longer, and moreover, one of the items currently in the cache must be evicted to make room

for the new item. (We will assume that the cache is kept full at all times.)

The goal of a cache maintenance algorithm is to minimize the number of cache misses,

which are the truly expensive parts of the process. The sequence of memory references is

not under the control of the algorithm — this is simply dictated by the application that is

running — and so the job of the algorithms we consider is simply to decide on an eviction

policy: which item currently in the cache should be evicted on each cache miss?

Given that the future sequence of memory requests is completely unknown, this seems like

a perfect setting in which to behave randomly: without any information about which items

will be needed in the future, why not just evict one from the cache uniformly at random?

We will call this the Purely Random algorithm.

Since this is a randomized algorithm, the number of misses it incurs on a sequence σ

of memory requests is a random variable Rσ. (Note that the sample space underlying this

random variable encodes the random decisions made by the algorithm; thus, there is a

different random variable Rσ for each request sequence σ.) To assess the performance of the

algorithm, we will compare the expected number of misses it makes on a sequence σ to the

12.6. RANDOMIZED CACHING 417

minimum number of misses it is possible to make on σ. We will use f(σ) to denote this

latter quantity.

(12.16) For every constant c < k, there are arbitrarily long sequences of memory requests

σ for which E [Rσ] > c · f(σ).

Proof. To prove this, we need to consider any c < k, and produce an example of a sequence

σ with the required properties. Let S0 = {s1, s2, . . . , sk} be the items initially in the cache,

and let S = S0−{sk}. For a constant r that can be as large as we like, we choose t other

items from the processor’s full memory, labeled t1, t2, . . . , tr. For j = 1, 2, . . . , r, we define

Sj = S ∪ {tj}.
The construction of σ is divided into r phases. In phase j ≤ r, we order the elements of

Sj arbitrarily, and request these elements in strict round-robin order until each element of

Sj has been requested exactly b times, where b is a constant that can be as large as we like.

We call one such pass through the elements of Sj a cycle; thus, phase j consists of b cycles.

After these cycles, phase j comes to an end, and the construction of σ continues.

We first observe that it is possible to handle all the requests in σ while incurring at most

one cache miss per phase. Indeed, the first time tj is requested in phase j, the item tj−1

can be evicted while the item tj is brought into the cache. After this, there will be no more

misses in phase j. Thus we have f(σ) ≤ t.

Now, how many misses to we expect the Purely Random algorithm to make? In other

words, if Xj is the random variable equal to the number of misses in phase j, what is E [Xj]?

In each cycle of the phase, the algorithm will incur at least one miss if the cache contents at

the beginning of the cycle includes tj−1. So E [Xj] is lower-bounded by the expected number

of cycles until tj−1 is evicted. Thus, for purposes of this analysis, we are essentially in the

set-up of (12.6): each cycle through Sj is like an experiment in which the successful outcome

for the algorithm is the eviction of tj−1, an event of probability 1/k; and so we can almost

apply (12.6) to conclude that the expected number of misses is at least k. The only problem

is that there’s another way for the algorithm to stop incurring misses: the phase may end

after b cycles, even though tj−1 was never evicted. So we need to re-do the calculation the

proved (12.6) , taking this into account. If we let Yj be the random variable equal to the

number of cycles until the eviction of tj−1, or equal to b if tj−1 is never evicted, then we have

E [Xj] ≥ E [Yj]

=
∞
∑

i=0

i · Pr [Yj = i] = b
(

1− 1

k

)b

+
b−1
∑

i=1

j

k

(

1− 1

k

)i−1

= b
(

1− 1

k

)b

+ k − (b + k)
(

1− 1

k

)b

= k

(

1−
(

1− 1

k

)b
)

.

418 CHAPTER 12. RANDOMIZED ALGORITHMS

Since c < k, we can choose b large enough to ensure that E [Xj] > c. Hence we have

E [Rσ] =
t
∑

j=1

E [Xj] > ct ≥ c · f(σ),

as required.

Is the bound suggested by (12.16) the best we can hope to obtain using a randomized

approach? In fact, it’s possible to do much better relative to the benchmark provided by

f(σ). The point is that completely random eviction is overkill; we want an algorithm that

is sensitive to the difference between the following two possibilities: (a) in the recent past,

the request sequence has contained more than k distinct items; or (b) in the recent past, the

request sequence has come exclusively from a set of at most k items. In the first case, we

know that f(σ) must be increasing, since no algorithm can handle more than k distinct items

from cache without incurring a miss. But in the second case, it’s possible that σ is passing

through a long stretch in which an optimal algorithm need not incur any misses at all. It is

here that our randomized algorithm must make sure that it incurs very few misses. Notice

how this captures the essence of the construction used in (12.16) : each phase consisted of a

long interval of time over which an optimal algorithm could operate without misses; yet our

Purely Random algorithm was very slow to “realize” this.

Motivated by these considerations, we now describe the Marking algorithm; while still

randomized, it prefers evicting items that don’t seem to have been used in a long time. The

Marking algorithm operates in phases; the description of one phase is as follows.

Each memory item can be either marked or unmarked.

At the beginning of the phase, all items are unmarked.

On a request to item s:
Mark s.
If s is in the cache, then evict nothing.

Else s is not in the cache:

If all items currently in the cache are marked then

Declare the phase over.

Processing of s is deferred to start of next phase.

Else evict an item chosen uniformly at random from

the set of all unmarked items currently in the cache.

Endif

Endif

So the difference from the Purely Random algorithm is that the random choice for eviction

is made only over the unmarked items, not over all items. Notice how this intuitively favors

the eviction of items that don’t seem to have been recently requested; in particular, this

strategy works extremely well on the construction in (12.16) .

12.6. RANDOMIZED CACHING 419

In fact, the Marking algorithm obtains an exponential improvement over the Purely

Random algorithm, relative to the quantity f(σ). In the following statement, let Mσ denote

the random variable equal to the number of cache misses incurred by the Marking algorithm

on the request sequence σ.

(12.17) For every request sequence σ, we have E [Mσ] ≤ 2Hk · f(σ) = O(log k) · f(σ).

Proof. In the analysis, we picture an optimal caching algorithm operating on σ alongside

the Marking algorithm, incurring an overall cost of f(σ). For simplicity, we imagine a “phase

0” that takes place before the first phase, in which all the items initially in the cache are

requested once. This does not affect the cost of either the Marking algorithm or the optimal

algorithm. We also imagine that the final phase r ends with an epilogue in which every item

currently in the cache of the optimal algorithm is requested twice in round-robin fashion.

This does not increase f(σ); and by the end of the second pass through these items, the

Marking algorithm will contain each of them in its cache, and each will be marked.

In the middle of any phase, an unmarked item s can be one of two distinct types. We

call it clean if was not marked in the previous phase either, and we call it stale if was

marked in the previous phase. Here is how we can picture the history of a phase, from the

Marking algorithm’s point of view. At the beginning of the phase, all items in the cache are

stale. Over the course of the phase, there will be k requests to unmarked items: each such

request increases the number of marked items by one, and the phase ends with k marked

items. Requests to marked items do not result in cache misses, since every marked item is

in the cache for the remainder of the phase; thus, the only possible misses come on these k

requests to unmarked items. Every unmarked item is either clean or stale at the moment it

is requested; so if we let cj denote the number of requests in phase j to clean items, then

there are k − cj requests in phase j to stale items.

Let Xj denote the number of misses incurred by the Marking algorithm in phase j. Each

request to a clean item results in a guaranteed miss for the Marking algorithm; since the

clean item was not marked in the previous phase, it cannot possibly be in the cache when

it is requested in phase j. Thus, the Marking algorithm incurs at least cj misses in phase j

because of requests to clean items. Stale items, on the other hand, are a more subtle matter;

on a request to a stale item s, the concern is whether the Marking algorithm evicted it earlier

in the phase, and now incurs a miss as it has to bring it back in. What is the probability that

the ith request to a stale item, say s, results in a miss? Suppose that there have been c ≤ cj

requests to clean items thus far in the phase. Then the cache contains the c formerly clean

items that are now marked, i− 1 formerly stale items that are now marked, and k− c− i+1

items that are still stale. But there are k − i + 1 items overall that are still stale; and since

exactly k − c − i + 1 of them are in the cache, the remaining c of them are not. Each of

the k − i + 1 stale items is equally likely to be no longer in the cache, and so s is not in the

420 CHAPTER 12. RANDOMIZED ALGORITHMS

cache at this moment with probability c
k−i+1

≤ cj

k−i+1
. This is the probability of a miss on

the request to s. Summing over all requests to unmarked items, we have

E [Xj] ≤ cj +
k−cj
∑

i=1

cj

k − i + 1
≤ cj



1 +
k
∑

`=cj+1

1

`



 = cj(1 + Hk −Hcj
) ≤ cjHk.

Thus, the total expected number of misses incurred by the Marking algorithm is

E [Mσ] =
r
∑

j=1

E [Xj] ≤ Hk

r
∑

j=1

cj.

Now we need a lower bound on the number of misses f(σ) incurred by the optimal

algorithm. Let fj(σ) denote the number of misses incurred by the optimal algorithm in phase

j, so that f(σ) =
∑r

j=1 fj(σ). A key property of the way in which the Marking algorithm

defines phases is that in any phase j, there are requests to k distinct items. Moreover, by our

definition of clean, there are requests to cj+1 further items in phase j + 1; so between phases

j and j +1, there are k + cj+1 distinct items requested. It follows that the optimal algorithm

must incur at least cj misses over the course of phases j and j +1, so fj(σ)+ fj+1(σ) ≥ cj+1.

This holds even for j = 0, since the optimal algorithm incurs c1 misses in phase 1. Thus we

have
r−1
∑

j=0

(fj(σ) + fj+1(σ)) ≥
r−1
∑

j=0

cj+1.

But the left-hand side is at most 2
∑r

j=1 fj(σ) = 2f(σ), and the right-hand side is at least

E [Mσ] /Hk, and so we have E [Mσ] ≤ 2Hkf(σ).

12.7 Chernoff Bounds

We defined the expectation of a random variable formally in an earlier lecture, and have

worked with this definition and its consequences ever since. Intuitively, we have a sense

that the value of a random variable ought to be “near” its expectation with reasonably

high probability, but we have not yet explored the extent to which this is true. We now

turn to some results that allow us to reach conclusions like this, and see a sampling of the

applications that follow.

We say that two random variables X and Y are independent if for any values i and j,

the events Pr [X = i] and Pr [Y = j] are independent. Now, consider a random variable X

that is a sum of several independent 0-1-valued random variables: X = X1 + X2 + · · ·+ Xn,

where each Xi takes the value 1 with probability pi, and the value 0 otherwise. Notice that

E [Xi] = pi, and so by linearity of expectation we have µ = E [X] =
∑n

i=1 pi. Intuitively,

the independence of the random variables X1, X2, . . . , Xn suggests that their fluctuations are

likely to “cancel out,” and so their sum X will have a value close to its expectation µ with

12.8. LOAD BALANCING 421

high probability. This is in fact true, and we state two concrete versions of this result: one

bounding the probability that X deviates above µ, the other bounding the probability that

X deviates below µ. Following tradition, we call these results Chernoff bounds, after one of

the probabilists who first established bounds of this form.

(12.18) Let X, X1, X2, . . . , Xn and µ be defined as above. Then for any δ > 0, we have

Pr [X > (1 + δ)µ] <

[

eδ

(1 + δ)(1+δ)

]µ

.

(12.19) Let X, X1, X2, . . . , Xn and µ be defined as above. Then for any 1 > δ > 0, we

have

Pr [X < (1− δ)µ] < e−
1
2
µδ2

.

Note that the statements of the results are not symmetric, and this makes sense: for the

upper bound, it is interesting to consider values of δ much larger than 1, while this would

not make sense for the lower bound. The proofs of these two results are not very long, but

they are fairly technical. For the applications that follow, the statements of (12.18) and

(12.19) are the key things to keep in mind.

12.8 Load Balancing

In earlier lectures, we considered a distributed system in which communication among pro-

cesses was difficult, and randomization to some extent replaced explicit coordination and

synchronization. We now re-visit this theme through another stylized example of random-

ization in a distributed setting.

Suppose we have a system in which m jobs arrive in a stream and need to be processed

immediately. We have a collection of n identical processors that are capable of performing

the jobs; so the goal is to assign each job to a processor in a way that balances the workload

evenly across the processors. If we had a central controller for the system that could receive

each job and hand it off to the processors in round-robin fashion, it would be trivial to make

sure that each processor received at most dm/ne jobs — the most even balancing possible.

But suppose the system lacks the coordination or centralization to implement this. A

much more light-weight approach would be to simply assign each job to one of the proces-

sors uniformly at random. Intuitively, this should also balance the jobs evenly, since each

processor is equally to get each job. At the same time, since the assignment is completely

random, one doesn’t expect everything to end up perfectly balanced. So we ask: how well

does this simple randomized approach work?

422 CHAPTER 12. RANDOMIZED ALGORITHMS

We will see that the answer depends to an extent on the relative sizes of m and n, and

we start with a particularly clean case: when m = n. Here, it is possible for each processor

to end up with exactly one job, though this is not very likely. Rather, we expect that some

processors will receive no jobs, and others will receive more than one. As a way of assessing

the quality of this randomized load balancing heuristic, we study how heavily loaded with

jobs a processor can become.

Let Xi be the random variable equal to the number of jobs assigned to processor i, for

i = 1, 2, . . . , n. It is easy to determine the expected value of Xi — we let Yij is the random

variable equal to 1 if job j is assigned to processor i, and 0 otherwise; then Xi =
∑n

i=1 Yij and

E [Yij] = 1/n, so E [Xi] =
∑n

j=1 E [Yij] = 1. But our concern is with how far Xi can deviate

above its expectation; what is the probability that Xi > c? To give an upper bound on

this, we can directly apply (12.18): Xi is a sum of independent 0-1-valued random variables

{Yij}; we have µ = 1 and 1 + δ = c. Thus,

(12.20)

Pr [Xi > c] <

(

ec−1

cc

)

.

In order for there to be a small probability of any Xi exceeding c, we will take the Union

Bound over i = 1, 2, . . . , n; and so we need to choose c large enough to drive Pr [Xi > c]

down well below 1/n for each i. This requires looking at the denominator cc in (12.20) . To

make this denominator large enough, we need to understand how this quantity grows with

c, and we explore this by first asking the question, “What is the x such that xx = n?”

Suppose we write γ(n) to denote this number x. There is no closed-form expression for

γ(n), but we can determine its asymptotic value as follows. If xx = n, then taking logarithms

gives x log x = log n; and taking logarithms again gives log x+ log log x = log log n. Thus we

have

2 log x > log x + log log x = log n > log x,

and using this to divide through the equation x log x = log n, we get

1

2
x ≤ log n

log log n
≤ x = γ(n).

Thus γ(n) = Θ

(

log n

log log n

)

.

Now, if we set c = eγ(n), then by (12.20) we have

Pr [Xi > c] <

(

ec−1

cc

)

<
(

e

c

)c

=

(

1

γ(n)

)eγ(n)

<

(

1

γ(n)

)2γ(n)

=
1

n2
.

Thus, applying the Union Bound over this upper bound for X1, X2, . . . , Xn, we see that with

probability at least 1− 1/n, no processor receives more than eγ(n) = Θ
(

log n
log log n

)

jobs. With

12.9. PACKET ROUTING 423

e

pkt 1

pkt 2

pkt 3

Figure 12.2: Three packets whose paths involve a shared edge e.

a more involved analysis, one can also show that this bound is asymptotically tight: with

high probability, some processor actually receives Ω
(

log n
log log n

)

jobs.

So although the load on some processors will likely exceed the expectation, this deviation

is only logarithmic in the number of processors. We now use Chernoff bounds to argue that

as more jobs are introduced into the system, the loads “smooth out” rapidly, so that the

number of jobs on each processor quickly become the same to within constant factors.

Specifically, if we have m = 16n ln n jobs, then expected load per processor is µ = 16 lnn.

Using (12.18) , we see that the probability of any processor’s load exceeding 32 lnn is at

most

Pr [Xi > 2µ] <
(

e

4

)16 ln n

<
(

1

e2

)lnn

=
1

n2
.

Also, the probability that any processor’s load is below 8 ln n is at most

Pr
[

Xi <
1

2
µ
]

< e−
1
2
(1
2
)2(16 ln n) = e−2 lnn =

1

n2
.

Thus, applying the Union Bound, there is a high probability that every processor will have

a load between half and twice the average, once we have Ω(n log n) jobs.

12.9 Packet Routing

We now consider a more complex example of how randomization can alleviate contention in

a distributed system — in the context of packet routing.

Packet routing is a mechanism to support communication among nodes of a large network,

which we can model as a directed graph G = (V, E). If a node s wants to send data to a

node t, this data is discretized into one or more packets, each of which is then sent over an

s-t path P in the network. At any point in time, there may be many packets in the network,

associated with different sources and destinations and following different paths. However,

424 CHAPTER 12. RANDOMIZED ALGORITHMS

1 2 3 4 5 6 7 8 9

Figure 12.3: A case in which the scheduling of packets matters.

the key constraint is that a single edge e can only transmit a single packet per time step.

Thus, when a packet p arrives at an edge e on its path, it may find there are several other

packets already waiting to traverse e; in this case, p joins a queue associated with e to wait

until e is ready to transmit it. In Figure 12.2, for example, three packets with different

sources and destinations all want to traverse edge e; so if they all arrive at e at the same

time, some of them will be forced to wait in a queue for this edge.

Suppose we are given a network G with a set of packets that need to be be sent across

specified paths. We’d like to understand how many steps are needed in order for all packets

to reach their destinations. Although the paths for the packets are all specified, we face the

algorithmic question of timing the movements of the packets across the edges. In particular,

we must decide when to release each packet from its source, as well as a queue management

policy for each edge e — how to select the next packet for transmission from e’s queue in

each time step.

It’s important to realize that these packet scheduling decisions can have a significant effect

on the amount of time it takes for all the packets to reach their destinations. For example,

let’s consider the tree network in Figure 12.3, where there are 9 packets that want to traverse

the respective dotted paths up the tree. Suppose all packets are released from their sources

immediately, and each edge e manages its queue by always transmitting the packet that is

closest to its destination. In this case, packet 1 will have to wait for packets 2 and 3 at

the second level of the tree; and then later it will have to wait for packets 6 and 9 at the

12.9. PACKET ROUTING 425

fourth level of the tree. Thus, it will take 9 steps for this packet to reach its destination.

On the other hand, suppose that each edge e manages its queue by always transmitting the

packet that is farthest from its destination. Then packet 1 will never have to wait, and it

will reach its destination in 5 steps; moreover, one can check that every packet will reach its

destination within 6 steps.

There is a natural generalization of the tree network in Figure 12.3, in which the the

tree has height h and the nodes at every other level have k children. In this case, the queue

management policy that always transmits the packet nearest its destination results in some

packet requiring Ω(hk) steps to reach its destination (since the packet traveling farthest is

delayed by Ω(k) steps at each of Ω(h) levels), while the policy that always transmits the

packet farthest from its destination results in all packets reaching their destinations within

O(h + k) steps. This can become quite a large difference as h and k grow large.

Schedules and their durations. Let’s now move from these examples to the question of

scheduling packets and managing queues in an arbitrary network G. Given packets labeled

1, 2, . . . , N and associated paths P1, P2, . . . , PN , a packet schedule specifies, for each edge e

and each time step t, which packet will cross edge e in step t. Of course, the schedule must

satisfy some basic consistency properties: at most one packet can cross any edge e in any

one step; and if packet i is scheduled to cross e at step t, then e should be on the path Pi,

and the earlier portions of the schedule should cause i to have already reached e. We will

say that the duration of the schedule is the number of steps that elapse until every packet

reaches its destination; the goal is to find a schedule of minimum duration.

What are the obstacles to having a schedule of low duration? One obstacle would be

a very long path that some packet must traverse; clearly, the duration will be at least the

length of this path. Another obstacle would be a single edge e that many packets must cross;

since each of these packets must cross e in a distinct step, this also gives a lower bound on the

duration. So if we define the dilation d of the set of paths {P1, P2, . . . , PN} to be the maximum

length of any Pi, and the congestion c of the set of paths to be the maximum number that

have any single edge in common, then the duration is at least max(c, d) = Ω(c + d).

In 1988, Leighton, Maggs, and Rao proved the following striking result: congestion and

dilation are the only obstacles to finding fast schedules, in the sense that there is always a

schedule of duration O(c+ d). While the statement of this result is very simple, it turns out

to be extremely difficult to prove; and it yields only a very complicated method to actually

construct such a schedule. So instead of trying to prove this result, we’ll analyze a simple

algorithm (also proposed by Leighton, Maggs, and Rao) that can be easily implemented

in a distributed setting, and yields a duration that is only worse by a logarithmic factor:

O(c + d log(mN)), where m is the number of edges and N is the number of packets.

426 CHAPTER 12. RANDOMIZED ALGORITHMS

A Randomized Schedule. If each edge simply transmits an arbitrary waiting packet in

each step, it is easy to see that the resulting schedule has duration O(cd) — at worst, a

packet can be blocked by c− 1 other packets on each of the d edges in its path. To reduce

this bound, we need to set things up so that each packet only waits for a much smaller

number of steps over the whole trip to its destination.

The reason a bound as large as O(cd) can arise is that the packets are very badly timed

with respect to each other — blocks of c of them all meet at an edge at the same time,

and once this congestion has cleared, the same thing happens at the next edge. This sounds

pathological, but one should remember that a very natural queue management policy caused

it to happen in Figure 12.3. However, it is the case that such bad behavior relies on very

unfortunate synchronization in the motion of the packets; so it is believable that if we

introduce some randomization in the timing of the packets, then this kind of behavior is

unlikely to happen. The simplest idea would be just to randomly shift the times at which

the packets are released from their sources — then a block of packets all aimed at the same

edge are unlikely to hit it at the same time; the contention for edges has been “smoothed

out.” We now show that this kind of randomization, properly implemented, in fact works

quite well.

Consider first the following algorithm, which will not quite work. It involves a parameter

r whose value will be determined later.

Each packet i behaves as follows:

i chooses a random delay s between 1 and r.
i waits at its source for s time steps.

i then moves full speed ahead, one edge per time step,

until it reaches its destination.

If the set of random delays were really chosen so that no two packets ever “collided” —

reaching the same edge at the same time — then this schedule would work just as advertised;

its duration would be at most r (the maximum initial delay) plus d (the maximum number

of edges on any path). However, unless r is chosen to be very large, it is unlikely that no

collisions will occur, and so the algorithm will probably fail: two packets will show up at the

same edge e in the same time step t, and both will be required to cross e in the next step.

To get around this problem, we consider the following generalization of this strategy:

rather than implementing the “full speed ahead” plan at the level of individual time steps,

we implement it at the level of continguous blocks of time steps.

For a parameter b, group intervals of b consecutive time steps

into single blocks of time.

Each packet i behaves as follows:

i chooses a random delay s between 1 and r.
i waits at its source for s blocks.

12.9. PACKET ROUTING 427

i then moves foward one edge per block,

until it reaches its destination.

This schedule will work provided that we avoid a more extreme type of collision: it should

not be the case that more than b packets are supposed to show up at the same edge e at the

start of the same block. If this happens, then at least one of them will not be able to cross e

in the next block. On the other hand, if the initial delays smooth things out enough that no

more than b packets arrive at any edge in the same block, then the schedule will work just

as intended. In this case, the duration will be at most b(r + d) — the maximum number of

blocks, r + d, times the length of each block, b.

(12.21) Let E denote the event that more than b packets are required to be at the same

edge e at the start of the same block. If E does not occur, then the duration of the schedule

is at most b(r + d).

Our goal is now to choose values of r and b so that both the probability Pr [E] and the

duration b(r + d) are small quantities.

To give a bound on Pr [E], it’s useful to decompose it into a union of simpler bad events,

so that we can apply the Union Bound. A natural set of bad events arises from considering

each edge and each time block separately; if e is an edge, and t is a block between 1 and

r + d, we Fet denote the event that more than b packets are required to be at e at the start

of block t. Clearly E = ∪e,tFet. Moreover, if Net is a random variable equal to the number

of packets required to be at e at the start of block t, then Fet is equivalent to the event

[Net > b].

The next step in the analysis is to decompose the random variable Net into a sum of

independent 0-1-valued random variables so that we can apply a Chernoff bound. This is

naturally done by defining Xeti to be equal to 1 if packet i is required to be at edge e at

the start of block t, and equal to 0 otherwise. Then Net =
∑

i Xeti; and for different values

of i, the random variables Xeti are independent, since the packets are choosing independent

delays. (Note that Xeti and Xe′t′i, where the value of i is the same, would certainly not

be independent; but our analysis does not require us to add random variables of this form

together.) Notice that of the r possible delays that packet i can choose, at most one will

require it to be at e at block t; thus E [Xeti] ≤ 1/r. Moreover, at most c packets have paths

that include e; and if i is not one of these packets, then clearly E [Xeti] = 0. Thus we have

E [Net] =
∑

i

E [Xeti] ≤
c

r
.

We now have the set-up for applying the Chernoff bound (12.18), since Net is a sum of the

independent 0-1-valued random variables Xeti. Indeed, the quantities are sort of like what

they were when we analyzed the problem of throwing m jobs at random onto n processors:

428 CHAPTER 12. RANDOMIZED ALGORITHMS

in that case, each constituent random variable had expectation 1/n, the total expectation

was m/n, and we needed m to be Ω(n log n) in order for each processor load to be close to

its expectation with high probability. The appropriate analogy in the case at hand is for r to

play the role of n, and c to play the role of m: this makes sense both symbolically, in terms

of the parameters; and also it accords with the picture that the packets are like the jobs, and

the different time blocks of a single edge are like the different processors that can receive the

jobs. This suggests that if we want the number of packets destined for a particular edge in

a particular block to be close to its expectation, we should have c = Ω(r log r).

This will work, except that we have to increase the logarithmic term a little to make sure

that the Union Bound over all e and all t works out in the end. So let’s set

r =
c

q log(mN)
,

where q is a constant that will be determined later.

Let’s fix a choice of e and t, and write µ = E [Net]. When we go to apply the Chernoff

bound, we’ll see that there is one extra wrinkle; we don’t know exactly when µ is, only

that it is upper-bounded by c/r = q log(mN). Nevertheless, let’s use (12.18) to study

the probability that Net does not exceed 3 times this upper bound. We choose δ > 0 so

that (1 + δ)µ = 3c/r = 3q log(mN), and use this as the upper bound in the expression

Pr [Net > 3c/r] = Pr [Net > (1 + δ)µ]. Note that because µ ≤ c/r, we know that 1 + δ ≥ 3,

a fact that we’ll use in the calculation below. Applying (12.18) , we have

Pr [Net > 3c/r] <

[

eδ

(1 + δ)(1+δ)

]µ

<

[

e1+δ

(1 + δ)(1+δ)

]µ

=
(

e

1 + δ

)(1+δ)µ

≤
(

e

3

)(1+δ)µ

=
(

e

3

)3c/r

=
(

e

3

)3q log(mN)

=
1

(mN)z
,

where z is a constant that can be made as large as we want by choosing the constant q

appropriately. The inequality at the beginning of the second line follows from the fact that

1+δ ≤ 3, and the subsequent equalities follow from our choice of δ so that (1+δ)µ = 3c/r =

3q log(mN).

We can see from this calculation that it’s safe to set b = 3c/r; for in this case, the event Fet

that Net > b will have very small probability for each choice of e and t. There are m different

choices for e, and d + r different choice for t, where we observe that d + r ≤ d + c− 1 ≤ N .

Thus we have

Pr [E] = Pr





⋃

e,t

Fet



 ≤
∑

e,t

Pr [Fet] ≤ mN · 1

(mN)z
=

1

(mN)z−1
,

which can be made as small as we want by choosing z large enough.

12.10. CONSTRUCTING AN EXPANDER GRAPH 429

And provided this bad event does not happen, then (12.21) tells us that the duration of

the schedule is bounded by

b(r + d) =
3c

r
(r + d) = 3c + d · 3c

r
= 3c + d(3q log(mN)) = O(c + d log(mN)).

12.10 Constructing an Expander Graph

We have seen the use of randomization in a number of algorithm design applications. We

now return to a somewhat different use of randomization: establishing the existence of a

combinatorial object with a certain property, simply by showing that a random object has

the property with positive probability. We’ve seen one application of this already, when

we showed via a random construction that for every instance of 3-SAT, there is a truth

assignment that satisfies at least a 7
8

fraction of all clauses. We now consider a much more

elaborate example; we use randomization to demonstrate the existence of a highly fault-

tolerant class of graphs known as expanders.

We call a graph an expander if it has a relatively sparse edge set, and has the property that

every subset of nodes is highly connected to the rest of the graph. Specifically, if G = (V, E)

is a graph, and S ⊆ V , we use N(S) to denote the “neighbors” of S — the set of nodes with

an edge to some node in S. (Note that N(S) may include some nodes in S but not others.)

We say that G is an expander with parameters (d, c, α) if every node of G has degree at most

d, and for every subset S of at most cn nodes, we have |N(S)| ≥ α|S|. In this case, we say

that each set S “expands” by a factor of α. The definition will be interesting to us only

when α > 1.

Expanders are highly resilient to failures in the following natural sense: the deletion of a

small number of nodes cannot separate a large set of nodes from the rest of the graph. This

gives them a lot of natural “robustness” properties; here is one example.

(12.22) Let G be an expander with parameters (d, c, α) such that α > 1 and αc > 1
2
,

Then every pair of nodes u and v in G are connected by a path of length O(log n).

Proof. Let u and v be two nodes of G. We perform a breadth-first search of G starting at

u, stopping when the set of nodes we encounter first reaches size cn. More concretely, we use

Ui to denote the set of all nodes within i steps of u, and let r be the smallest value of i such

that |Ui| > cn. We define Bu to be the set Ur−1, together with as many nodes at distance

exactly r from u as are necessary to produce a set of size exactly cn. We then define B ′
u to

be Bu ∪N(Bu).

Now, for any i ≤ r, we see that Ui is simply Ui−1 ∪ N(Ui−1). Since i − 1 < r, we have

|Ui−1| ≤ cn, and so the set Ui−1 is covered by the expansion guarantees of G: we have

|Ui| ≥ |N(Ui−1)| ≥ α|Ui−1|. The sets U1, U2, . . . grow exponentially in size up through Ur−1;

430 CHAPTER 12. RANDOMIZED ALGORITHMS

but since G has only n nodes, this exponential growth can continue only for O(log n) steps,

and so we must have r = O(log n). Hence every node in Bu, and also in B′
u, has a path to u

of length O(log n).

We do this same construction for v, producing sets Bv and B′
v. Now, since |Bu| = cn, we

have |N(Bu)| ≥ αcn > n/2, and so we have |B ′
u| ≥ |N(Bu)| > n/2. (Note that we’ve used

the assumption that αc > 1
2
.) Similarly, we have |B ′

v| > n/2. Thus, the sets B ′
u and B′

v must

have at least one node w in their intersection. The node w has a path of length O(log n) to

u and also a path of length O(log n) to v; concatenating these two paths together, we get a

u-v path of length O(log n).

The most basic non-trivial fact about expander graphs, though, is that they exist at

all: there exist fixed constant values of d, c, and α > 1, so that for arbitrarily large values

of n, there are n-node expander graphs with parameters (d, c, α). The key point is that

none of the parameters d, c, or α depend on the size n of the graph. In other words, there

exist arbitrarily large graphs in which each node has constant degree, and each set (of up

to linear size) expands by a constant factor. To avoid explicitly discussing the underlying

parameters all the time, one often speaks informally of a class of graphs having “good

expansion properties” if d and c are absolute constants, and α is a constant greater than 1.

Constructing large graphs with good expansion properties — and proving these expansion

properties — is much more difficult than one might imagine. Trying this oneself is the best

way to drive the point home. For example, an n×n grid graph does not maintain an expansion

parameter of α > 1 as n increases: for any c > 0, the set S consisting of the leftmost cn

columns has |N(S)| ≤ |S|+ n = |S|(1 + 1/cn). Or consider an n-node complete binary tree:

it may look like it has good expansion properties if one views it from the root downward;

but if we think of the subtree S below any given node, it has |N(S)| ≤ |S| + 1. One can

show that much more sophisticated examples than these also fail to serve as good expander

graphs. Ultimately, finding an explicit construction of arbitrarily large graphs that could

be proved to have good expansion properties required intricate analysis and sophisticated

use of some deep results from mathematics; it is only now, three decades after people began

studying expanders, that somewhat simpler analyses are emerging.

We will now show that a simple random construction produces good expander graphs

with constant probability. In light of our discussion, this is quite surprising: it is extremely

difficult to verify that an explicitly constructed graph is a good expander, but it is easy to

show that a random graph is likely to be one. The analysis of our random construction will

be quite crude, and will not aim for the best possible values of all parameters; rather, its

goal is to show how a completely direct use of the Union Bound is enough to verify good

expansion.

12.10. CONSTRUCTING AN EXPANDER GRAPH 431

The random construction. We start with a set V of n nodes, labeled 1, 2, 3, . . . , n, and

no edges joining any of them. A random pairing on V is a set of edges M constructed as

follows. We choose a random ordering of V , say v1, v2, . . . , vn, and define M to be the set of

n edges {(i, vi) : i = 1, 2, . . . , n}. Note that each node is incident to two edges in M , unless

it happens that vi = i; in this case we view the edge (i, vi) as a loop from i to itself.

Here is the full construction of G. We set d = 600; we compute d random pairings

M1, M2, . . . , Md on the set V , using orders chosen independently for each; and we define the

edge set E = M1 ∪M2 ∪ · · · ∪Md. Notice that the graph G = (V, E), which may have loops

and parallel edges, has maximum node degree 2d = 1200. Notice that while G has constant

node degree — independent of the number of nodes — it is quite a large constant; this is

in keeping with our plan to sacrifice better parameters for the sake of the simplest analysis

possible. In fact, random graphs in which each node has degree 3 can be shown to have fairly

good expansion properties as well, but the proof of this becomes somewhat more involved.

(12.23) With probability at least 2/3, the graph G = (V, E) is an expander with param-

eters (2d, .35, 1.5). In other words, with probability at least 2/3, every set S of at most .35n

nodes in G has the property that |N(S)| > 1.5|S|.

Notice that .35 · 1.5 > .5, and so the conclusion of (12.22) holds for G, provided that it

satisfies these expansion properties — there will be a short path between each pair of nodes.

The proof will consist of an extended but completely direct use of the Union Bound,

summing over an exponential number of possible bad events that could prevent G from

being a good expander. In order to make the calculations work out, we first need some

simple bounds on the growth of the factorial function and the binomial coefficients.

(12.24) For every natural number n, we have n! >
(

n

e

)n

.

Proof. We prove this by induction, the cases n = 0 and n = 1 being clear. For a larger

value of n, we can apply the induction hypothesis together with a close variant of fact (12.1)

, asserting that
(

1 + 1
n

)n
< e for all natural numbers n. Thus we have

(n + 1)! = (n + 1)n! > (n + 1)
(

n

e

)n

> (n + 1)
(

n

e

)n

(

1 + 1
n

)n

e
=

(n + 1)n+1

en+1
.

Using this bound, we now prove

(12.25) For every pair of natural numbers n and k, where n ≥ k, we have
(

n

k

)k

≤
(

n

k

)

<
(

en

k

)k

.

432 CHAPTER 12. RANDOMIZED ALGORITHMS

Proof. By (12.24) , we have

(

n

k

)

<
nk

k!
<

nk

(k/e)k
=
(

en

k

)k

.

Since n
k
≥ n−1

k−1
for any natural numbers n ≥ k, we have

(

n

k

)

≥ nk

kk
=
(

n

k

)k

.

Notice that
(

n
k

)

is not defined when k is not a natural number. However, if k is not a

natural number, we can still use (12.25) to bound
(

n
bkc

)

as follows:

(

n

bkc

)

<

(

en

bkc

)bkc

<
(

en

k

)k

,

where the first inequality is just (12.25) , and the second follows from the fact that the

function (en/k)k increases monotonically until k = n.

We are now ready for

Proof of (12.23) . If G fails to have the desired property, it means that there is some set S

of at most .35n nodes so that N(S) < 1.5|S|. So for every set S of at most .35n nodes, and

every set T of size exactly b1.5|S|c, we define the event EST that N(S) ⊆ T . We observe that

if the union of all these events EST does not occur, then every set S expands by a sufficient

amount, and G has the desired expansion properties. Thus, it is sufficient to give an upper

bound on

Pr











⋃

|S|≤.35n

|T |=b1.5|S|c

EST











.

To think about this, we first define a related set of events as follows. For every pair of

sets S and T , we define the event E ′ST that in a single random pairing M , all nodes with an

edge to S belong to T . If k = |S| = |T |, then Pr [E ′ST] ≤ 1/
(

n
k

)

, since it is necessary that

in the random ordering v1, v2, . . . , vn that produces M , the set {vi : i ∈ S} is equal to T . If

k = |S| < |T |, then

Pr [E ′ST] =
⋃

U⊆T

|U |=k

E ′SU =
∑

U⊆T

|U |=k

Pr [E ′SU] ≤
(

|T |
k

)

/

(

n

k

)

≤ 2|T |/

(

n

k

)

≤ 2|T |kk

nk
.

Here the last inequality follows from (12.25) , and the second-to-last from the fact that T

has at most 2|T | subsets.

12.10. CONSTRUCTING AN EXPANDER GRAPH 433

S

T

U

Figure 12.4: The event EST in the analysis of the expander construction.

Now, the graph G is built from d random pairings; so if k = |S| ≤ .35n and |T | = 1.5k,

then

Pr [EST] = (Pr [E ′ST])d ≤ 2b1.5dkckdk

ndk
≤ 21.5dkkdk

ndk
=

(

21.5k

n

)dk

.

It will be crucial later that the quantity inside the parentheses in the final expression is

strictly less than 1; this follows from the fact that k ≤ .35n:

21.5k

n
≤ .35 · 21.5 < .99.

As promised, we complete the proof with an enormous application of the Union Bound:

Pr











⋃

|S|≤.35n

|T |=b1.5|S|c

EST











≤
∑

|S|≤.35n

|T |=b1.5|S|c

Pr [EST] .

This sum involves exponentially many terms; to unravel it, we consider separately the terms

for each possible size of the set S. For sets S of size k, there are
(

n
k

)(

n
b1.5kc

)

terms, each with

probability at most
(

21.5k
n

)dk
. We then upper-bound the binomial coefficients using (12.25)

and begin canceling as many terms as we can:

∑

|S|≤.35n

|T |=b1.5|S|c

Pr [EST] ≤
.35n
∑

k=1

(

n

k

)(

n

b1.5kc

)(

21.5k

n

)dk

<
.35n
∑

k=1

(

en

k

)k (en

1.5k

)1.5k
(

21.5k

n

)dk

=
.35n
∑

k=1





e2.5

1.51.5
· 2(1.5)(2.5)

(

21.5k

n

)(d−2.5)




k

434 CHAPTER 12. RANDOMIZED ALGORITHMS

<
∞
∑

k=1

[

90 (.99)597.5
]k

<
∞
∑

k=1

(

1

4

)k

=
1

3
.

Thus, with probability at least 2/3, the graph G has the desired expansion properties.

12.11 Appendix: Some Probability Definitions

For many — though certainly not all — applications of randomized algorithms, it is enough

to work with probabilities defined over finite sets only; and this turns out to be much easier

to think about than probabilities over arbitrary sets. So we begin by considering just this

special case, We’ll then end the section by re-visiting all these notions in greater generality.

Finite probability spaces

We have an intuitive understanding of sentences like, “If a fair coin is flipped, the probability

of ‘heads’ is 1/2.” Or, “If a fair die is rolled, the probability of a ‘6’ is 1/6.” What we want

to do first is to describe a mathematical framework in which we can discuss such statements

precisely. The framework will work well for carefully circumscribed systems such as coin flips

and rolls of dice; at the same time, we will avoid the lengthy and substantial philosophical

issues raised in trying to model statements like, “The probability of rain tomorrow is 20%.”

Fortunately, most algorithmic settings are as carefully circumscribed as those of coins and

dice, if perhaps somewhat larger and more complex.

To be able to compute probabilities, we introduce the notion of a finite probability space.

(Recall that we’re dealing with just the case of finite sets for now.) A finite probability space

is defined by an underlying sample space Ω, which consists of the possible “outcomes” of

the process under consideration. Each point i in the sample space also has a non-negative

probability mass p(i) ≥ 0; these probability masses need only satisfy the constraint that their

total sum is 1; i.e.
∑

i∈Ω p(i) = 1. We define an event E to be any subset of Ω — an event is

defined simply by the set of outcomes that constitute it — and we define the probability of

the event to be the sum of the probability masses of all the points in E . That is,

Pr [E] =
∑

i∈E

p(i).

In many situations that we’ll consider, all points in the sample space have the same proba-

bility mass, and then the probability of an event E is simply its size relative to the size of Ω;

that is, in this special case, Pr [E] = |E|/|Ω|. We use E to denote the complementary event

Ω−E ; note that Pr
[

E
]

= 1− Pr [E].

12.11. APPENDIX: SOME PROBABILITY DEFINITIONS 435

Thus, the points in the sample space and their respective probability masses form a

complete description of the system under consideration; it is the events — the subsets of

the sample space — whose probabilities we are interested in computing. So to represent a

single flip of a “fair” coin, we can define the sample space to be Ω = {heads, tails} and

set p(heads) = p(tails) = 1/2. If we want to consider a biased coin in which “heads” is

twice as likely as “tails,” we can define the probability masses to be p(heads) = 2/3 and

p(tails) = 1/3. A key thing to notice even in this simple example is that defining the

probability masses is a part of defining the underlying problem; in setting up the problem,

we are specifying whether the coin is fair or biased, not “deriving” this from some more basic

data.

Here’s a slightly more complex example. Suppose we have n processes in a distributed

system, denoted p1, p2, . . . , pn, and each of them chooses an identifier for itself uniformly

at random from the space of all k-bit strings. Moreover, each process’s choice happens

concurrently with those of all the other processes, and so the outcomes of these choices

are unaffected by one another. If we view each identifier as being chosen from the set

{0, 1, 2, . . . , 2k − 1} (by considering the numerical value of the identifier as a number in

binary notation), then the sample space Ω could be represented by the set of all n-tuples

of integers, with each integer between 0 and 2k − 1. The sample space would thus have

(2k)n = 2kn points, each with probability mass 2−kn.

Now, suppose we are interested in the probability that processes p1 and p2 each choose

the same name. This is an event E , represented by the subset consisting of all n-tuples from

Ω whose first two coordinates are the same. There are 2k(n−1) such n-tuples: we can choose

any value for coordinates 3 through n, then any value for coordinate 2, and then we have no

freedom of choice in coordinate 1. Thus we have

Pr [E] =
∑

i∈E

p(i) = 2k(n−1) · 2−kn = 2−k.

This, of course, corresponds to the intuitive way one might work out the probability, which

is to say that we can choose any identifier we want for process p2, after which there is only

1 choice out of 2k for process p1 that will cause the names to agree. It’s worth checking that

this intuition is really just a compact description of the calculation above.

Conditional Probability and Independence

If we view the probability of an event E , roughly, as the likelihood that E is going to occur,

then we may also want to ask about its probability given additional information. Thus, given

another event F of positive probability, we define the conditional probability of E given F as

Pr [E | F] =
Pr [E ∩ F]

Pr [F]
.

436 CHAPTER 12. RANDOMIZED ALGORITHMS

This is the “right” definition intuitively since it’s performing the following calculation: of

the portion of the sample space that consists of F (the event we “know” to have occurred),

what fraction is occupied by E?
Intuitively, we say that two events are independent if information about the outcome

of one does not affect our estimate of the likelihood of the other. One way to make this

concrete would be to declare events E and F to be independent if Pr [E | F] = Pr [E], and

Pr [F | E] = Pr [F]. (We’ll assume here that both have positive probability; otherwise, the

notion of independence is not very interesting in any case.) Actually, if one of these two

equalities holds, then the other must hold, for the following reason: If Pr [E | F] = Pr [E],
then

Pr [E ∩ F]

Pr [F]
= Pr [E] ,

and hence Pr [E ∩ F] = Pr [E] · Pr [F], from which the other equality holds as well.

It turns out to be a little cleaner to adopt this equivalent formulation as our working

definition of independence: formally, we’ll say that that events E and F are independent if

Pr [E ∩ F] = Pr [E] · Pr [F].

This product formulation leads to the following natural generalization. We say that a

collection of events E1, E2, . . . , En is independent if for every set of indices I ⊆ {1, 2, . . . , n},
we have

Pr

[

⋂

i∈I

Ei

]

=
∏

i∈I

Pr [Ei] .

It’s important to notice the following: to check if a large set of events is independent, it’s

not enough to check whether every pair of them is independent. For example, suppose we

flip three independent fair coins: if Ei denotes the event that the ith coin comes up heads,

then the events E1, E2, E3 are independent and each has probability 1/2. Now, let A denote

the event that coins 1 and 2 have the same value; let B denote the event that coins 2 and

3 have the same value; and let C denote the event that coins 1 and 3 have different values.

It’s easy to check that each of these events has probability 1/2, and the intersection of any

two has probability 1/4. Thus every pair drawn from A, B, C is independent. But the set of

all three events A, B, C is not independent, since Pr [A ∩ B ∩ C] = 0.

The Union Bound

Suppose we are given a set of events E1, E2, . . . , En, and we are interested in the probability

that any of them happens; that is, we are interested in the probability Pr [∪n
i=1Ei]. If the

events are all pairwise disjoint from one another, then the probability mass of their union

is comprised simply of the separate contributions from each event. In other words, we have

the following fact.

12.11. APPENDIX: SOME PROBABILITY DEFINITIONS 437

Ω Ω
E

E E

E

E E

1 1

2
2

3
3

Figure 12.5: The Union Bound: the probability of a union is maximized when the events
have no overlap.

(12.26) Suppose we have events E1, E2, . . . , En such that Ei ∩ Ej = φ for each pair. Then

Pr

[

n
⋃

i=1

Ei

]

=
n
∑

i=1

Pr [Ei] .

In general, a set of events E1, E2, . . . , En may overlap in complex ways. In this case, the

equality in (12.26) no longer holds; due to the overlaps among events, the probability mass

of a point that is counted once on the left-hand side will be counted one or more times on the

right-hand side. (See Figure 12.5.) This means that for a general set of events, the equality

in (12.26) is relaxed to an inequality; and this is the content of the Union Bound.

(12.27) (The Union Bound.) Given events E1, E2, . . . , En, we have

Pr

[

n
⋃

i=1

Ei

]

≤
n
∑

i=1

Pr [Ei] .

Given its innocuous appearance, the Union Bound is a surprisingly powerful tool in the

analysis of randomized algorithms. It draws its power mainly from the following ubiquitous

style of analyzing randomized algorithms. Given a randomized algorithm designed to produce

a correct result with high probability, we first tabulate a set of “bad events” E1, E2, . . . , En

with the following property: if none of these bad events occurs, then the algorithm will indeed

produce the correct answer. In other words, if F denotes the event that the algorithm fails,

then we have

Pr [F] ≤ Pr

[

n
⋃

i=1

Ei

]

.

438 CHAPTER 12. RANDOMIZED ALGORITHMS

But it’s hard to compute the probability of this union, so we apply the Union Bound to

conclude that

Pr [F] ≤ Pr

[

n
⋃

i=1

Ei

]

≤
n
∑

i=1

Pr [Ei] .

Now, if in fact we have an algorithm that succeeds with very high probability, and if

we’ve chosen our bad events carefully, then each of the probabilities Pr [Ei] will be so small

that even their sum — and hence our overestimate of the failure probability — will be small.

This is the key: decomposing a highly complicated event, the failure of the algorithm, into

a horde of simple events whose probabilities can be easily computed.

Here is a simple example to make the strategy discussed above more concrete. Recall

the situation we discussed earlier, in which each of a set of processes chooses a random

identifier. Suppose that we have 1000 processes, each choosing a 32-bit identifier, and we

are concerned that two of them will end up choosing the same identifier. Can we argue that

it is unlikely this will happen? To begin with, let’s denote this event by F . While it would

not be overwhelmingly difficult to compute Pr [F] exactly, it is much simpler to bound it as

follows. The event F is really a union of
(

1000
2

)

“atomic” events; these are the events Eij that

processes pi and pj choose the same identifier. It is easy to verify that indeed, F = ∪i,jEij.

Now for any i 6= j, we have Pr [Eij] = 2−32, by the argument in one of our earlier examples.

Applying the Union Bound, we have

Pr [F] ≤
∑

i,j

Pr [Eij] =

(

1000

2

)

· 2−32.

Now,
(

1000
2

)

is at most half a million, and 232 is (a little bit) more than 4 billion, so this

probability is at most .5
4000

= .000125.

Infinite Sample Spaces

So far we’ve gotten by with finite probability spaces only. In several of the lectures, however,

we’ll see examples in which a random process can run for arbitrarily long, and so is not

well described by a sample space of finite size. As a result, we pause here to develop the

notion of a probability space more generally. This will be somewhat technical, and in part

we are providing it simply for the sake of completeness: although some of our subsequent

applications require infinite sample spaces, none of them really exercises the full power of

the formalism we describe here.

Once we move to infinite sample spaces, more care is needed in defining a probability

function — we cannot simply give each point in the sample space Ω a probability mass and

then compute the probability of every set by summing. Indeed, for reasons that we will

not go into here, it is easy to get into trouble if one even allows every subset of Ω to be

an event whose probability can be computed. Thus, a general probability space has three

components:

12.11. APPENDIX: SOME PROBABILITY DEFINITIONS 439

(i) The sample space Ω.

(ii) A collection S of subsets of Ω; these are the only events on which we are allowed to

compute probabilities.

(iii) A probability function Pr, which maps events in S to real numbers in [0, 1].

The collection S of allowable events can be any family of sets that satisfies the following

basic closure properties: the empty set and the full sample space Ω both belong to S; if

E ∈ S, then E ∈ S (closure under complement); and if E1, E2, E3, . . . ∈ S, then ∪∞i=1Ei ∈ S
(closure under countable union). The probability function Pr can be any function from S
to [0, 1] that satisfies the following basic consistency properties: Pr [φ] = 0, Pr [Ω] = 1,

Pr [E] = 1 − Pr
[

E
]

, and the Union Bound for disjoint events (12.26) should hold even for

countable unions — if E1, E2, E3, . . . ∈ S are all pairwise disjoint, then

Pr

[

∞
⋃

i=1

Ei

]

=
∞
∑

i=1

Pr [Ei] .

Notice how, since we are not building up Pr from the more basic notion of a probability

mass any more, fact (12.26) moves from being a theorem to simply a required property of

Pr.

When an infinite sample space arises in our context, it’s typically for the following reason:

we have an algorithm that makes a sequence of random decisions, each one from a fixed finite

set of possibilities; and since it may run for arbitrarily long, it may make an arbitrarily large

number of decisions. Thus, we consider the sample spaces Ω constructed as follows. We

start with a finite set of symbols X = {1, 2, . . . , n}, and assign a weight w(i) to each symbol

i ∈ X. We then define Ω to be the set of all infinite sequence of symbols from X (with

repetitions allowed). So a typical element of Ω will look like 〈x1, x2, x3, . . .〉 with each entry

xi ∈ X.

The simplest type of event we will be concerned with is as follows — it is the event that a

point ω ∈ Ω begins with a particular finite sequence of symbols. Thus, for a finite sequence

σ = x1x2 . . . xs of length s, we define the prefix event associated with σ to be the set of all

sample points of Ω whose first s entries form the sequence σ. We denote this event by Eσ,

and we define its probability to be Pr [Eσ] = w(x1)w(x2) · · ·w(xs).

The following fact is in no sense easy to prove.

(12.28) There is a probability space (Ω,S, Pr), satisfying the required closure and con-

sistency properties, such that Ω is the sample space defined above, Eσ ∈ S for each finite

sequence σ, and Pr [Eσ] = w(x1)w(x2) · · ·w(xs).

Once we have this fact, the closure of S under complement and countable union and

the consistency of Pr with respect to these operations allows us to compute probabilities of

essentially any “reasonable” subset of Ω.

440 CHAPTER 12. RANDOMIZED ALGORITHMS

In our infinite sample space Ω, with events and probabilities defined as above, we en-

counter a phenomenon that does not naturally arise with finite sample spaces. Suppose the

set X used to generate Ω is equal to {0, 1}, and w(0) = w(1) = 1/2. Let E denote the set

consisting of all sequences that contain at least one entry equal to 1. (Note that E omits

the “all-0” sequence.) We observe that E is an event in S, since we can define σi to be the

sequence of i− 1 0’s followed by a 1, and observe that E = ∪∞
i=1Eσi

. Moreover, all the events

Eσi
are pairwise disjoint, and so

Pr [E] =
∞
∑

i=1

Pr [Eσi
] =

∞
∑

i=1

2−i = 1.

Here then is the phenomenon: it’s possible for an event to have probability 1 even when

it’s not equal to the whole sample space Ω. Similarly, Pr
[

E
]

= 1 − Pr [E] = 0, and so we

see that it’s possible for an event to have probability 0 even when it’s not the empty set.

There is nothing wrong with any of these results; in a sense, it’s a necessary step if we

want probabilities defined over infinite sets to make sense. It’s simply that in such cases, we

should be careful to distinguish between the notion that an event has probability 0 and the

intuitive idea that the event “can’t happen.”

12.12 Exercises

1. In the first lecture on randomization, we saw a simple distributed protocol to solve a

particular contention-resolution problem. Here is another setting in which randomiza-

tion can help with contention-resolution, through the distributed construction of an

independent set.

Suppose we have a system with n processes. Certain pairs of processes are in conflict,

meaning that they both require access to a shared resource. In a given time interval,

the goal is to schedule a large subset S of the processes to run — the rest will remain

idle — so that no two conflicting processes are both in the scheduled set S. We’ll call

such a set S conflict-free.

One can picture this process in terms of a graph G = (V, E) with a node representing

each process and an edge joining pairs of processes that are in conflict. It is easy to

check that a set of processes S is conflict-free if and only if it forms an independent set

in G. This suggests that finding a maximum-size conflict-free set S, for an arbitrary

conflict G will be difficult (since the general independent set problem is reducible to

this problem). Nevertheless, we can still look for heuristics that find a reasonably

large conflict-free set. Moreover, we’d like a simple method for achieving this without

centralized control: each process should communicate with only a small number of

other processes, and then decide whether or not it should belong to the set S.

12.12. EXERCISES 441

We will suppose for purposes of this question that each node has exactly d neighbors

in the graph G. (That is, each process is in conflict with exactly d other processes.)

(a) Consider the following simple protocol.

Each process Pi independently picks a random value xi; it sets xi to 1 with

probability 1
2

and set xi to 0 with probability 1
2
. It then decides to enter the

set S if and only if it chooses the value 1, and each of the processes with

which it is in conflict chooses the value 0.

Prove that the set S resulting from the execution of this protocol is conflict-free. Also,

give a formula for the expected size of S in terms of n (the number of processes) and

d (the number of conflicts per process).

(b) The choice of the probability 1
2

in the protocol above was fairly arbitrary, and it’s

not clear that it should give the best system performance. A more general specification

of the protocol would replace the probability 1
2

by a parameter p between 0 and 1, as

follows:

Each process Pi independently picks a random value xi; it sets xi to 1 with

probability p and set xi to 0 with probability 1− p. It then decides to enter

the set S if and only if it chooses the value 1, and each of the processes with

which it is in conflict chooses the value 0.

In terms of the parameters of the graph G, give a value of p so that the expected size

of the resulting set S is as large as possible. Give a formula for the expected size of S

when p is set to this optimal value.

2. In class, we designed an approximation algorithm to within a factor of 7/8 for the

MAX 3-SAT problem, where we assumed that each clause has terms associated with 3

different variables. In this problem we will consider the analogous MAX SAT problem:

given a set of clauses C1, . . . , Ck over a set of variables X = {x1, . . . , xn}, find a truth

assignment satisfying as many of the clauses as possible. Each clause has at least one

term in it, but otherwise we do not make any assumptions on the length of the clauses:

there may be clauses that have a lot of variables, and others may have just a single

variable.

(a) First consider the randomized approximation algorithm we used for MAX 3-SAT,

setting each variable independently to true or false with probability 1/2 each. Show

that the expected number of clauses satisfied by this random assignment is at least

k/2, i.e., half of the clauses is satisfied in expectation. Give an example to show that

442 CHAPTER 12. RANDOMIZED ALGORITHMS

there are MAX SAT instances such that no assignment satisfies more than half of the

clauses.

(b) If we have a clause that consists just of a single term (e.g. a clause consisting just

of x1, or just of x2), then there is only a single way to satisfy it: we need to set the

corresponding variable in the appropriate way. If we have two clauses such that one

consists of just the term xi, and the other consists of just the negated term xi, then

this is a pretty direct contradiction.

Assume that our instance has no such pair of “conflicting clauses”; that is, for no

variable xi do we have both a clause C = {xi} and a clause C ′ = {xi}. Modify the

above randomized procedure to improve the approximation factor from 1/2 to at least a

.6 approximation, that is, change the algorithm so that the expected number of clauses

satisfied by the process is at least .6k.

(c) Give a randomized polynomial time algorithm for the general MAX SAT problem,

so that the expected number of clauses satisfied by the algorithm is at least a .6 fraction

of the maximum possible.

(Note that by the example in part (a), there are instances where one cannot satisfy

more than k/2 clauses; the point here is that we’d still like an efficient algorithm that,

in expectation, can satisfy a .6 fraction of the maximum that can be satisfied by an

optimal assignment.)

3. Let G = (V, E) be an undirected graph. We say that a set of vertices X ⊆ V is a

dominating set if every vertex of G is a member of X or is joined by an edge to a

member of X.

Give a polynomial-time algorithm that takes an arbitrary d-regular graph and finds

a dominating set of size O
(

n log n
d

)

. (A graph is d-regular if each vertex is incident to

exactly d edges.) Your algorithm can be either deterministic or randomized; if it is

randomized, it must always return the correct answer and have an expected running

time that is polynomial in n.

4. Consider a very simple on-line auction system that works as follows. There are n

bidding agents; agent i has a bid bi, which is a positive natural number. We will

assume that all bids bi are distinct from one another. The bidding agents appear in

an order chosen uniformly at random, each proposes its bid bi in turn, and at all times

the system maintains a variable b∗ equal to the highest bid seen so far. (Initially b∗ is

set to 0.)

What is the expected number of times that b∗ is updated when this process is executed,

as a function of the parameters in the problem?

12.12. EXERCISES 443

Example: Suppose b1 = 20, b2 = 25, and b3 = 10, and the bidders arrive in the order

1, 3, 2. Then b∗ is updated for 1 and 2, but not for 3.

5. One of the (many) hard problems that arises in genome mapping can be formulated

in the following abstract way. We are given a set of n markers {µ1, . . . , µn} — these

are positions on a chromosome that we are trying to map — and our goal is to output

a linear ordering of these markers. The output should be consistent with a set of k

constraints, each specified by a triple (µi, µj, µk), requiring that µj lie between µi and

µk in the total ordering that we produce.

Now, it is not always possible to satisfy all constraints simultaneously, so we wish to

produce an ordering that satisfies as many as possible. Unfortunately, deciding whether

there is an ordering that satisfies at least k′ of the k constraints is an NP-complete

problem (you don’t have to prove this.)

Give a constant α > 0 (independent of n) and an algorithm with the following property.

If it is possible to satisfy k∗ of the constraints, then the algorithm produces an ordering

of markers satisfying at least αk∗ of the constraints. You can provide either be a

deterministic algorithm running in polynomial time, or a randomized algorithm which

has expected polynomial running time and always produces an approximation within

a factor of α.

6. Suppose that a tree network is grown according to the following randomized process.

We begin in step 1, with a single isolated node v1. In any step k ≥ 2, we introduce a

new node vk and draw an edge from vk to a node chosen uniformly at random from

v1, v2, . . . , vk−1. We stop after step n, with a tree on n nodes.

What is the expected number of leaves in the resulting tree?

7. Let G = (V, E) be an undirected graph with n nodes and m edges. For a subset

X ⊆ V , we use G[X] to denote the subgraph induced on X — that is, the graph

(X, {(u, v) ∈ E : u, v ∈ X}).

We are given a natural number k ≤ n, and are interested in finding a set of k nodes

that induces a “dense” subgraph of G; we’ll phrase this concretely as follows. Give

a polynomial-time algorithm that produces, for a given natural number k ≤ n, a set

X ⊆ V of k nodes with the property that the induced subgraph G[X] has at least
mk(k−1)
n(n−1)

edges.

You may give either (a) a deterministic algorithm, or (b) a randomized algorithm that

has an expected running time achieving the given bound, and which only outputs

correct answers.

444 CHAPTER 12. RANDOMIZED ALGORITHMS

8. We are given a set of variables x1, x2, . . . , xn, each of which can take one of the three

values {0, 1, 2}. We are also given a set of k constraints C1, C2, . . . , Ck, each of which

has the form xi 6= xj for some choice of i and j. An assignment of values to the

variables satisfies a constraint xi 6= xj if the value assigned to xi is different from the

value assigned to xj.

Consider the problem of finding an assignment of values to variables that maximizes

the number of satisfied constraints. This problem is NP-hard, though you don’t have

to prove this.

Let c∗ denote the maximum possible number of constraints that can be satisfied by

an assignment of values to variables. Give a polynomial-time algorithm that produces

an assignment satisfying at least 2
3
c∗ constraints. If you want, your algorithm can

be randomized; in this case, the expected number of constraints it satisfies should be

at least 2
3
c∗. In either case, you should prove that your algorithm has the desired

performance guarantee.

9. Suppose you’re a consultant for Price Gouging Unlimited, and they come to you with

the following problem. They’ve contracted out their algorithmic skills to a large long-

distance telephone carrier, which is trying to redesign its area-code system to improve

revenue. Their area-code system works as follows: calls between two numbers within

one area code are local and cost c1 cents per minute; calls between two numbers in

different area codes are long distance and cost c2 cents per minute, where c2 > c1.

The particular problem being tossed around in the halls of PGU at the moment is

as follows. The phone company has selected a specific one of its area codes — call

it A — and it plans to split it so as to maximize its revenue on the resulting set of

long-distance calls. More concretely, they have a graph G = (V, E) whose vertex set is

the set of all phone number within area code A. Between each pair u, v ∈ V there is an

edge (u, v) whose weight wuv is equal to the total number of minutes per month that

phone numbers u and v are connected to each other. So the current revenue generated

by calls within area code A is
∑

u,v∈V c1wuv. We’ll assume (unrealistically) that these

weights wuv remain the same from one month to the next. The phone company plans

to

• create two new area codes B and C,

• partition the phone numbers in the set V into sets V1 and V2,

• assign V1 to area code B, and

• assign V2 to area code C.

A phone call from B to C (or from C to B) now becomes a long-distance call and

costs c2 cents per minute — thus, the phone company stands to make more money per

12.12. EXERCISES 445

month on phone calls among numbers in the set V after it splits the area code.

Your goal is: find the partition (V1, V2) of V that maximizes the phone company’s

monthly revenue, subject to the weights {wuv}.
Here’s an extremely simple randomized algorithm for this problem:

For each phone number, assign it independently at random to one of the two

area codes, with equal probability.

Show that the expected value of the revenue from the partition generated by this

algorithm is at least 50% as large as the revenue generated by the optimal partition.

10. Assume you have n balls and n bins, and each ball is placed in a bin selected inde-

pendently at random (with each bin equally likely). Throughout this problem use the

approximation (1− 1/n)n ≈ 1/e whenever it is useful.

(a.) Prove that the expected number of empty bins is approaches n/e for large n.

Hint: remember that expectation is linear.

(b.) Assume that you have n jobs and n machines, and each job selects a machine

independently at random (with each machine equally likely). Assume that if a

machine is selected by more than one job, it will do the first job, and reject the

rest. What is the expected number of rejected jobs?

(c.) Now assume in the above job-machine example each machine will do the first two

jobs, and reject the rest if more than two jobs are assigned to it. What is the

expected number of rejected jobs now?

11. Consider the following analog of Karger’s algorithm for finding minimum s−t-cuts. We

will contract edges analogous to Karger’s algorithm. Let s and t denote the possibly

contracted node that contains the original nodes s and t respectively. To make sure

that s and t do not get contracted, at each iteration we delete the edges connecting

s and t, and select a random edge to contract among the remaining edges. Give an

example to show that the probability that this method finds a minimum s− t cut can

be exponentially small. Hint: How many minimum capacity s-t cuts can there be?

12. Consider a county in which 100, 000 people vote in an election. There are only two

candidates on the ballot: a Democratic candidate (denoted D) and a Republican can-

didate (denoted R). As it happens, this county is heavily Democratic, so 80, 000 people

go to the polls with the intention of voting for D and 20, 000 go to the polls with the

intention of voting for R.

However, the layout of the ballot is a little confusing, so each voter, independently and

with probability 1
100

, votes for the wrong candidate; i.e. the one that he or she didn’t

446 CHAPTER 12. RANDOMIZED ALGORITHMS

intend to vote for. (Remember that in this election, there are only two candidates on

the ballot.)

Let X denote the random variable equal to the number of votes received by the Demo-

cratic candidate D, when the voting is conducted with this process of error. Determine

the expected value of X, and give an explanation of your derivation of this value.

13. Out in a rural part of the state somewhere, n small towns have decided to get connected

to a large Internet switching hub via a high-volume fiber-optic cable.

switching
hub

.........

T T T T1 2 3 n

The towns are labeled T1, T2, . . . , Tn, and they are all arranged on a single long highway,

so that town Ti is i miles from the switching hub.

Now, this cable is quite expensive; it costs k dollars per mile, resulting in an overall

cost of kn dollars for the whole cable. The towns get together and discuss how to

divide up the cost of the cable.

First, one of the towns way out at the far end of the highway makes the following

proposal.

Proposal A. Divide the cost evenly among all towns, so each pays k dollars.

There’s some sense in which Proposal A is fair, since it’s like each town is paying for

the mile of cable directly leading up to it.

But one of the towns very close to the switching hub objects, pointing out that the

far-away towns are actually benefitting from a large section of the cable, whereas the

close-in towns only benefit from a short section of it. So they make the following

counter-proposal.

Proposal B. Divide the cost so that the contribution of town Ti is propor-

tional to i, its distance from the switching hub.

One of the other towns very close to the switching hub points out that there’s another

way to do a non-proportional division which is also natural. This is based on concep-

tually dividing the cable into n equal-length “edges” e1, . . . , en, where the first edge e1

runs from the switching hub to T1, and the ith edge ei (i > 1) runs from Ti−1 to Ti.

Now we observe that while all the towns benefit from e1, only the last town benefits

from en. So they suggest

12.12. EXERCISES 447

Proposal C. Divide the cost separately for each edge ei. The cost of ei

should be shared equally by the towns Ti, Ti+1, . . . , Tn, since these are the

towns “downstream” of ei.

0.2inSo now the towns have many different options; which is the fairest? To resolve

this they turn to the work of Lloyd Shapley, one of the most famous mathematical

economists of the 20th century; he proposed what is now called the Shapley value as

a general mechanism for sharing costs or benefits among several parties. It can be

viewed as determining the “marginal contribution” of each party, assuming the parties

arrive in a random order.

Here’s how it would work concretely in our setting. Consider an ordering O of the

towns, and suppose that the towns “arrive” in this order. The marginal cost of town

Ti in order O is determined as follows. If Ti is first in the order O, then Ti pays ki, the

cost of running the cable all the way from the switching hub to Ti. Otherwise, look at

the set of towns that come before Ti in the order O, and let Tj be the farthest among

these towns from the switching hub. When Ti arrives, we assume the cable already

reaches out to Tj but no farther. So if j > i (Tj is farther out than Ti), then the

marginal cost of Ti is 0, since the cable already runs past Ti on its way out to Tj. On

the other hand, if j < i, then the marginal cost of Ti is k(i− j): the cost of extending

the cable from Tj out to Ti.

(For example, suppose n = 3 and the towns arrive in the order T1, T3, T2. First T1

pays k when it arrives. Then, when T3 arrives, it only has to pay 2k to extend the

cable from T1. Finally, when T2 arrives, it doesn’t have to pay anything since the cable

already runs past it out to T3.)

0.2inNow, let Xi be the random variable equal to the marginal cost of town Ti when

the order O is selected uniformly at random from all permutations of the towns. Under

the rules of the Shapley value, the amount that Ti should contribute to the overall cost

of the cable is the expected value of Xi.

The question is: Which of the above three proposals, if any, gives the same division of

costs as the Shapley value cost-sharing mechanism? Give a proof for your answer.

14. Suppose you’re designing strategies for selling items on a popular auction Web site.

Unlike other auction sites, this one uses a one-pass auction, in which each bid must be

immediately (and irrevocably) accepted or refused. Specifically,

• First, a seller puts up an item for sale.

• Then buyers appear in sequence.

• When buyer i appears, he or she makes a bid bi > 0.

448 CHAPTER 12. RANDOMIZED ALGORITHMS

• The seller must decide immediately whether to accept the bid or not. If the seller

accepts the bid, the item is sold and all future buyers are turned away. If the

seller rejects the bid, buyer i departs and the bid is withdrawn; and only then

does the seller see any future buyers.

Suppose an item is offered for sale, and there are n buyers, each with a distinct bid.

Suppose further that the buyers appear in a random order, and that the seller knows the

number n of buyers. We’d like to design a strategy whereby the seller has a reasonable

chance of accepting the highest of the n bids. By a “strategy,” we mean a rule by

which the seller decides whether to accept each presented bid, based only on the value

of n and the sequence of bids seen so far.

For example, the seller could always accept the first bid presented. This results in the

seller accepting the highest of the n bids with probability only 1/n, since it requires

the highest bid to be the first one presented.

Give a strategy under which the seller accepts the highest of the n bids with probability

at least 1/4, regardless of the value of n. (For simplicity, you are allowed to assume that

n is an even number.) Prove that your strategy achieves this probabilistic guarantee.

15. Suppose you are presented with a very large set S of real numbers, and you’d like

to approximate the median of these numbers by sampling. You may assume all the

numbers in S are distinct. Let n = |S|; we will say that a number x is an ε-approximate

median of S if at least (1
2
− ε)n numbers in S are less than x, and at least (1

2
− ε)n

numbers in S are greater than x.

Consider an algorithm that works as follows. You select a subset S ′ ⊆ S uniformly at

random, compute the median of S ′, and return this as an approximate median of S.

Show that there is an absolute constant c, independent of n, so that if you apply this

algorithm with a sample S ′ of size c, then with probability at least .99, the number

returned will be a (.05)-approximate median of S. (You may consider either the version

of the algorithm that constructs S ′ by sampling with replacement, so that an element

of S can be selected multiple times, or without replacement.)

16. Consider the following simple model of gambling in the presence of bad odds. At the

beginning, your net profit is 0. You play for a sequence of n rounds; and in each round,

your net profit increases by 1 with probability 1/3, and decreases by 1 with probability

2/3.

Show that the expected number of steps in which your net profit is positive can be

upper-bounded by an absolute constant, independent of the value of n.

12.12. EXERCISES 449

17. Consider a balls and bins experiment with 2n balls but only 2 bins. As usual, each

ball independently selects one of the two bins, both bins equally likely. The expected

number of balls in each bin is n. In this problem we explore the question of how big

their difference is likely to be. Let X1 and X2 denote the number of balls in the two

bins respectively. (X1 and X2 are random variables.) Prove that for any ε > 0 there

is a constant c > 0 such that the probability Pr [X1 −X2 > c
√

n] ≤ ε.

18. Consider the following (partially specified) method for transmitting a message securely

between a sender and a receiver. The message will be represented as a string of bits.

Let Σ = {0, 1}, and let Σ∗ denote the set of all strings of 0 or more bits. (E.g.

0, 00, 1110001 ∈ Σ∗. The “empty string”, with no bits, will be denoted λ ∈ Σ∗.)

The sender and receiver share a secret function f : Σ∗ × Σ → Σ. That is, f takes a

word and a bit, and returns a bit. When the receiver gets a sequence of bits α ∈ Σ∗,

he/she runs the following method to decipher it:

Let α = α1α2 · · ·αn, where n is the number of bits in α.
The goal is to produce an n-bit deciphered message, denoted β =
β1β2 · · ·βn.

Set β1 := f(λ, α1).
For i = 2, 3, 4, . . . , n

Set βi := f(β1β2 · · ·βi−1, αi).
End for

Output β.

One could view this is as type of “stream cipher with feedback.” One problem with

this approach is that if any bit αi gets corrupted in transmission, it will corrupt the

computed value of βj for all j ≥ i.

We consider the following problem. A sender S wants to transmit the same (plain-text)

message β to each of k receivers R1, . . . , Rk. With each one, he shares a different secret

function f 〈i〉. Thus, he sends a different encrypted message α〈i〉 to each receiver, so

that α〈i〉 decrypts to β when the above algorithm is run with the function f 〈i〉.

Unfortunately, the communication channels are very noisy, so each of the n bits in each

of the k transmissions is independently corrupted (i.e. flipped to its complement) with

probability 1/4. Thus, no single receiver on his/her own is likely to be able to decrypt

the message correctly. Show, however, that if k is large enough as a function of n, then

the k receivers can jointly reconstruct the plain-text message in the following way.

They get together, and without revealing any of the α〈i〉 or the f 〈i〉, they interactively

run an algorithm that will produce the correct β with probability at least 9/10. (How

large do you need k to be in your algorithm?)

450 CHAPTER 12. RANDOMIZED ALGORITHMS

19. Some people designing parallel physical simulations come to you with the following

problem. They have a set P of k basic processes, and want to assign each process to

run on one of two machines, M1 and M2. They are then going to run a sequence of n

jobs, J1, . . . , Jn. Each job Ji is represented by a set Pi ⊆ P of exactly 2n basic processes

which must be running (each on its assigned machine) while the job is processed. An

assignment of basic processes to machines will be called perfectly balanced if, for each

job Ji, exactly n of the basic processes associated with Ji have been assigned to each of

the two machines. An assignment of basic processes to machines will be called nearly

balanced if, for each job Ji, no more than 4
3
n of the basic processes associated with Ji

have been assigned to the same machine.

(a) Show that for arbitrarily large values of n, there exist sequences of jobs J1, . . . , Jn

for which no perfectly balanced assignment exists.

(b) Suppose that n ≥ 200. Give an algorithm that takes an arbitrary sequence of jobs

J1, . . . , Jn and produces a nearly balanced assignment of basic processes to machines.

Your algorithm may be randomized, in which case its expected running time should

be polynomial, and it should always produce the correct answer.

Chapter 13

Epilogue: Algorithms that Run
Forever

Every decade has its addictive puzzles; and if Rubik’s Cube stands out as the pre-eminent

solitaire recreation of the early eighties, then Tetris evokes a similar nostalgia for the early

nineties. Rubik’s Cube and Tetris have a number of things in common — they share a highly

mathematical flavor, based on stylized geometric forms — but the differences between them

are perhaps more interesting.

Rubik’s Cube is a game whose complexity is based on an enormous search space; given a

scrambled configuration of the Cube, you have to apply an intricate sequence of operations

to reach the ultimate goal. On the other hand, Tetris — in its pure form — has a much

fuzzier definition of “success”; rather than aiming for a particular endpoint, you’re faced with

a basically infinite stream of events to be dealt with, and you have to react continuously so

as to keep your head above water.

These novel features of Tetris parallel an analogous set of themes that has emerged in

recent thinking about algorithms. Increasingly, we face settings in which the standard view

of algorithms — in which one begins with an input, runs for a finite number of steps, and

produces an output — does not really apply. Rather, if we think about Internet routers

that move packets while avoiding congestion, or decentralized file-sharing mechanisms that

replicate and distribute content to meet user demand, or machine learning routines that form

predictive models of concepts that change over time, then we are dealing with algorithms

that effectively are designed to run forever. Instead of producing an eventual output, they

succeed if they can keep up with an environment that is in constant flux and continuously

throwing new tasks at them. For such applications, we have shifted from the world of Rubik’s

Cube to the world of Tetris.

There are many settings in which we could explore this theme, and for this final lecture

we consider one of the most compelling — the design of algorithms for high-speed switching

on the Internet.

451

452 CHAPTER 13. EPILOGUE: ALGORITHMS THAT RUN FOREVER

I

I

I

I

1

2

3

4

O

O

O

O

1

2

3

4

p

q

r

Figure 13.1: A switch with n = 4 inputs and outputs. In one time step, packets p, q, and r
have arrived.

Algorithms for Packet Switching

A packet traveling from a source to a destination on the Internet can be thought of as

traversing a path in a large graph whose nodes are switches, and whose edges are the cables

that link switches together. Each packet p has a header from which a switch can determine,

when p arrives on an input link, the output link on which p needs to depart. The goal of a

switch is thus to take streams of packets arriving on its input links and move each packet, as

quickly as possible, to the particular output link on which it needs to depart. How quickly?

In high-volume settings, it is possible for a packet to arrive on each input link once every few

tens of nanoseconds; if they aren’t off-loaded to their respective output links at a comparable

rate, then traffic will back up and packets will be dropped.

In order to think about the algorithms operating inside a switch, we model the switch

itself as follows. It has n input links I1, . . . , In and n output links O1, . . . , On. Packets arrive

on the input links; a given packet p has an associated input/output type (I[p], O[p]) indicating

that it has arrived at input link I[p] and needs to depart on output link O[p]. Time moves in

discrete steps; in each step, at most one new packet arrives on each input link, and at most

one packet can depart on each output link.

Consider the example in Figure 13.1. In a single time step, the three packets p, q, and

r have arrived at an empty switch on input links I1, I3, and I4 respectively. Packet p is

destined for O1, packet q is destined for O3, and packet r is also destined for O3. Now,

there’s no problem sending packet p out on link O1; but only one packet can depart on link

O3, and so the switch has to resolve the contention between q and r. How can it do this?

453

The simplest model of switch behavior is known as pure output queueing, and it’s essen-

tially an idealized picture of how we wished a switch behaved. In this model, all nodes that

arrive in a given time step are placed in an output buffer associated with their output link,

and one of the packets in each output buffer actually gets to depart. More concretely, here’s

the model of a single time step.

One step under pure output queueing:

Packets arrive on input links.

Each packet p of type (I[p], O[p]) is moved to output buffer O[p].
At most one packet departs from each output buffer.

So in Figure 13.1, the given time step could end with packets p and q having departed on

their output links, and with packet r sitting in the output buffer O3. (In discussing this

example here and below, we’ll assume that q is favored over r when decisions are made.)

Under this model, the switch is basically a “frictionless” object through which packets pass

unimpeded to their output buffer.

In reality, however, a packet that arrives on an input link must be copied over to its

appropriate output link, and this operation requires some processing that ties up both the

input and output links for a few nanoseconds. So really, constraints within the switch do

pose some obstacles to the movement of packets from inputs to outputs.

The most restrictive model of these constraints, input/output queueing, works as follows.

We now have an input buffer for each input link I, as well as an output buffer for each output

link O. When each packet arrives, it immediately lands in its associated input buffer. In

a single time step, a switch can read at most one packet from each input buffer and write

at most one packet to each output buffer. So under input/output queueing, the example of

Figure 13.1 would work as follows. Each of p, q, and r would arrive in different input buffers;

the switch could then move p and q to their output buffers, but it could not move all three

— since moving all three would involve writing two packets into the output buffer O3. Thus,

the first step would end with p and q have departed on their output links, and r sitting in

the input buffer I4 (rather than in the output buffer O3).

More generally, the restriction of limited reading and writing amounts to the following: if

packets p1, . . . , p` are moved in a single time steps from input buffers to output buffers, then

all their input buffers and all their output buffers must be distinct. In other words, their

types {(I[pi], O[pi]) : i = 1, 2, . . . , `} must form a biparite matching. Thus, we can model a

single time step as follows.

One step under input/output queueing:

Packets arrive on input links and are placed in input buffers.

A set of packets whose types form a matching are moved to their

associated output buffers.

At most one packet departs from each output buffer.

454 CHAPTER 13. EPILOGUE: ALGORITHMS THAT RUN FOREVER

I

I

I

I

1

2

3

4

O

O

O

O

1

2

3

4

p

q

r

I

I

I

I

1

2

3

4

O

O

O

O

1

2

3

4

rs

Figure 13.2: A two-step example in which head-of-line blocking occurs.

The choice of which matching to move is left unspecified for now; this is a point that will

become crucial below.

So under input/output queueing, the switch introduces some “friction” on the movement

of packets, and this is an observable phenomenon: if we view the switch as a black box, and

simply watch the sequence of departures on the output links, then we can see the difference

between pure output queueing and input/output queueing. Consider an example whose first

step is just like Figure 13.1, and in whose second step a single packet s of type (I4, O4)

arrives. Under pure output queueing, p and q would depart in the first step, and r and s

would depart in the second step. Under input/output queueing, however, the sequence of

events depicted in Figure 13.2 occurs: at the end of the first step, r is still sitting in the

input buffer I4, and so at the end of the second step one of r or s is still in the input buffer

I4 and has not yet departed. This conflict between r and s is called “head-of-line” blocking,

and it causes a switch with input/output queueing to exhibit inferior delay characteristics

compared with pure output queueing.

Simulating a Switch with Pure Output Queueing. While pure output queueing

would be nice to have, the arguments above indicate why it’s not feasible to design a switch

455

with this behavior: in a single time step (lasting only tens of nanoseconds) it would not

generally be possible to move packets from each of n input links to a common output buffer.

But what if we were to take a switch that used input/output queueing and ran it some-

what faster, moving several matchings in a single time step instead of just one? Would it

be possible to simulate a switch that used pure output queueing? By this we mean that

the sequence of departures on the output links (viewing the switch as a black box) should

be the same under the behavior of pure output queueing and the behavior of our sped-up

input/output queueing algorithm.

It is not hard to see that a speed-up of n would suffice: if we could move n matchings in

each time step, then even if every arriving packet needed to reach the same output buffer, we

could move them all in the course of one step. But a speed-up of n is completely infeasible;

and if we think about this worst-case example, we begin to worry that we might need a

speed-up of n to make this work — after all, what if all the arriving packets really did need

to go to the same output buffer?

The crux of this lecture is to show that a much more modest (and arguably feasible) speed-

up is sufficient: we’ll describe a striking result of Chuang, Goel, McKeown, and Prabhakar,

showing that a switch using input/output queueing with a speed-up of 2 can simulate a

switch that uses pure output queueing. Intuitively, the result exploits the fact that the

behavior of the switch at an internal level need not resemble the behavior under pure output

queueing, provided that the sequence of output link departures is the same. (Hence, to

continue the example in the previous paragraph, it’s okay that we don’t move all n arriving

packets to a common output buffer in one time step; we can afford more time for this, since

their departures on this common output link will be spread out over a long period of time

anyway.)

Just to be precise, here’s our model for a speed-up of 2.

One step under sped-up input/output queueing:

Packets arrive on input links and are placed in input buffers.

A set of packets whose types form a matching are moved to their

associated output buffers.

At most one packet departs from each output buffer.

A set of packets whose types form a matching are moved to their

associated output buffers.

In order to prove that this model can simulate pure output queueing, we need to resolve

the crucial under-specified point in the above model: which matchings should be moved in

each step? The answer to this question will form the core of the result, and we build up to

it through a sequence of intermediate steps. To begin with, we make one simple observation

right away: if a packet of type (I, O) is part of a matching selected by the switch, then the

switch will move the packet of this type that has the earliest time to leave.

456 CHAPTER 13. EPILOGUE: ALGORITHMS THAT RUN FOREVER

Maintaining Input and Output Buffers. To decide which two matchings the switch

should move in a given time step, we define some quantities that track the current state of

the switch relative to pure output queueing. To begin with, for a packet p, we define its

time to leave, TL(p), to be the time step in which it would depart on its output link from a

switch that was running pure output queueing. The goal is to make sure that each packet p

departs from our switch (running sped-up input/output queueing) in precisely the time step

TL(p).

Conceptually, each input buffer is maintained as an ordered list; however, we retain the

freedom to insert an arriving packet into the middle of this order, and to move a packet to

its output buffer even when it is not yet at the front of the line. Despite this, the linear

ordering of the buffer will form a useful progress measure. Each output buffer, on the other

hand, does not need to be ordered; when a packet’s time to leave comes up, we simply let

it depart. We can think of the whole set-up as resembling a busy airport terminal, with the

input buffers corresponding to check-in counters, the output buffers to the departure lounge,

and the internals of the switch to a congested security checkpoint. The input buffers are

stressful places: if you don’t make it to the head of the line by the time your departure is

announced, you could miss your time to leave; to mitigate this, there are airport personnel

who are allowed to helpfully extract you from the middle of the line and hustle you through

security. The output buffers, by way of contrast, are relaxing places: you sit around until

your time to leave is announced, and then you just go. The goal is to get everyone through

the congestion in the middle so that they depart on time.

One consequence of these observations is that we don’t need to worry about packets that

are already in output buffers; they’ll just depart at the right time. Hence we refer to a packet

p as unprocessed if it is still in its input buffer, and we define some further useful quantities

for such packets. The input cushion IC(p) is the number of packets ordered in front of p in

its input buffer. The output cushion OC(p) is the number of packets already in p’s output

buffer that have an earlier time to leave. Things are going well for an unprocessed packet p

if OC(p) is significantly greater than IC(p); in this case, p is near the front of the line in its

input buffer, and there are still a lot of packets before it in the output buffer. To capture this

relationship we define Slack(p) = OC(p) − IC(p), observing that large values of Slack(p)

are good.

Here is our plan: we will move matchings through the switch so as to maintain the

following two properties at all times:

(i) Slack(p) ≥ 0 for all unprocessed packets p.

(ii) In any step that begins with IC(p) = OC(p) = 0, packet p will be moved to its output

buffer in the first matching.

We first claim that it is sufficient to maintain these two properties.

457

I[p] (front)

x p q

y

O[p]

Figure 13.3: Choosing a matching to move.

(13.1) If properties (i) and (ii) are maintained for all unprocessed packets at all times,

then every packet p will depart at its time to leave TL(p).

Proof. If p is in its output buffer at the start of step TL(p), then it can clearly depart.

Otherwise, it must be in its input buffer. In this case, we have OC(p) = 0 at the start of the

step. By property (i), we have Slack(p) = OC(p)−IC(p) ≥ 0, and hence IC(p) = 0. It then

follows from property (ii) that p will be moved to the output buffer in the first matching of

this step, and hence will depart in this step as well.

It turns out that property (ii) is easy to guarantee — and it will arise naturally from the

solution below — so we focus on the tricky task of choosing matchings so as to maintain

property (i).

Moving a Matching Through a Switch. When a packet p first arrives on an input link,

we insert it as far back in the input buffer as possible (potentially somewhere in the middle)

consistent with the requirement Slack(p) ≥ 0. This makes sure property (i) is satisfied

initially for p.

Now, if we want to maintain non-negative slacks over time, then we need to worry about

counter-balancing events that cause Slack(p) to decrease. Let’s return to the description of

a single time step and think about how such decreases can occur.

One step under double input/output queueing:

Packets arrive on input links and are placed in input buffers.

The switch moves a matching.

At most one packet departs from each output buffer.

The switch moves a matching.

Consider a given packet p that is unprocessed at the beginning of a time step. In the

arrival phase of the step, IC(p) could increase by 1 if the arriving packet is placed in the

458 CHAPTER 13. EPILOGUE: ALGORITHMS THAT RUN FOREVER

input buffer ahead of p. This would cause Slack(p) to decrease by 1. In the departure phase

of the step, OC(p) could decrease by 1, since a packet with an earlier time to leave will

no longer be in the output buffer. This too would cause Slack(p) to decrease by 1. So in

summary, Slack(p) can potentially decrease by 1 in each of the arrival and departure phases.

Consequently, we will be able to maintain property (i) if we can guarantee that Slack(p)

increases by at least 1 each time the switch moves a matching. How can we do this?

If the matching to be moved includes a packet in I[p] that is ahead of p, then IC(p) will

decrease and hence Slack(p) will increase. If the matching includes a packet destined for

O[p] with an earlier time to leave than p, then OC(p) and Slack(p) will increase. So the only

problem is if neither of these things happens. Figure 13.3 gives a schematic picture of such a

situation: suppose that packet x is moved out of I[p] even though it is farther back in order,

and packet y is moved to O[p] even though it has a later time to leave. In this situation, it

seems that buffers I[p] and O[p] have both been treated “unfairly” — it would have been

better for I[p] to send a packet like p that was farther forward, and it would have been better

for O[p] to receive a packet like p that had an earlier time to leave. Taken together, the two

buffers form something reminiscent of an instability from the stable matching problem ...

In fact, we can make this precise, and it provides the key to finishing the algorithm.

Suppose we say that output buffer O prefers input buffer I to I ′ if the earliest time to leave

among packets of type (I, O) is smaller than the earliest time to leave among packets of type

(I ′, O). (In other words, buffer I is more in need of sending something to buffer O.) Further,

we say that input buffer I prefers output buffer O to output buffer O′ if the forward-most

packet of type (I, O) comes ahead of the forward-most packet of type (I, O ′) in the ordering

of I. We construct a preference list for each buffer from these rules; and if there are no

packets at all of type (I, O), then I and O are placed at the end of each other’s preference

lists, with ties broken arbitrarily.

The following fact now answers the question of how to choose a matching.

(13.2) Suppose the switch always moves a stable matching M with respect to the pref-

erence lists defined above. (And for each type (I, O) contained in M , we select the packet

of this type with the earliest time to leave). Then for all unprocessed packets p, the value

Slack(p) decreases by at least 1 when the matching M is moved.

Proof. Consider any unprocessed packet p. Following the discussion above, suppose that

no packet ahead of p in I[p] is moved as part of the matching M , and no packet destined for

O[p] with an earlier time to leave is moved as part of M . So in particular, the pair (I[p], O[p])

is not in M ; suppose that pairs (I ′, O[p]) and (I[p], O′) belong to M .

Now, p has an earlier time to leave than any packet of type (I ′, O[p]), and it comes ahead

of every packet of type (I[p], O′) in the ordering of I[p]. It follows that I[p] prefers O[p]

to O′, and O[p] prefers I[p] to I ′ — hence, the pair (I[p], O[p]) forms an instability, which

contradicts our assumption that M is stable.

459

Thus, by moving a stable matching in every step, the switch maintains the property

Slack(p) ≥ 0 for all packets p; hence, by (13.1) , the switch is able to simulate the behavior

of pure output queueing. Overall, it makes for a surprising last-minute appearance by the

topic with which we began the course — and rather than matching men with women or

applicants with employers, we find ourselves matching input links to output links in a high-

speed Internet router.

This has been one glimpse into the issue of algorithms that run forever, keeping up

with an infinite stream of new events; it is an intriguing topic, full of open directions and

unresolved issues. But that is for another time, and another course; and as for us — we are

done.

