Introduction to Algorithms

Jon Kleinberg Eva Tardos

Cornell University
Spring 2003

©Jon Kleinberg and Eva Tardos






Contents

3

1 Introduction
1.1 Introduction: The Stable Matching Problem . . . . . ... .. ..
1.2 Computational Tractability . . . . . .. .. ... ... ... ... ... ...
1.3 Interlude: Two Definitions . . . . . . . . . . . .. . ... .. .. ... ...,
1.4 Five Representative Problems . . . . . ... ... ... ... ...
1.5 Exercises . . . . . . .
2 Algorithmic Primitives for Graphs
2.1 Representing Graphs . . . . . . . . . ...
2.2 Paths, Cycles, and Trees . . . . . . . . . . . . . .
2.3 Graph Connectivity and Graph Traversal . . . . . . . ... .. ..
2.4 Two Applications of Graph Traversal . . . . . ... ... .. ...
2.5 Extensions to Directed Graphs . . . . . . ... ... ... .....
2.6 Directed Acyclic Graphs and Topological Ordering . . . . . . ..
2.7 EXErcises . . . . . . . ..
3 Greedy Algorithms
3.1 The Greedy Algorithm Stays Ahead . . . . . . . .. .. ... ...
3.2 Exchange Arguments . . . . . . ... ... ... ... ...
3.3 Shortest Paths ina Graph . . . .. .. ... ... ... ......
3.4 The Minimum Spanning Tree Problem . . . . . ... .. ... ..
3.5  Minimum-Cost Arborescences: A Multi-Phase Greedy Algorithm .
3.6 Exercises . . . . . ...
4 Divide and Conquer
4.1 A Useful Recurrence Relation . . . . .. ... ... ... ... ..
4.2 Counting Inversions . . . . . . . . . ... ..
4.3 Finding the Closest Pair of Points . . . . . . ... ... ... ...
4.4 EXercises . . . . . ..
5 Dynamic Programming
5.1 Weighted Interval Scheduling: The Basic Set-up . . . . . ... ..
5.2 Segmented Least Squares: Multi-way Choices . . . .. .. .. ..
5.3 Subset Sums and Knapsacks: Adding a Variable . . . . . . .. ..
5.4 RNA Secondary Structure: Dynamic Programming Over Intervals



CONTENTS

5.5 Sequence Alignment . . . . ... .. L 138
5.6 Sequence Alignment in Linear Space . . . . . . .. ... ... ... ..... 144
5.7 Shortest Pathsina Graph . . . . . . . . . .. . ... ... ... .. ..... 148
5.8 Negative Cycles in a Graph . . . . . ... .. ... ... ... ... ..., 156
5.9 ExXercises . . . . ... 161
Network Flow 179
6.1 The Maximum Flow Problem . . . . . .. ... ... .. ... .. ...... 180
6.2 Computing Maximum Flows . . . . . ... .. ... ... ... ... .. 182
6.3 Cutsin a Flow Network . . . . . . . . . ... .. .. .. ... . ... ... 187
6.4 Max-Flow Equals Min-Cut . . . . .. ... .. ... ... ... ... .. 189
6.5 Choosing Good Augmenting Paths . . . . . . . ... ... ... ... .... 192
6.6 The Preflow-Push Maximum Flow Algorithm . . . . . . ... ... ... ... 196
6.7 Applications: Disjoint Paths and Bipartite Matchings . . . . . . . ... ... 204
6.8 Extensions to the Maximum Flow Problem . . . . . ... ... ... .. ... 210
6.9 Applications of Maximum Flows and Minimum Cuts . . . . ... ... ... 214
6.10 Minimum Cost Perfect Matchings . . . . . . . . .. ... ... ... ... .. 226
6.11 Exercises . . . . . . . . 230
NP and Computational Intractability 253
7.1 Computationally Hard Problems . . . . . . . . ... ... ... ........ 254
7.2 Polynomial-time Reductions . . . . . . .. .. ... .. ... ... ... .. 259
7.3 Efficient Certification and the Definition of NP . . . . . . .. . ... ... .. 266
7.4 NP-complete Problems . . . . . . . .. .. ... .. ... .. ..., 269
7.5 Sequencing and Partitioning Problems . . . . . . .. .. ... .. ... ... 271
7.6 The Hardness of Numerical Problems . . . . . ... ... .. ... .. .... 280
7.7 co-NP and the Asymmetry of NP. . . . . . . ... ... ... ... .. ..., 283
7.8 EXEIrCiSes . . . . . . . o o o e 285
PSPACE 301
8.1 PSPACE . . . . . . e 301
8.2 Some Hard Problems in PSPACE . . . . . ... .. ... ... ........ 302
8.3 Solving Problems in Polynomial Space . . . . . .. ... ... ... ..... 305
8.4 Proving Problems PSPACE-complete . . . . . . . ... ... ... ...... 311
8.5 Exercises . . . . . .. 317
Extending the Limits of Tractability 319
9.1 Finding Small Vertex Covers . . . . . . . . . . . .. ... ... .. ..., 320
9.2 Solving NP-hard Problem on Trees . . . . . . . .. ... ... .. ...... 323
9.3 Tree Decompositions of Graphs . . . . . . .. ... ... ... ... 327
9.4 EXErCiSes . . . . . . . . 343



CONTENTS

10 Approximation Algorithms
10.1 Load Balancing Problems: Bounding the Optimum . . . ... .. .. .. ..
10.2 The Center Selection Problem . . . . . ... ... ... ... ... ......
10.3 Set Cover: A General Greedy Heuristic . . . . . . .. .. .. ... .. ....
10.4 Vertex Cover: An Application of Linear Programming . . . . . . . . . .. ..
10.5 Arbitrarily Good Approximations for the Knapsack Problem . . . . . . . ..
10.6 Exercises . . . . . . . .

11 Local Search
11.1 The Landscape of an Optimization Problem . . . . . .. .. ... ... ...
11.2 The Metropolis Algorithm and Simulated Annealing . . . . . .. .. ... ..
11.3 Application: Hopfield Neural Networks . . . . . . . .. . ... ... .....
11.4 Choosing a Neighbor Relation . . . . . . . . .. ... ... ... ... ....
11.5 EXercises . . . . . . . .

12 Randomized Algorithms
12.1 A First Application: Contention Resolution . . . . . . . .. ... ... ...
12.2 Finding the global minimum cut . . . . . . . . .. .. ..o
12.3 Random Variables and their Expectations . . . . . . . ... ... ... ...
12.4 A Randomized Approximation Algorithm for MAX-3-SAT . . .. .. .. ..
12.5 Computing the Median: Randomized Divide-and-Conquer . . . . . . . . ..
12.6 Randomized Caching . . . . . . . . . .. .. ...
12.7 Chernoff Bounds . . . . . . . .. ..
12.8 Load Balancing . . . . . . . . . . . ..
12.9 Packet Routing . . . . . . . . ..o
12.10Constructing an Expander Graph . . . . . . . . ... .. ... . L.
12.11Appendix: Some Probability Definitions . . . . . . . . ... ... ... ...
12.12EXercises . . . . . . oo

13 Epilogue: Algorithms that Run Forever

347
347
351
354
358
364
369

377
377
383
386
390
394

397
398
403
407
410
413
416
420
421
423
429
434
440

451



CONTENTS



Chapter 1

Introduction

1.1 Introduction: The Stable Matching Problem

As a beginning for the course, we look at an algorithmic problem that nicely illustrates many
of the themes we will be emphasizing. It it motivated by some very natural and practical
concerns, and from these we formulate a clean and simple statement of a problem. The
algorithm to solve the problem is very clean as well, and most of our work will be spent in
proving that it is correct and giving an acceptable bound on the amount of time it takes to
terminate with an answer. The problem itself — the Stable Matching Problem — has several
origins.

One of its origins is in 1962, when David Gale and Lloyd Shapley, two mathematical
economists, asked the question: “Could one design a college admissions process, or a job
recruiting process, that was self-enforcing?” What did they mean by this?

To set up the question, let’s first think informally about the kind of situation that might
arise as a group of your friends, all juniors in college majoring in computer science, begin
applying to companies for summer internships. The crux of the application process is the
interplay between two different types of parties: companies (the employers) and students (the
applicants). Each applicant has a preference ordering on companies and each company —
once the applications come in — forms a preference ordering on its applicants. Based on these
preferences, companies extend extend offers to some of their applicants, applicants choose
which of their offers to accept, and people begin heading off to their summer internships.

Gale and Shapley considered the sorts of things that could start going wrong with this
process, in the absence of any mechanism to enforce the status quo. Suppose, for example,
that your friend Raj has just accepted a summer job at the large telecommunications com-
pany CluNet. A few days later, the small start-up company WebExodus, which had been
dragging its feet on making a few final decisions, calls up Raj and offers him a summer job
as well. Now, Raj actually prefers WebExodus to CluNet — won over perhaps by the laid-
back, anything-can-happen atmosphere — and so this new development may well cause him

7



8 CHAPTER 1. INTRODUCTION

to retract his acceptance of the CluNet offer, and go to WebExodus instead. Suddenly down
one summer intern, CluNet offers a job to one of its wait-listed applicants, who promptly re-
tracts his previous acceptance of an offer from the software giant Babelsoft, and the situation
begins to spiral out of control.

Things look just as bad, if not worse, from the other direction. Suppose your friend
Chelsea, destined to go Babelsoft but having just heard Raj’s story, calls up the people at
WebExodus and says, “You know, I’d really rather spend the summer with you guys than
at Babelsoft.” They find this very easy to believe; and furthermore, on looking at Chelsea’s
application, they realize that they would have rather hired her than some other student who
actually is scheduled to spend the summer at WebExodus. In this case, if WebExodus were
a slightly less scrupulous start-up company, it might well find some way to retract its offer
to this other student and hire Chelsea instead.

Situations like this can rapidly generate a lot of chaos, and many people — both appli-
cants and employers — can end up unhappy with both the process and the outcome. What
has gone wrong? One basic problem is that the process is not self-enforcing — if people are
allowed to act in their self-interest, then it risks breaking down.

We might well prefer the following, more stable, situation, in which self-interest itself
prevents offers from being retracted and re-directed. Consider another one of your friends,
who has arranged to spend the summer at CluNet but calls up WebExodus and reveals that
he, too, would rather work for them. But in this case, based on the offers already accepted,
they are able to reply, “No, it turns out that we prefer each of the students we’ve accepted to
you, so we're afraid there’s nothing we can do.” Or consider an employer, earnestly following
up with its top applicants who went elsewhere, being told by each of them, “No, I'm happy
where I am.” In such a case, all the outcomes are stable — there are no further outside deals
that can be made.

So this is the question Gale and Shapley asked: Given a set of preferences among em-
ployers and applicants, can we assign applicants to employers so that for every employer F,
and every applicant A who is not scheduled to work for E, one of the following two things
is the case? —

(i) E prefers every one of its accepted applicants to A; or

(ii) A prefers her current situation to the situation in which she is working for employer
E.

If this holds, the outcome is stable: individual self-interest will prevent any applicant/employer
deal from being made behind the scenes.

Gale and Shapley proceeded to develop a striking algorithmic solution to this problem,
which we will discuss presently. Before doing this, let’s comment that this is not the only
origin of the Stable Matching Problem. It turns out that for a decade before the work of Gale



1.1. INTRODUCTION: THE STABLE MATCHING PROBLEM 9

and Shapley — unbeknownst to them — the National Resident Matching Program had been
using a very similar procedure, with the same underlying motivation, to match residents to
hospitals. Indeed, this system is still in use today.

This is one testament to the problem’s fundamental appeal. And from the point of view
of this course, it provides us with a nice first domain in which to reason about some basic
combinatorial definitions, and the algorithms that build on them.

Defining the Problem

To try best understanding this concept, it helps to make the problem as clean as possible. The
world of companies and applicants contains some distracting asymmetries. Each applicant
is looking for a single company, but each company is looking for many applicants; moreover,
there may be more (or, as is sometimes the case, fewer) applicants than there are available
slots for summer jobs. Finally, each applicant does not typically apply to every company.

Following Gale and Shapley, we can eliminate these complications and arrive at a more
“bare-bones” version of the problem: each of n applicants applies to each of n companies,
and each company wants to accept a single applicant. We will see that doing this preserves
the fundamental issue inherent in the problem; in particular, our solution to this simplified
version will extend to the more general case as well.

Let’s make one more modification, and this is purely to provide a change of scenery. In-
stead of pairing off applicants and companies, we consider the equivalent problem of devising
a system by which each of n men and n women can end up happily married.

So consider a set M = {my,...,m,} of n men, and a set W = {wy,...,w,} of n women.
Let M x W denote the set of all possible ordered pairs of the form (m,w), where m € M
and w € W. A matching S is a set of ordered pairs, each from M x W, with the property
that each member of M and each member of W appears in at most one pair in S. A perfect
matching S’ is a matching with the property that each member of M and each member of
W appears in ezactly one pair in 5.

Matchings and perfect matchings are objects that will recur frequently during the course;
they arise naturally in modeling a wide range of algorithmic problems. In the present sit-
uation, a perfect matching corresponds simply to a way of pairing off each man with each
woman, in such a way that everyone ends up married to somebody, and nobody is married
to more than one person — there is neither singlehood nor polygamy.

Now we can add the notion of preferences to this setting. Each man m € M ranks all
the women; we will say that m prefers w to w’ if m ranks w higher than w’. We will refer to
the ordered ranking of m as his preference list. We will not allow ties in the ranking. Each
woman, analogously, ranks all the men.

Given a perfect matching S, what can go wrong? Guided by our initial motivation in
terms of employers and applicants, we should be worried about the following situation: There



10 CHAPTER 1. INTRODUCTION

are two pairs (m,w) and (m/,w’) in S with the property that m prefers w’ to w, and w’
prefers m to m/. In this case, there’s nothing to stop m and w’ from abandoning their current
partners and heading off into the sunset together; the set of marriages is not self-enforcing.
We'll say that such a pair (m, w’) is an instability with respect to S: (m,w’) does not belong
to S, but each of m and w’ prefers the other to their partner in S.

Our goal, then, is a set of marriages with no instabilities. We’ll say that a matching S
is stable if (i) it is perfect, and (ii) there is no instability with respect to S. Two questions
spring immediately to mind:

(1) Does there exist a stable matching for every set of preference lists?

(1) Given a set of preference lists, can we efficiently construct a stable matching
if there is one?

Constructing a Stable Matching

We now show that there exists a stable matching for every set of preference lists among the
men and women. Moreover, our means of showing this will answer the second question as
well: we will give an efficient algorithm that takes the preference lists and constructs a stable
matching.

Let us consider some of the basic ideas that motivate the algorithm.

e Initially, everyone is unmarried. Suppose an unmarried man m chooses the woman w
who ranks highest on his preference list and proposes to her. Can we declare immedi-
ately that (m,w) will be one of the pairs in our final stable matching? Not necessarily
— at some point in the future, a man m’ whom w prefers may propose to her. On the
other hand, it would be dangerous for w to reject m right away; she may never receive
a proposal from someone she ranks as highly as m. So a natural idea would be to have
the pair (m,w) enter an intermediate state — engagement.

e Suppose we are now at a state in which some men and women are free — not engaged
— and some are engaged. The next step could look like this. An arbitrary free man
m chooses the highest-ranked woman w to whom he has not yet proposed, and he
proposes to her. If w is also free, then m and w become engaged. Otherwise, w is
already engaged to some other man m’. In this case, she determines which of m or
m' ranks higher on her preference list; this man becomes engaged to w and the other
becomes free.

e Finally, the algorithm will terminate when no one is free; at this moment, all engage-
ments are declared final, and the resulting perfect matching is returned.



1.1. INTRODUCTION: THE STABLE MATCHING PROBLEM 11

Here is a concrete description of the Gale-Shapley algorithm. (We will refer to it more
briefly as the G-S algorithm.)

Initially all m € M and w € W are free
While there is a man m who is free and hasn’t proposed to every woman
Choose such a man m
Let w be the highest-ranked woman in m’s preference list
to which m has not yet proposed
If w is free then
(m,w) become engaged
Else w is currently engaged to m/
If w prefers m’ to m then
m remains free
Else w prefers m to m/
(m,w) become engaged
m’ becomes free
Endif
Endif
Endwhile
Return the set S of engaged pairs

An intriguing thing is that, although the G-S algorithm is quite simple to state, it is
not immediately obvious that it returns a stable matching, or even a perfect matching. We
proceed to prove this now, through a sequence of intermediate facts.

First consider the view of a woman w during the execution of the algorithm. For a while,
no one has proposed to her, and she is free. Then a man m may propose to her, and she
becomes engaged. As time goes on, she may receive additional proposals, accepting those
that increase the rank of her partner. So we discover the following.

(1.1) w remains engaged from the point at which she receives her first proposal; and the
sequence of partners to which she is engaged gets better and better (in terms of her preference

list).

The view of a man m during the execution of the algorithm is rather different. He is free
until he proposes to the highest-ranked woman on his list; at this point he may or may not
become engaged. As time goes on, he may alternate between being free and being engaged;
however, the following property does hold.

(1.2) The sequence of women to whom m proposes gets worse and worse (in terms of
his preference list).

Now we show that the algorithm terminates, and give a bound on the maximum number
of iterations needed for termination.



12 CHAPTER 1. INTRODUCTION

(1.3) The G-S algorithm terminates after at most n? iterations of the While loop.

Proof. A useful strategy for upper-bounding the running time of an algorithm, as we are
trying to do here, is to find a measure of progress. Namely, we seek some precise way of
saying that each step taken by the algorithm brings it closer to termination.

In the case of the present algorithm, each iteration consists of some man proposing (for
the only time) to a woman he has never proposed to before. So if we let P(t) denote the set
of pairs (m,w) such that m has proposed to w by the end of iteration ¢, we see that for all
t, the size of P(t + 1) is strictly greater than the size of P(t). But there are only n? possible
pairs of men and women in total, so the value of P(-) can increase at most n? times over the
course of the algorithm. It follows that there can be at most n? iterations. m

Two points are worth noting about the previous fact and its proof. First, there are exe-
cutions of the algorithm (with certain preference lists) that can involve close to n? iterations,
so this analysis is not far from the best possible. Second, there are many quantities that
would not have worked well as a progress measure for the algorithm, since they need not
strictly increase in each iteration. For example, the number of free individuals could remain
constant from one iteration to the next, as could the number of engaged pairs. Thus, these
quantities could not be used directly in giving an upper bound on the maximum possible
number of iterations, in the style of the previous paragraph.

Let us now establish that the set S returned at the termination of the algorithm is in
fact a perfect matching. Why is this not immediately obvious? Essentially, we have to show
that no man can “fall oft” the end of his preference list; the only way for the While loop to
exit is for there to be no free man. In this case, the set of engaged couples would indeed be
a perfect matching.

So the main thing we need to show is the following.

(1.4) Ifm is free at some point in the execution of the algorithm, then there is a woman
to whom he has not yet proposed.

Proof. Suppose there comes a point when m is free but has already proposed to every woman.
Then by (1.1), each of the n women is engaged at this point in time. Since the set of engaged
pairs forms a matching, there must also be n engaged men at this point in time. But there
are only n men total, and m is not engaged, so this is a contradiction. m

(1.5) The set S returned at termination is a perfect matching.
Proof. At no time is anyone engaged to more than one person, and so the set of engaged

pairs always forms a matching. Let us suppose that the algorithm terminates with a free
man m. At termination, it must be the case that m had already proposed to every woman,



1.1. INTRODUCTION: THE STABLE MATCHING PROBLEM 13

for otherwise the While loop would not have exited. But this contradicts (1.4), which says
that there cannot be a free man who has proposed to every woman. m

Finally, we prove the main property of the algorithm — namely, that it results in a stable
matching.

(1.6) Consider an execution of the G-S algorithm that returns a set of pairs S. The set
S is a stable matching.

Proof. We have already seen, in (1.5), that S is a perfect matching. Thus, to prove S is
a stable matching, we will assume that there is an instability with respect to S and obtain
a contradiction. As defined above, such an instability would involve two pairs (m,w) and
(m/,w’) in S with the properties that

e m prefers w’ to w, and
/ /
e w' prefers m to m/’.

In the execution of the algorithm that produced S, m’s last proposal was, by definition, to
w. Now we ask: did m propose to w’ at some earlier point in this execution? If he didn’t,
then w must occur higher on m’s preference list than w’, contradicting our assumption that
m prefers w’ to w. If he did, then he was rejected by w’ in favor of some other man m”,
whom w' prefers to m. m’ is the final partner of w’, so either m” = m’ or, by (1.1), v’
prefers her final partner m’ to m”; either way this contradicts our assumption that w’ prefers
m to m/'.
It follows that S is a stable matching. m

All Executions Yield the Man-Optimal Matching

If we think about it, the G-S algorithm is actually under-specified: as long as there is a free
man, we are allowed to choose any free man to make the next proposal. Different choices
specify different executions of the algorithm; this is why, to be careful, we stated (1.6)
as “Consider an execution of the G-S algorithm that returns a set of pairs S,” instead of
“Consider the set S returned by the G-S algorithm.”

Thus, we encounter another very natural question:

(1) Do all executions of the G-S algorithm yield the same matching?

This is a genre of question that arises in many settings in computer science: we have an algo-
rithm that runs asynchronously, with different independent components performing actions
that can be inter-leaved in complex ways, and we want to know how much variability this
asynchrony causes in the final outcome. If the independent components are, for example,



14 CHAPTER 1. INTRODUCTION

engines on different wings of an airplane, the effect of asynchrony on their behavior can be
a big deal.

In the present context, we will see that the answer to our question is surprisingly clean:
all executions yield the same matching.

There are a number of possible ways to prove a statement such as this, many of which
would result in quite complicated arguments. It turns out that the easiest and most infor-
mative approach for us will be to uniquely characterize the matching that is obtained, and
then show that all executions result in the matching with this characterization.

What is the characterization? First, we will say that a woman w is a valid partner of a
man m if there is a stable matching that contains the pair (m,w). We will say that w is the
best valid partner of m if w is a valid partner of m, and no woman whom m ranks higher
than w is a valid partner of his. We will use b(m) to denote the best valid partner of m.

Now, let S* denote the set of pairs {(m,b(m)) : m € M}. We will prove the following
fact.

(1.7) FEvery execution of the G-S algorithm results in the set S*.

This statement is surprising at a number of levels. First of all, as defined, there is no reason
to believe that S* is matching at all, let alone a stable matching. After all, why couldn’t
it happen that two men have the same best valid partner? Secondly, the result shows that
the G-S algorithm gives the best possible outcome for every man simultaneously; there is
no stable matching in which any of the men could have hoped to do better. And finally, it
answers our question above by showing that the order of proposals in the G-S algorithm has
absolutely no effect on the final outcome.
Despite all this, the proof is not so difficult.

Proof of (1.7). Let us suppose, by way of contradiction, that some execution £ of the G-S
algorithm results in a matching S in which some man is paired with a woman who is not
his best valid partner. Since men propose in decreasing order of preference, this means that
some man is rejected by a valid partner during the execution & of the algorithm. So consider
the first moment during the execution £ in which some man, say m, is rejected by a valid
partner w. Again, since men propose in decreasing order of preference, and since this is the
first time such a rejection has occurred, it must be that w is m’s best valid partner b(m).

The rejection of m by w may have happened either because m proposed and was turned
down in favor of w’s existing engagement, or because w broke her engagement to m in favor
of a better proposal. But either way, at this moment w forms an engagement with a man
m’ whom she prefers to m.

Since w is a valid partner of m, there exists a stable matching S’ containing the pair
(m,w). Now we ask: who is m/ paired with in this matching? Suppose it is a woman

w' # w.



1.1. INTRODUCTION: THE STABLE MATCHING PROBLEM 15

Since the rejection of m by w was the first rejection of a man by a valid partner in the
execution &, it must be that m’ had not been rejected by any valid partner at the point in
&€ when he became engaged to w. Since he proposed in decreasing order of preference, and
since w’ is clearly a valid partner of m’, it must be that m’ prefers w to w’. But we have
already seen that w prefers m’ to m, for in execution £ she rejected m in favor of m’. Since
(m',w) ¢ S, (m',w) is an instability in S’.

This contradicts our claim that S’ is stable, and hence contradicts our initial assumption.

So for the men, the G-S algorithm is ideal. Unfortunately, the same cannot be said for
the women. For a women w, we say that m is a valid partner if there is a stable matching
that contains the pair (m,w). We say that m is the worst valid partner of w if m is a valid

partner of w, and no man whom w ranks lower than m is a valid partner of hers.
(1.8) In the stable matching S*, each woman is paired with her worst valid partner.

Proof. Suppose there were a pair (m,w) in S* so that m is not the worst valid partner of w.
Then there is a stable matching S” in which w is paired with a man m’ whom she likes less
than m. In S’, m is paired with a woman w’ # w; since w is the best valid partner of m,
and w' is a valid partner of m, we see that m prefers w to w’'.

But from this it follows that (m,w) is an instability in S, contradicting the claim that
S’ is stable, and hence contradicting our initial assumption. m

Example: Multiple Stable Matchings

We began by defining the notion of a stable matching; we have now proven that the G-S
algorithm actually constructs one, and that it constructs the same one, S*, in all executions.
Here’s an important point to notice, however. This matching S* is not necessarily the only
stable matching for a set of preference lists; we now discuss a simple example in which there
are multiple stable matchings.

Suppose we have a set of two men, {m,m’}, and a set of two women {w,w’}. The
preference lists are as follows:

m prefers w to w'.
m’ prefers w' to w.
w prefers m’ to m.
w' prefers m to m’.

In any execution of the Gale-Shapley algorithm, m will become engaged to w, m’ will become
engaged to w’ (perhaps in the other order), and things will stop there. Indeed, this matching



16 CHAPTER 1. INTRODUCTION

is as good as possible for the men, and — as we see by inspecting the preference lists — as
bad as possible for the women.

But there is another stable matching, consisting of the pairs (m/,w) and (m,w’). We
can check that there is no instability, and the set of pairs is now as good as possible for
the women (and as bad as possible for the men). This second stable matching could never
be reached in an execution of the Gale-Shapley algorithm in which the men propose, but it
would be reached if we ran a version of the algorithm in which the women propose.

So this simple set of preference lists compactly summarizes a world in which someone is
destined to end up unhappy: the men’s preferences mesh perfectly; but they clash completely
with the women’s preferences. And in larger examples, with more than two people on each
side, we can have an even larger collection of possible stable matchings, many of them not
achievable by any natural algorithm.

1.2 Computational Tractability

The big focus of this course will be on finding efficient algorithms for computational problems.
At this level of generality, our topic seems to encompass the whole of computer science; so
what is specific to our approach here?

First, we will be trying to identify broad themes and design principles in the development
of algorithms. We will look for paradigmatic problems and approaches that illustrate, with
a minimum of irrelevant detail, the basic approaches to designing efficient algorithms. At
the same time, it would be pointless to pursue these design principles in a vacuum —
the problems and approaches we consider are drawn from fundamental issues that arise
throughout computer science, and a general study of algorithms turns out to serve as a nice
survey of computational ideas that arise in many areas.

Finally, many of the problems we study will fundamentally have a discrete nature. That
is, like the Stable Matching Problem, they will involve an implicit search over a large set
of combinatorial possibilities; and the goal will be to efficiently find a solution that satisfies
certain clearly delineated conditions.

The first major question we need to answer is the following: How should we turn the
fuzzy notion of an “efficient” algorithm into something more concrete?

One way would be to use the following working definition:

An algorithm is efficient if, when implemented, it runs quickly on real input

instances.

Let’s spend a little time considering this definition. At a certain level, it’s hard to argue
with; one of the goals at the bedrock of our study of algorithms is that of solving real



1.2. COMPUTATIONAL TRACTABILITY 17

problems quickly. And indeed, there is a significant area of research devoted to the careful
implementation and profiling of different algorithms for discrete computational problems.

But there are some crucial things missing from the definition above, even if our main goal
1s to solve real problem instances quickly on real computers. The first is that it is not really
a complete definition. It depends on where, and how well, we implement the algorithm.
Even bad algorithms can run quickly when applied to small test cases on extremely fast
processors; even good algorithms can run slowly when they are coded sloppily. Certain
“real” input instances are much harder than others, and it’s very hard to model the full
range of problem instances that may arise in practice. And the definition above does not
consider how well, or badly, an algorithm may scale as problem sizes grow to unexpected
levels. A common situation is that two very different algorithms will perform comparably
on inputs of size 100; multiply the input size tenfold, and one will still run quickly while the
other consumes a huge amount of time.

So what we could ask for is a concrete definition of efficiency that is platform-independent,
instance-independent, and of predictive value with respect to increasing input sizes. Before
focusing on any specific consequences of this claim, we can at least explore its implicit,
high-level suggestion: that we need to take a more mathematical view of the situation.

Let’s use the Stable Matching Problem as an example to guide us. The input has a
natural “size” parameter N; we could take this to be the total size of the representation of
all preference lists, since this is what any algorithm for the problem will receive as input.
N is closely related to the other natural parameter in this problem: n, the number of men
and the number of women. Since there are 2n preference lists, each of length n, we can
view N = 2n?, suppressing more fine-grained details of how the data is represented. In
considering the problem, we seek to describe an algorithm at a high level, and then analyze
its running time mathematically as a function of the input size.

Now, even when the input size to the Stable Matching Problem is relatively small, the
search space it defines is enormous: there are n! possible perfect matchings between n men
and n women, and we need to find one that is stable. The natural “brute-force” algorithm for
this problem would plow through all perfect matching by enumeration, checking each to see
if it is stable. The surprising punch-line, in a sense, to our solution of the Stable Matching
Problem is that we needed to spend time proportional only to /V in finding a stable matching
from among this stupendously large space of possibilities. This was a conclusion we reached
at an analytical level. We did not implement the algorithm and try it out on sample preference
lists; we reasoned about it mathematically. Yet, at the same time, our analysis indicated
how the algorithm could be implemented in practice, and gave fairly conclusive evidence
that it would be a big improvement over exhaustive enumeration.

This will be a common theme in most of the problems we study: a compact representation,
implicitly specifying a giant search space. For most of these problems, there will be an



18 CHAPTER 1. INTRODUCTION

obvious “brute-force” solution: try all possibilities, and see if any of them works. Not only
is this approach almost always too slow to be useful, it is an intellectual cop-out; it provides
us with absolutely no insight into the structure of the problem we are studying. And so if
there is a common thread in the algorithms we emphasize in this course, it would be the
following;:

An algorithm is efficient if it achieves qualitatively better performance, at an
analytical level, than brute-force search.

This will turn out to be a very useful working definition of “efficiency” for us. Algorithms
that improve substantially on brute-force search nearly always contain a valuable heuristic
idea that makes them work; and they tell us something about the intrinsic computational
tractability of the underlying problem itself.

If there is a problem with our second working definition, it is vagueness. What do
we mean by “qualitatively better performance?” When people first began analyzing discrete
algorithms mathematically — a thread of research that began gathering momentum through
the 1960’s — a consensus began to emerge on how to quantify this notion. Search spaces for
natural combinatorial problems tend to grow exponentially in the size N of the input; if the
input size increases by one, the number of possibilities increases multiplicatively. We’d like
a good algorithm for such a problem to have a better scaling property: when the input size
increases by a constant factor — say a factor 2 — the algorithm should only slow down by
some constant factor C.

Arithmetically, we can formulate this scaling behavior as follows. Suppose an algorithm
has the following property: There are absolute constants ¢ > 0 and k£ > 0 so that on every
input instance of size IV, its running time is bounded by ¢N* primitive computational steps.
(In other words, its running time is at most proportional to N*.) For now, we will remain
deliberately vague on what we mean by the notion of a “primitive computational step” —
but everything we say can be easily formalized in a model where each step corresponds to
a single assembly-language instruction on a standard processor, or one line of a standard
programming language such as C or Java. In any case, if this running time bound holds, for
some ¢ and k, then we say that the algorithm has a polynomial running time, or that it is a
polynomial-time algorithm. Note that any polynomial-time bound has the scaling property
we're looking for. If the input size increases from N to 2NN, the bound on the running time
increases from ¢N* to ¢(2N)* = ¢ 28 N* which is a slow-down by a factor of 2*. Since k is
a constant, so is 2¥; of course, as one might expect, lower-degree polynomials exhibit better
scaling behavior than higher-degree polynomials.

From this notion, and the intuition expressed above, emerges our third attempt at a
working definition of “efficiency.”

An algorithm is efficient if it has a polynomial running time.



1.3. INTERLUDE: TWO DEFINITIONS 19

Where our previous definition seemed overly vague, this one seems much too prescriptive.

0

Wouldn’t an algorithm with running time proportional to n'% — and hence polynomial —

be hopelessly inefficient? Wouldn’t we be relatively pleased with a non-polynomial running

1+.02(logn)? The answers are, of course, “yes” and “yes.” And indeed, however much

time of n
one may try to abstractly motivate the definition of efficiency in terms of polynomial time,
a primary justification for it is this: It really works. Problems for which polynomial-time
algorithms exist almost always turn out to have algorithms with running times proportional
to very moderately growing polynomials like n, nlogn, n?, or n®. Conversely, problems for
which no polynomial-time algorithm is known tend to be very difficult in practice. There are
certainly a few exceptions to this principle — cases, for example, in which an algorithm with
exponential worst-case behavior generally runs well on the kinds of instances that arise in
practice — and this serves to reinforce the point that our emphasis on worst-case polynomial
time bounds is only an abstraction of practical situations. But overwhelmingly, our concrete
mathematical definition of polynomial time has turned out to correspond empirically to what
we observe about the efficiency of algorithms, and the tractability of problems, in real life.

There is another fundamental benefit to making our definition of efficiency so specific:
It becomes negatable. It becomes possible to express the notion that there is no efficient
algorithm for a particular problem. In a sense, being able to do this is a pre-requisite for
turning our study of algorithms into good science, for it allows us to ask about the existence
or non-existence of efficient algorithms as a well-defined question. In contrast, both of our
previous definitions were completely subjective, and hence limited the extent to which we
could discuss certain issues in concrete terms.

In particular, the first of our definitions, which was tied to the specific implementation
of an algorithm, turned efficiency into a moving target — as processor speeds increase,
more and more algorithms fall under this notion of efficiency. Our definition in terms of
polynomial-time is much more an absolute notion; it is closely connected with the idea that
each problem has an intrinsic level of computational tractability — some admit efficient
solutions, and others do not.

With this in mind, we survey five representative problems that vary widely in their
computational difficulty. Before doing this, however, we briefly digress to introduce two
fundamental definitions that will be used throughout the course.

1.3 Interlude: Two Definitions

Order of Growth Notation

In our definition of polynomial time, we used the notion of an algorithm’s running time
being at most proportional to N*. Asymptotic order of growth notation is a simple but
useful notational device for expressing this.



20 CHAPTER 1. INTRODUCTION

Given a function T'(N) (say, the maximum running time of a certain algorithm on any
input of size V), and another function f(n), we say that T'(N) is O(f(N)) (read, somewhat
awkwardly, as “T'(N) is order f(N)”) if there exist constants ¢ > 0 and Ny > 0 so that for
all N > Ny, we have T(N) < ¢- f(N). In other words, for sufficiently large N, the function
T(N) is bounded above by a constant multiple of f(NV).

Note that O(-) expresses only an upper bound. There are cases where an algorithm has
been proved to have running time O(N log N); some years pass, people analyze the same
algorithm more carefully, and they show that in fact its running time is O(N). There was
nothing wrong with the first result; it was a correct upper bound. It’s simply that it wasn’t
the “tightest” possible running time.

There is a complementary notation for lower bounds. Often when we analyze an algorithm
— say we have just proven that its running time 7'(/V) is O(NN log N) — we want to show
that this upper bound is the best one possible. To do this, we want to express the notion that
for arbitrarily large input sizes N, T'(N) is at least a constant multiple of N log N. Thus, we
say that T(N) is Q(Nlog N) (read as “T'(N) is omega N log N”) if there exists an absolute
constant € so that for infinitely many N, we have T'(IN) > eNlog N. (More generally, we
can say that T'(N) is Q(f(N)) for arbitrary functions.)

Finally, if a function T'(N) is both O(f(N)) and Q(f(N)), we say that T'(N) is ©(f(N)).

Graphs

As we discussed earlier, our focus in this course will be on problems with a discrete fla-
vor. Just as continuous mathematics is concerned with certain basic structures such as real
numbers, vectors, matrices, and polynomials, discrete mathematics has developed basic com-
binatorial structures that lie at the heart of the subject. One of the most fundamental and
expressive of these is the graph.

A graph G is simply a way of encoding pairwise relationships among a set of objects.
Thus, G consists of a pair of sets (V, E') — a collection V' of abstract nodes; and a collection
E of edges, each of which “joins” two of the nodes. We thus represent an edge ¢ € E as a
two-element subset of V: e = {u, v} for some u,v € V', where we call u and v the ends of e.

We typically draw graphs as in Figure 1.1, with each node as a small circle, and each
edge as a line segment joining its two ends.

Edges in a graph indicate a symmetric relationship between their ends. Often we want to
encode asymmetric relationships, and for this we use the closely related notion of a directed
graph. A directed graph G’ consists of a set of nodes V' and a set of directed edges E'. Each
e’ € E' is an ordered pair (u,v); in other words, the roles of u and v are not interchangeable,
and we call u the tail of the edge and v the head. We will also say that edge e’ leaves node u
and enters node v. The notion of leaving and entering extends naturally to sets of vertices:
we say that edge €’ leaves a set S C V if u € S and v ¢ S, and €' enters S if v € S and



1.3. INTERLUDE: TWO DEFINITIONS 21

O

O

O/

Figure 1.1: Two graphs, each on four nodes.

ué¢S.
The more one thinks about graphs, the more one tends to see them everywhere. Here
are some examples of graphs:

The collection of all computers on the Internet, with an edge joining any two
that have a direct network connection.

The collection of all cities in the world, with an edge joining any two that are
within a hundred miles of each other.

The collection of all students at Cornell, with an edge joining any two that know
each other.

The collection of all atoms in a cholesterol molecule, with an edge joining any
two that have a covalent bond.

The collection of all natural numbers up to 1,000, 000, with an edge joining any
two that are relatively prime.

Here are some examples of directed graphs:

The collection of all World Wide Web pages, with an edge (u,v) if v has a
hyperlink to v.

The collection of all cities in the world, with an edge (u,v) if there is a non-stop
airline flight from u to v.

The collection of all college football teams, with an edge (u,v) if u defeated v in
the 1999 season.

The collection of all genes in a human cell, with an edge (u,v) if gene u produces
a protein that regulates the action of gene v.

The collection of all courses at Cornell, with an edge (u, v) if course u is an official
pre-requisite of course v.

The collection of all natural numbers up to 1,000,000, with an edge (u,v) if u is
a divisor of v.



22 CHAPTER 1. INTRODUCTION

We pause to mention two warnings in our use of graph terminology. First, although an
edge e in an undirected graph should properly be written as a set of vertices {u,v}, one
will more often see it written (even in this course) in the notation used for ordered pairs:
e = (u,v). Second, nodes in a graph are also frequently called vertices; in this context, the
two words have exactly the same meaning. For both of these things, we apologize in advance.

Bipartite Graphs. We now mention a specific type of (undirected) graph that will be
particularly useful in our study of algorithms. We say that a graph G = (V, E) is bipartite if
its node set V' can be partitioned into sets X and Y in such a way that every edge has one
end in X and the other end in Y. A bipartite graph is pictured in Figure 1.2; often, when

7

we want to emphasize a graph’s “bipartiteness,” we will draw it this way, with the nodes in
X and Y in two parallel columns. But notice, for example, that the two graphs in Figure 1.1
are also bipartite.

Bipartite graphs are very useful for expressing relationships that arise between two dis-

tinct sets of objects. For example, here are some bipartite graphs:

The set X of all people who have used amazon.com, the set Y of all books in
Amazon’s catalog, and an edge from each person to all the books that he or she
has purchased through Amazon.

The set X of all houses in New York State, the set Y of all fire stations, and an
edge from each house to all the fire stations that are at most a twenty minute
drive away.

The set X of all Cornell CS professors, the set Y of all CS courses offered at
Cornell, and an edge from each professor to all the courses he or she might be
assigned to teach.

The set X of all molecules that Merck Pharmaceuticals knows how to make, the
set Y of all enzymes in a human cell, and an edge from each molecule to all the
enzymes that it has been observed to inhibit.

1.4 Five Representative Problems

We now discuss five problems that are representative of different themes that will come up
in our study of algorithms. We will encounter them in order as the course progresses, since
they are associated with a wide range of levels of computational complexity.

Interval Scheduling. Consider the following very simple scheduling problem. You have a
resource — it may be a lecture room, or a supercomputer, or an electron microscope — and

many people request to use the resource for periods of time. A request takes the form: “Can



1.4. FIVE REPRESENTATIVE PROBLEMS 23

X1 Y1
X2 Y2
X3 Y3
X 4 Y4

Figure 1.2: A bipartite graph.

I reserve the resource starting at time s, until time 77 We will assume that the resource
can be used by at most one person at a time. A scheduler wants to accept a subset of these
requests, rejecting all others, so that the accepted requests do not overlap in time. The goal
is to maximize the number of requests accepted.

More formally, there will be n requests labeled 1, ..., n, with each request 7 specifying a
start time s; and a finish time f;. Naturally, we have s; < f; for all i. Two requests 7 and
7 are compatible if the requested intervals do not overlap: that is, either request ¢ is for an
earlier time interval than request j (f; < s;), or request 7 is for a later time than request j
(f; < s;). We'll say more generally that a subset A of requests is compatible if all pairs of
requests i, j € A, i # j are compatible. The goal is to select a compatible subset of requests
of maximum possible size.

We illustrate an instance of this Interval Scheduling Problem in Figure 1.3. Note that
there is a single compatible set of size four, and this is the largest compatible set.

Figure 1.3: An instance of the interval scheduling problem.

We will see shortly that this problem can be solved by a very natural algorithm that orders
the set of requests according to a certain heuristic, and then “greedily” processes them in
one pass, selecting as large a compatible subset as it can. This will be typical of a class of



24 CHAPTER 1. INTRODUCTION

greedy algorithms that we will consider for various problems — myopic rules that process the
input one piece at a time with no apparent look-ahead. When a greedy algorithm can be
shown to find an optimal solution for all instances of a problem, it’s often fairly surprising.
We typically learn something about the structure of the underlying problem from the fact
that such a simple approach can be optimal.

Weighted Interval Scheduling. In the Interval Scheduling Problem, we sought to max-
imize the number of requests that could be accommodated simultaneously. Now, suppose
more generally that each request interval ¢ has an associated wvalue, or weight, w; > 0; we
could picture this as the amount of money we will make from the i*" individual if we schedule
his or her request. Our goal will be to find a compatible subset of intervals of maximum
total weight.

The case in which w; = 1 for each ¢ is simply the basic Interval Scheduling Problem; but
the appearance of arbitrary weights changes the nature of the maximization problem quite
a bit. Consider, for example, that if w; exceeds the sum of all other w;, then the optimal
solution must include interval 1 regardless of the configuration of the full set of intervals. So
any algorithm for this problem must be very sensitive to the values of the weights, and yet
degenerate to a method for solving (unweighted) interval scheduling when all the weights
are equal to 1.

There appears to be no simple “greedy” rule that walks through the intervals one at a
time, making the correct decision in the presence of arbitrary weights. Instead we employ a
technique, dynamic programming, that builds up the optimal value over all possible solutions
in a compact, tabular way that requires only polynomial time.

Bipartite Matching. When we considered stable marriages, we defined a matching to be
a set of ordered pairs of men and women with the property that each man and each woman
belong to at most one of the ordered pairs. We then defined a perfect matching to be a
matching in which every man and every woman belong to some pair.

We can express these concepts more generally in terms of bipartite graphs, and it leads
to a very rich class of problems. In the case of bipartite graphs, the edges are pairs of nodes,
so we say that a matching in a graph G = (V| F) is a set of edges M C E with the property
that each node appears in at most one edge of M. M is a perfect matching if every node
appears in exactly one edge of M.

To see that this does capture the same notion we encountered in the stable matching
problem, consider a bipartite graph G’ with a set X of n men, a set Y of n women, and an
edge from every node in X to every node in Y. Then the matchings and perfect matchings
in G’ are precisely the matching and perfect matchings among the set of men and women.

In the stable matching problem, we added preferences to this picture. Here, we do not



1.4. FIVE REPRESENTATIVE PROBLEMS 25

consider preferences; but the nature of the problem in arbitrary bipartite graphs adds a
different source of complexity: there is not necessarily an edge from every x € X to every
y € Y, so the set of possible matchings has quite a complicated structure. Consider, for
example the bipartite graph G in Figure 1.2; there are many matchings in G, but there is
only one perfect matching. (Do you see it?)

Matchings in bipartite graphs can model situations in which objects are being assigned
to other objects. Thus, the nodes in X can represent jobs, the nodes in Y can represent
machines, and an edge (z;, y;) can indicate that machine y; is capable of processing job z;. A
perfect matching is then a way of assigning each job to a machine that can process it, with
the property that each machine is assigned exactly one job. In the spring, the computer
science faculty are often seen pondering one of the bipartite graphs discussed earlier, in
which X is the set of professors and Y is the set of courses; a perfect matching in this graph
consists of an assignment of each professor to a course that he or she can teach, in such a
way that every course is covered.

Thus, the Bipartite Matching Problem is the following: given an arbitrary bipartite graph
G, find a matching of maximum size. If |X| = |Y| = n, then there is a perfect matching if
and only if the maximum matching has size n. We will find that the algorithmic techniques
discussed above do not seem adequate for providing an efficient algorithm for this problem.
There is, however, a very elegant polynomial-time algorithm to find the maximum matching;
it inductively builds up larger and larger matchings, selectively backtracking along the way.
This process is called augmentation, and it forms the central component in a large class of
efficiently solvable problems called network flow problems.

Independent Set. Now let’s talk about an extremely general problem, which includes
most of these earlier problems as special cases. Given a graph G = (V, E), we say a set of
nodes S C V is independent if no two nodes in S are joined by an edge. The Independent Set
Problem is then the following: given G, find an independent set that is as large as possible.

The Independent Set Problem encodes any situation in which you are trying to choose
from among a collection of objects, and there are pairwise conflicts among some of the
objects. Say you have n friends, and some pairs of them don’t get along. How large a group
of your friends can you invite to dinner, if you don’t want there to be any inter-personal
tensions? This is simply the largest independent set in the graph whose nodes are your
friends, with an edge between each conflicting pair.

Interval Scheduling and Bipartite Matching can both be encoded as special cases of the
Independent Set Problem. For Interval Scheduling, define a graph G = (V, E) in which the
nodes are the intervals, and there is an edge between each pair of them that overlap; the
independent sets in GG are then just the compatible subsets of intervals. Encoding Bipartite
Matching as a special case of Independent Set is a little trickier to see. Given a bipartite



26 CHAPTER 1. INTRODUCTION

graph G’ = (V' E'), the objects being chosen are edges, and the conflicts arise between two
edges that share an end. (These, indeed, are the pairs of edges that cannot belong to a
common matching.) So we define a graph G = (V, ) in which the node set V' is equal to
the edge set E' of G'. We define an edge between each pair of elements in V' that correspond
to edges of G’ with a common end. We can now check that the independent sets of G are
precisely the matchings of G’. While it is not complicated to check this, it takes a little
concentration to deal with this type of “edges-to-nodes, nodes-to-edges” transformation.®

Given the generality of the Independent Set Problem, an efficient algorithm to solve
it would be quite impressive. It would have to implicitly contain algorithms for Interval
Scheduling, Bipartite Matching, and a host of other natural optimization problems.

The current status of Independent Set is this: no polynomial-time algorithm is known for
the problem, and it is conjectured that no such algorithm exists. The obvious brute-force
algorithm would try all subsets of the nodes, checking each to see if it is independent, and
then recording the largest one encountered. It is possible that this is close to the best we
can do on this problem. We will see later in the course that Independent Set is one of a large
class of problems that are termed NP-complete. No polynomial-time algorithm is known for
any of them; but they are all equivalent in the sense that a polynomial-time algorithm for
one of them would imply a polynomial-time algorithm for all of them.

Here’s a natural question: Is there anything good we can say about the complexity of
the Independent Set Problem? One positive thing is the following: If we have a graph G
on 1000 nodes, and we want to convince you that it contains an independent set S of size
100, then it’s quite easy. We simply show you the graph G, circle the nodes of S in red,
and let you check that no two of them are joined by an edge. So there really seems to be a
great difference in difficulty between checking that something is a large independent set and
actually finding a large independent set. This may look like a very basic observation — and
it is — but it turns out to be crucial in understanding this class of problems. Furthermore,
as we’'ll see next, it’s possible for a problem to so hard that there isn’t even an easy way to
“check” solutions in this sense.

Competitive Facility Location. Finally, we come to our fifth problem, which is based
on the following two-player game. Consider McDonald’s and Burger King (our two players),
competing for market share in a geographic area. First McDonald’s open a franchise; then
Burger King opens a franchise; then McDonald’s; then Burger King; and so on ... Suppose
they must deal with zoning regulations that require no two franchises to be located too close

'For those who are curious, we note that not every instance of the Independent Set Problem can arise
in this way from Interval Scheduling or from Bipartite Matching; the full Independent Set Problem really is
more general. The first graph in Figure 1.1 cannot arise as the “conflict graph” in an instance of Interval
Scheduling, and the second graph in Figure 1.1 cannot arise as the “conflict graph” in an instance of Bipartite
Matching.



1.4. FIVE REPRESENTATIVE PROBLEMS 27

together, and each is trying to make its locations as convenient as possible. Who will win?

Let’s make the rules of this “game” more concrete. The geographic region in question
is divided into n zones, labeled 1,2,...,n. Each zone has a wvalue b;, which is the revenue
obtained by either of the companies if it opens a franchise there. Finally, certain pairs of
zones (i, j) are adjacent, and local zoning laws prevent two adjacent zones from each having
a fast-food franchise in them, regardless of which company owns them. (They also prevent
two franchises from being opened in the same zone.) We model these conflicts via a graph
G = (V, E), where V is the set of zones, and (i, 7) is an edge of F if the zones i and j are
adjacent. The zoning requirement then says that the full set of franchises opened must form
an independent set in G.

Thus our game consists of two players, P; and P, alternately selecting nodes in G, with
P, moving first. At all times, the set of all selected nodes must form an independent set in
G. Suppose that player P, has a target bound B, and we want to know: is there a strategy
for P; so that no matter how P, plays, P, will be able to select a set of nodes of total value
at least B? We will call this an instance of the Competitive Facility Location Problem.

Consider, for example, the instance pictured below, and suppose that Py’s target bound
is B = 20. Then P, does have a winning strategy. On the other hand, if B = 25, then P,
does not.

0 1 5 15 5 1 5 1 15 10
O—CO0O—"C0CO—"C0—"—0—C0—~0O0—C0—~0—70

Figure 1.4: An instance of the competitive facility location problem.

One can work this out by looking at the figure for a while; but it requires some amount
of case-checking of the form, “If P, goes here, then P, will go there; but if P; goes over there,

7

then P, will go here ...” And this appears to be intrinsic to the problem: not only is it
computationally difficult to determine whether P, has a winning strategy; on a reasonably-
sized graph, it would even be hard for us to convince you that P, has a winning strategy.
There does not seem to be a short proof we could present; rather, we’d have to lead you on
a lengthy case-by-case analysis of the set of possible moves.

This is in contrast to the Independent Set Problem, where we believe that finding a
large solution is hard but checking a proposed large solution is easy. This contrast can
be formalized in the class of PSPACE-complete problems, of which Competitive Facility
Location is an example. PSPACE-complete problems are believed to be strictly harder than
NP-complete problems, and this conjectured lack of short “proofs” for their solutions is
one indication of this greater hardness. The notion of PSPACE-completeness turns out to

capture a large collection of problems involving game-playing and planning; many of these



28 CHAPTER 1. INTRODUCTION

are fundamental issues in the area of artificial intelligence.

1.5 Exercises

Note: FEzercises denoted with an asterisk (x) tend to be more difficult, or to rely on some of
the more advanced material.

1. Gale and Shapley published their paper on the stable marriage problem in 1962; but a
version of their algorithm had already been in use for ten years by the National Resident
Matching Program, for the problem of assigning medical residents to hospitals.

Basically, the situation was the following. There were m hospitals, each with a certain
number of available positions for hiring residents. There were n medical students
graduating in a given year, each interested in joining one of the hospitals. Each hospital
had a ranking of the students in order of preference, and each student had a ranking
of the hospitals in order of preference. We will assume that there were more students
graduating than there were slots available in the m hospitals.

The interest, naturally, was in finding a way of assigning each student to at most one
hospital, in such a way that all available positions in all hospitals were filled. (Since
we are assuming a surplus of students, there would be some students who do not get
assigned to any hospital.)

We say that an assignment of students to hospitals is stable if neither of the following

situations arises.

e First type of instability: There are students s and s’, and a hospital h, so that

— s is assigned to h, and
— &' is assigned to no hospital, and
— h prefers s’ to s.
e Second type of instability: There are students s and s’, and hospitals h and A/,
so that
— s is assigned to h, and
— &' is assigned to A/, and
— h prefers s’ to s, and

— s’ prefers h to h'.

So we basically have the stable marriage problem from class, except that (i) hospitals
generally want more than one resident, and (ii) there is a surplus of medical students.



1.5. EXERCISES 29

Show that there is always a stable assignment of students to hospitals, and give an
efficient algorithm to find one. The input size is ©(mn); ideally, you would like to find
an algorithm with this running time.

2. We can think about a different generalization of the stable matching problem, in which
certain man-woman pairs are explicitly forbidden. In the case of employers and ap-
plicants, picture that certain applicants simply lack the necessary qualifications or
degree; and so they cannot be employed at certain companies, however desirable they
may seem. Concretely, we have a set M of n men, a set W of n women, and a set
F C M x W of pairs who are simply not allowed to get married. Each man m ranks
all the women w for which (m,w) ¢ F, and each woman w’ ranks all the men m' for
which (m/,;w') & F.

In this more general setting, we say that a matching S is stable if it does not exhibit
any of the following types of instability.

(i) There are two pairs (m,w) and (m/,w’) in S with the property that m prefers w’
to w, and w’ prefers m to m'. (The usual kind of instability.)

(ii) There is a pair (m,w) € S, and a man m/, so that m’ is not part of any pair in the
matching, (m’,w) &€ F, and w prefers m’' to m. (A single man is more desirable
and not forbidden.)

(ii") There is a pair (m,w) € S, and a woman w’, so that w’ is not part of any pair
in the matching, (m,w’) € F, and m prefers w’ to w. (A single woman is more
desirable and not forbidden.)

(iii) There is a man m and a woman w, neither of which is part of any pair in the
matching, so that (m,w) & F. (There are two single people with nothing prevent-
ing them from getting married to each other.)

Note that under these more general definitions, a stable matching need not be a perfect
matching.

Now we can ask: for every set of preference lists and every set of forbidden pairs, is
there always a stable matching? Resolve this question by doing one of the following
two things: (a) Giving an algorithm that, for any set of preference lists and forbidden
pairs, produces a stable matching; or (b) Giving an example of a set of preference lists
and forbidden pairs for which there is no stable matching.

3. Consider a town with n men and n women seeking to get married to one another. Each
man has a preference list that ranks all the women, and each woman has a preference
list that ranks all the men.



30

CHAPTER 1. INTRODUCTION

The set of all 2n people is divided into two categories: good people and bad people.
Suppose that for some number k£, 1 < &k < n — 1, there are £ good men and k good
women; thus there are n — k bad men and n — k bad women.

Everyone would rather marry any good person than any bad person. Formally, each
preference list has the property that it ranks each good person of the opposite gender
higher than each bad person of the opposite gender: its first £ entries are the good
people (of the opposite gender) in some order, and its next n — k are the bad people
(of the opposite gender) in some order.

(a) Show that there exists a stable matching in which every good man is married to
a good woman.

(b) Show that in every stable matching, every good man is married to a good woman.

. (%) For this problem, we will explore the issue of truthfulness in the stable matching

problem, and specifically in the Gale-Shapley algorithm. The basic question is: Can
a man or a woman end up better off by lying about his or her preferences? More
concretely, we suppose each participant has a true preference order. Now consider a
woman w. Suppose w prefers man m to m’, but both m and m’ are low on her list
of preferences. Can it be the case that by switching the order of m and m’ on her
list of preferences (i.e., by falsely claiming that she prefers m’ to m) and running the
algorithm with this false preference list, w will end up with a man m” that she truly
prefers to both m and m/? (We can ask the same question for men, but will focus on
the case of women for purposes of this question.)

Resolve this questions by doing one of the following two things:

(a) Giving a proof that, for any set of preference lists, switching the order of a pair on
the list cannot improve a woman’s partner in the Gale-Shapley algorithm; or

(b) Giving an example of a set of preference lists for which there is a switch that would

improve the partner of a woman who switched preferences.

. There are many other settings in which we can ask questions related to some type of

“stability” principle. Here’s one, involving competition between two enterprises.

Suppose we have two television networks; let’s call them AOL-Time-Warner-CNN and
Disney-ABC-ESPN, or A and D for short. There are n prime-time programming slots,
and each network has n TV shows. Each network wants to devise a schedule — an
assignment of each show to a distinct slot — so as to attract as much market share as
possible.

Here is the way we determine how well the two networks perform relative to each
other, given their schedules. Each show has a fixed Nielsen rating, which is based on



1.5. EXERCISES 31

the number of people who watched it last year; we’ll assume that no two shows have
exactly the same rating. A network wins a given time slot if the show that it schedules
for the time slot has a larger rating than the show the other network schedules for that
time slot. The goal of each network is to win as many time slots as possible.

Suppose in the opening week of the fall season, Network A reveals a schedule S and
Network D reveals a schedule T'. On the basis of this pair of schedules, each network
wins certain of the time slots, according to the rule above. We’ll say that the pair of
schedules (S,T) is stable if neither network can unilaterally change its own schedule
and win more time slots. That is, there is no schedule S’ so that Network .4 wins more
slots with the pair (S’,T') than it did with the pair (S,T); and symmetrically, there
is no schedule 7" so that Network D wins more slots with the pair (S,7"”) than it did
with the pair (S,7).

The analogue of Gale and Shapley’s question for this kind of stability is: For every
set of TV shows and ratings, is there always a stable pair of schedules? Resolve this
question by doing one of the following two things: (a) Giving an algorithm that, for
any set of TV shows and associated ratings, produces a stable pair of schedules; or (b)
Giving an example of a set of TV shows and associated ratings for which there is no
stable pair of schedules.

6. Peripatetic Shipping Lines, Inc., is a shipping company that owns n ships, and provides
service to n ports. Each of its ships has a schedule which says, for each day of the
month, which of the ports it’s currently visiting, or whether it’s out at sea. (You can
assume the “month” here has m days, for some m > n.) Each ship visits each port
for exactly one day during the month. For safety reasons, PSL Inc. has the following
strict requirement:

(1) No two ships can be in the same port on the same day.

The company wants to perform maintenance on all the ships this month, via the
following scheme. They want to truncate each ship’s schedule: for each ship S;, there
will be some day when it arrives in its scheduled port and simply remains there for rest
of the month (for maintenance). This means that S; will not visit the remaining ports
on its schedule (if any) that month, but this is okay. So the truncation of S;’s schedule
will simply consist of its original schedule up to a certain specified day on which it is
in a port P; the remainder of the truncated schedule simply has it remain in port P.

Now the company’s question to you is the following: Given the schedule for each ship,
find a truncation of each so that condition (T) continues to hold: no two ships are ever
in the same port on the same day.



32

CHAPTER 1. INTRODUCTION

Show that such a set of truncations can always be found, and give an efficient algorithm
to find them.

Example: Suppose we have two ships and two ports, and the “month” has four days.
Suppose the first ship’s schedule is

port Pp; at sea; port Ps; at sea
and the second ship’s schedule is
at sea; port Pp; at sea; port P

Then the (only) way to choose truncations would be to have the first ship remain in
port P, starting on day 3, and have the second ship remain in port P; starting on day
2.

. Some of your friends are working for CluNet, a builder of large communication net-

works, and they are looking at algorithms for switching in a particular type of in-
put/output crossbar.

Here is the set-up. There are n input wires and n output wires, each directed from a
source to a terminus. Each input wire meets each output wire in exactly one distinct
point, at a special piece of hardware called a junction box. Points on the wire are
naturally ordered in the direction from source to terminus; for two distinct points x
and y on the same wire, we say that x is upstream from y if x is closer to the source
than y, and otherwise we say x is downstream from y. The order in which one input
wire meets the output wires is not necessarily the same as the order in which another
input wire meets the output wires. (And similarly for the orders in which output wires
meet input wires.)

Now, here’s the switching component of this situation. Each input wire is carrying a
distinct data stream, and this data stream must be switched onto one of the output
wires. If the stream of Input ¢ is switched onto Output 7, at junction box B, then this
stream passes through all junction boxes upstream from B on Input ¢, then through B,
then through all junction boxes downstream from B on Output j. It does not matter
which input data stream gets switched onto which output wire, but each input data
stream must be switched onto a different output wire. Furthermore — and this is
the tricky constraint — no two data streams can pass through the same junction box
following the switching operation.

Finally, here’s the question. Show that for any specified pattern in which the input
wires and output wires meet each other (each pair meeting exactly once), a valid
switching of the data streams can always be found — one in which each input data



1.5. EXERCISES 33

stream is switched onto a different output, and no two of the resulting streams pass
through the same junction box. Additionally, give an efficient algorithm to find such
a valid switching. (The accompanying figure gives an example with its solution.)

Output 1 O junction -
junction
OU-tPUt 2 O junction junction =
Input 1 Input 2

Figure 1.5: An example with two input wires and two output wires. Input 1 has its junction
with Output 2 upstream from its junction with Output 1; Input 2 has its junction with
Output 1 upstream from its junction with Output 2. A valid solution is to switch the data
stream of Input 1 onto Output 2, and the data stream of Input 2 onto Output 1. On the
other hand, if the stream of Input 1 were switched onto Output 1, and the stream of Input
2 were switched onto Output 2, then both streams would pass through the junction box at
the meeting of Input 1 and Output 2 — and this is not allowed.



34

CHAPTER 1.

INTRODUCTION



Chapter 2

Algorithmic Primitives for Graphs

Much of the course is concerned with techniques for designing algorithms, and graphs will
be a ubiquitous modeling tool in this process. As such, it is important to lay the foundation
by developing some algorithmic primitives for graphs.

We begin by considering algorithms that operate on undirected graphs, and then move
on to the case of directed graphs. Many of the basic concepts for undirected graphs carry
over to directed graphs in a more complex form; and new issues arise with directed graphs
that would not have made sense in the undirected context. In keeping with our view of
undirected graphs as the more basic object, we’ll use the word “graph” (with no modifier)
to mean an undirected graph by default.

2.1 Representing Graphs

In order to consider algorithms that operate on graphs, we need to understand how a graph
G = (V, E) will be presented as input; such a representation should allow us quick access
to the nodes and edges of GG, and also allow the algorithm to modify the structure of G as
necessary.

There are two standard approaches to this representation problem. In describing both,
we will assume that the G has n nodes, and that they are labeled {1,2,... n}.

Adjancency matrices. An adjacency matriz is simply a two-dimensional array A, with
n rows and n columns, where n = |V|. The entry A[i, j] is equal to 1 if there is an edge
joining 7 and j, and it is equal to 0 otherwise. Thus, row 7 of A “corresponds” to the node
7, in that the sequence of 0’s and 1’s in row ¢ indicate precisely the nodes to which i has
edges. Column i of A performs the same function; notice that since G is undirected, A is
symmetric: A[i, j] = A[j, 1].

Adjacency matrices have nice properties. We can determine whether ¢ and j are joined
by an edge in constant time, by simply querying the array entry A[i, j]. We can modify G

35



36 CHAPTER 2. ALGORITHMIC PRIMITIVES FOR GRAPHS

by inserting or deleting the edge (7, j), also in constant time, simply by switching the value
of A, j].

Given this, why would we want any other representation for G? There are two reasons.
First, the adjacency matrix of G is an enormous object; it has size ©(n?), even when G has
many fewer than n? edges. As a thought experiment, consider the graph G that has one node
for each person in the world, and an edge (i, ) whenever i and j know each other on a first
name basis. If we assume there are about six billion people in the world; and each person
knows about 1000 other people (this turns out to be a reasonable estimate); and each person
is represented by a 5-byte unique identifer (with room to spare); then it would be possible
to write down a complete description of GG in about 30 trillion bytes by simply listing, for
each person, all the other people they know. (Here we’re just considering the space required
to store GG, not the effort involved in collecting the data for constructing G.) Thirty trillion
bytes is very large, to be sure, but it’s something manageable — it’s comparable to the size
of a large crawl of the Web, and much less than the amount of customer transaction data
stored in Wal-Mart’s databases. On the other hand, the adjacency matrix of G would be
something utterly beyond our power to store: it would require more than 10 entries, an
amount of space significantly greater than the capacity of all the hard disks sold world-wide
last year.

Here’s a second, related, problem with the adjacency matrix. Think of G as an object
we’d like to be able to “explore” — we get dropped down on a node i, we look around, and
we see which edges lead away from i. We’d like to be able to scan for these edges in an
amount of time proportional to the number of edges that are actually incident to ¢. This will
turn out to be crucial in many of the algorithms we consider. Using the adjacency matrix,
however, our only option for determining the edges incident to ¢ would be to read all of row
i, keeping track of which entries were equal to 1. This takes time ©(n), even when very
few edges actually have ends equal to i. So in the case of the acquaintance-ship graph G of
the U.S. that we’ve just been considering, for example, we’d like a representation of G that
would let us scan the friends of a person 7 in roughly 1000 steps (proportional to the number
of i’s friends) rather than six billion steps (proportional to the full population).

Let’s move on to a representation that has these features: its size is only proportional
to the number of nodes and edges in GG, and it lets us scan the “neighborhood” of a node
quickly.

Adjacency lists. An adjacency list structure consists of an n-element array V, where Vi
represents node i. V[i] simply points to a doubly linked list L; that contains an entry for
each edge e = (i, 7) incident to ; this entry for e records the other end of the edge as well.
Thus, if we want to enumerate all the edges incident to node i, we first locate entry V[i], in
constant time, and then walk through the doubly linked list L; of edges that it points to. If



2.2. PATHS, CYCLES, AND TREES 37

there are d incident edges, this takes time O(d), independent of n.

Notice that each edge e = (i, j) appears twice in the adjacency list representation; once
as e = (4,7) in the list L;, and once as e = (j4,7) in the list L;. We will require that these
two entries have pointers from one to the other; this way, for example, if we have our hands
on the copy of e in L; and we’d like to delete it, we can quickly delete the copy in L; as well
by following the pointer to it.

It’s important to note that there are some respects in which an adjacency matrix is better
than an adjacency list. Using an adjacency list, we can’t be told a pair of nodes ¢ and 7, and
decide in constant time whether G contains the edge (i, 7). To do this with the adjacency
list, we’d need to walk through the list L; of all edges incident to 7, seeing if any had j as
their other end; and this would take time proportional to the length of L;.

It is easy to create hybrid versions of these two representations, which combine advantages
of each. Suppose, for example, that we concurrently maintained a copy of the adjacency
matrix of G' as well as the adjacency list of G. The entries in the two structures would be
“cross-linked” — the edge e = (i, ) in the list L; would have an extra pointer to the entry
Ali, 7], and the entry Ali, j] in the adjacency matrix would now have an extra pointer to the
entry for e = (7,7) in the list L;. In this way, we get the ability to quickly scan the edges
incident to ¢, as with adjacency lists, as well as the ability to determine in constant time
whether ¢ and j are joined by an edge. At the same time, this hybrid structure is not a pure
improvement over the simple adjacency list, for it has inherited the enormous size (©(n?))
of the adjacency matrix, even when G has relatively few edges.

2.2 Paths, Cycles, and Trees

Since graphs so often model transportation or communication networks, a fundamental oper-
ation in graphs is that of traversing a sequence of nodes that are connected by edges. (Think
of traveling from Ithaca to San Francisco on a sequence of airline flights, or tracing the route
of a packet on the Internet through a sequence of intermediate routers.)

With this notion in mind, we define a path in a graph G = (V, E) to be a sequence P of
nodes vy, Vg, . .., Vk_1, vy With the property that each consecutive pair v;, v;,1 is joined by an
edge in GG. P is often called a path from vy to vg, or a vi-v, path. We call such a sequence of
nodes a cycle if v1 = v, — in other words, the sequence “cycles back” to where it began. A
path is called simple if all its vertices are distinct; it is called a simple cycle if vy, va, ..., vk,
are all distinct, and v = vy.

We say that a graph is connected if for every pair of nodes u and v, there is a path from
u to v. In thinking about what it means, structurally, for a graph to be connected, it turns
out to be very helpful to think about the “simplest” possible connected graphs — those

containing the minimal number of edges necessary for connectivity. In particular, consider a



38 CHAPTER 2. ALGORITHMIC PRIMITIVES FOR GRAPHS

3
@)
40—}32 O : ; 7
\6\7 C/
GO/SO/
\)Q 3 4 6 8 9

Figure 2.1: Two drawings of the same tree.

connected graph G with a simple cycle C. If e = (u,v) is an edge on C, then G will remain
connected even after we delete e — indeed, any path that previously used e can now be
re-routed “the long way” around C', and so there is still a path joining each pair of nodes.
So whenever we find a cycle in a graph GG, we can delete an edge while keeping the graph
connected; continuing in this way, we would end up with a graph that is still connected but
has no more cycles. We will call such graphs trees: A tree is a connected graph with no
cycles.

The two graphs pictured in Figure 2.1 are trees. In a strong sense, trees are indeed the
“simplest” kind of connected graph: deleting any edge from a tree will disconnect it.

For thinking about the structure of a tree T', it is useful to root it at a particular node r.
Physically, this is the operation of grabbing 7" at the node r, and letting the rest of it hang
downward under the force of gravity, like a mobile. More precisely, we “orient” each edge
of T away from r; for each other node v, we declare the parent of v to be the node u that
directly precedes v on its path from r; we declare w to be a child of v if v is the parent of w.
More generally, we say that w is a descendent of v (or v is an ancestor of w) if v lies on the
path from the root to w; and we say that a node x is a leaf if it has no descendents. Thus,
for example, the two pictures in Figure 2.1 correspond to the same tree 7' — the same pairs
of nodes are joined by edges — but the drawing on the right represents the result of rooting
T at node 1.

Rooted trees are fundamental objects in computer science, because they encode the notion
of a hierarchy. For example, we can imagine the rooted tree in Figure 2.1 as corresponding
to the organizational structure of a tiny 9-person company; employees 3 and 4 report to
employee 2; employees 2, 5, and 6 report to employee 1; and so on. Many Web sites are
organized according to a tree-like structure, to facilitate navigation. A typical computer
science department’s Web site will have an entry page as the root; the People page is a child
of this entry page (as is the Courses page); pages entitled Faculty and Students are children



2.3. GRAPH CONNECTIVITY AND GRAPH TRAVERSAL 39

of the People page; individual professors’ home pages are children of the Faculty page; and
SO on.

For our purposes here, rooting a tree 1" can make certain questions about 7" conceptually
easy to answer. For example, given a tree T on n nodes, how many edges does it have? Each
node other than the root has a single edge leading “upward” to its parent; and conversely,
each edge leads upward from precisely one non-root node. Thus we have very easily proved
the following fact.

(2.1) PEvery n-node tree has exactly n — 1 edges.
In fact, the following stronger statement is true, although we do not prove it here.

(2.2) Let G be a graph on n nodes. Any two of the following statements implies the
thard.

(i) G is connected.

(i) G does not contain a cycle.

(iii) G has n — 1 edges.

We now turn to the role of trees in the fundamental algorithmic idea of graph traversal.

2.3 Graph Connectivity and Graph Traversal

Having built up some fundamental notions regarding graphs, we turn to a very basic al-
gorithmic question: node-to-node connectivity. Suppose we are given a graph G = (V, E),
and two particular nodes s and t. We’d like to find an efficient algorithm that answers the
question: is there a path from s to ¢ in G?7 We will call this the problem of determining s-t
connectivity.

For very small graphs, this question can often be answered easily by visual inspection.
But for large graphs, it can take some work to search for a path — the challenge in solving
mazes, for example, boils down to this question. How efficient an algorithm can we design
for this task?

The basic idea in searching for a path is to “explore” the graph G starting from s,
maintaining a set R consisting of all nodes that s can reach. Initially, we set R = {s}. If at
any point in time, there is an edge (u,v) where u € R and v ¢ R, then we claim it is safe
to add v to R. Indeed, if there is a path P from s to u, then there is a path from s to v
obtained by first following P and then following the edge (u,v). Suppose we continue this
of growing the set R until there are no more edges leading out of R; in other words, we run
the following algorithm.



40 CHAPTER 2. ALGORITHMIC PRIMITIVES FOR GRAPHS

1 7 9
5 3
4 5 8 10
6
Figure 2.2:

R will consist of nodes to which s has a path.

Initially R = {s}.

While there is an edge (u,v) where u € R and v ¢ R
Add v to R.

Endwhile

Here is the key property of this algorithm.

(2.3) The set R produced at the end of the algorithm consists of precisely the nodes to
which s has a path.

Proof. We have already argued that for any node v € R, there is a path from s to v. In
reality, our argument above hides a proof by induction on the number of iterations of the
While loop: assuming that the set R produced after k steps of the loop contain only nodes
reachable from R, then the node added in the (k4 1)%* step must also be reachable from s.

Now, consider a node w € R, and suppose by way of contradiction that there is an s-w
path in G. Since s € R but w ¢ R, there must be a first node v on P that does not belong
to R; and this node v is not equal to s. Thus, there is a node u immediately preceding v
on P, so (u,v) is an edge. Moreover, since v is the first node on P that does not belong
to R, we must have u € R. It follows that (u,v) is an edge where u € R and v ¢ R; this
contradicts the stopping rule for the algorithm. m

We call this set R the connected component of G containing s. In view of (2.3), our
algorithm for determining s-t connectivity can simply produce the connected component
R of G containing s, and determine whether t € R. (Clearly, if we don’t want the whole
component, just the answer to the s-t connectivity question, then we can stop the growing
of R as soon as t is discovered.) Observe that it is easy to recover the actual path from s to
t, along the lines of the inductive argument in (2.3): we simply record, for each node v, the



2.3. GRAPH CONNECTIVITY AND GRAPH TRAVERSAL 41

edge (u,v) that was considered in the iteration in which v was added to S. Then, by tracing
these edges backward from ¢, we proceed through a sequence of nodes that were added in
earlier and earlier iterations, eventually reaching s; this defines an s-t path.

The algorithm that grows R is under-specified — how do we decide which edge to consider
next? We will show two ways of specifying the answer to this question; they both lead to
efficient connectivity algorithms, but with qualitatively different properties.

In both cases, “efficient” will mean the following. If G has n nodes and m edges, then in
the worst case we may have to spend time proportional to m + n just to look at the input.
We will produce algorithms running in linear time; i.e. requiring time O(m + n), which is
the best possible.

Breadth-First Search

Perhaps the simplest way to grow the component R is in layers. We start with the node s,
and add all nodes that are joined by an edge to s — this is the first layer. We then add
all the nodes that are joined by an edge to any node in the first layer — this is the second
layer. We continue in this way until we have a set of nodes with no edges leaving it; this is
the component R. We call this algorithm Breadth-First Search (BFS), since it explores G by
considering all nearby nodes first, rather than exploring deeply in any particular direction.

Indeed, BFS is simply a particular implementation of our previous algorithm, defined by
a particular way of choosing edges to explore. We summarize it as follows.

BFS(s):
Mark s as "Visited".
Initialize R = {s}.
Define layer Ly = {s}.
While L; is not empty
For each node u € L;
Consider each edge (u,v) incident to v
If v is not marked "Visited" then
Mark v "Visited"
Add v to the set R and to layer L,
Endif
Endfor
Endwhile

If we store each layer L; as a queue, then inserting nodes into layers and subsequently
accessing them takes constant time per node. Furthermore, if we represent G using an
adjacency list, then we spend constant time per edge over the course of the whole algorithm,
since we consider each edge e at most once from each end. Thus, the overall time spent by
the algorithm is O(m + n).



42 CHAPTER 2. ALGORITHMIC PRIMITIVES FOR GRAPHS

Figure 2.3: A breadth-first search tree T for the graph in Figure 2.2. The solid edges are
the edges of T'; the dotted edges are edges of G that do not belong to 7.

The BFS algorithm has several useful properties. First, suppose we define the distance
between two nodes v and v to be the minimum number of edges in a u-v path. (We can
designate some symbol like co to denote the distance between nodes that are not connected by
a path.) The term “distance” here comes from imagining G as representing a communication
or transportation network; if we wanted to get from u to v, we may well want a route with
as few “hops” as possible. Now it is easy to see that breadth-first search, in addition to
determining connectivity, is also computing distances; the nodes in layer L; are precisely the
nodes at distance i from s.

A further property of breadth-first search is that it produces, in a very natural way, a
tree T' on the set R, rooted at s. Specifically, consider a point in the BFS algorithm when
the edges incident to a node u € L; are being examined; we come to an edge (u,v) where
v is not yet visited, and we add v to layer L;;;. At this moment, we add the edge (u,v)
to the tree T' — wu becomes the parent of v, representing the fact that u is “responsible”
for bringing v into the component R. We call the tree T' that is produced in this way a
breadth-first search tree of R.

Figure 2.3 depicts a BFS tree rooted at node 1 for the graph from Figure 2.2. The solid
edges are the edges of T'; the dotted edges are edges of G that do not belong to T'. In fact,
the arrangement of these non-tree edges is very constrained relative to the tree T'; as we now
prove, they can only connect nodes in the same or adjacent layers.

(2.4) Let T be a breadth-first search tree, let x and y be nodes in T belonging to layers
L; and L; respectively, and let (x,y) be an edge of G that is not an edge of T. Then i and j
differ by at most 1.

Proof. Suppose by way of contradiction that ¢« and j differed by more than 1; in particular,
suppose i < 7 — 1. Now consider the point in the BFS algorithm when the edges incident to



2.3. GRAPH CONNECTIVITY AND GRAPH TRAVERSAL 43

x were being examined. At this point, the only nodes marked “Visited” belonged to layers
L; 1 and below; hence, y could not have been marked “Visited” at this point, and so it
should have added to layer L;,; during the examination of the edges incident to x. m

Depth-First Search

Another natural method to find the nodes reachable from s is the approach you might take if
the graph GG were truly a maze of interconnected rooms, and you were walking around in it.
You'd start from s and try the first edge leading out of it, to a node v. You’d then follow the
first edge leading out of v, and continue in this way until you reached a “dead end” — a node
for which you had already visited all its neighbors. You'd then back-track till you got to a
node with an unvisited neighbor, and resume from there. We call this algorithm Depth-First
Search (DFS), since it explores G by going as deeply as possible, and only retreating when
necessary.

DF'S is also a particular implementation of the generic component-growing algorithm that
we introduced initially. It is most easily described in recursive form: we can invoke “DFS”
from any starting point, but maintain global knowledge of which nodes have already been
visited.

DFS(u) :
Mark u as "Visited" and add u to R.
For each edge (u,v) incident to u
If v is not marked "Visited" then
Add v to R.
Recursively invoke DFS(v).
Endif
Endfor

To apply this to s-t connectivity, we simply declare all nodes initially to be not visited, and
invoke DF'S(s).

With G represented using an adjacency list, we spend constant time per edge since we
consider it at most once from each end; we also spend constant additional time per node since
DFS(u) is invoked at most once for each node w. Thus the total running time is O(m + n).

The DFS algorithm yields a natural rooted tree T in much the same way that BFS did:
we make s the root, and make u the parent of v when u is responsible for the discovery of v.
That is, whenenver v is marked “Visited” during the invocation of DFS(u), we add the the
edge (u,v) to T. The resulting tree is called a depth-first search tree of the component R.

Figure 2.4 depicts a DFS tree rooted at node 1 for the graph from Figure 2.2. The solid
edges are the edges of T'; the dotted edges are edges of G that do not belong to T. DFS
trees look quite different from BFS trees; rather than having root-to-leaf paths that are as
short as possible, they tend to be quite narrow and deep. However, as in the case of BFS,



44 CHAPTER 2. ALGORITHMIC PRIMITIVES FOR GRAPHS

Figure 2.4: A depth-first search tree T" for the graph in Figure 2.2. The solid edges are the
edges of T'; the dotted edges are edges of GG that do not belong to T

we can say something quite strong about the way in which non-tree edges of G must be
arranged relative to the edges of a DFS tree T: as in the figure, non-tree edges can only
connect ancestors of T' to descendents.

To establish this, we first observe the following property of the DFS algorithm and the
tree that it produces.

(2.5) For a given recursive call DFS(u), all nodes that are marked “Visited” between

the invocation and end of this recursive call are descendents of u in T'.
Using (2.5), we prove

(2.6) Let T be a depth-first search tree, let x and y be nodes in T, and let (x,y) be an
edge of G that is not an edge of T'. Then one of x or y is an ancestor of the other.

Proof. Suppose that (z,y) is an edge of G that is not an edge of T', and suppose without loss
of generality that z is reached first by the DFS algorithm. When the edge (x,y) is examined
during the execution of DF'S(x), it is not added to T" because y is marked “Visited.” Since y
was not marked “Visited” when DF'S(z) was first invoked, it is a node that was discovered
between the invocation and end of the recursive call DFS(z). It follows from (2.5) that y
is a descendent of z. m

Finding all Connected Components

Suppose we don’t want to determine a path between a specific pair of nodes, but in fact
want to produce all the connected components of G. One application would be to determine



2.4. TWO APPLICATIONS OF GRAPH TRAVERSAL 45

whether GG is a connected graph; this is the case if and only if it has a single connected
component, rather than several.

We can easily use BF'S or DFS to do this in time O(m+n). Suppose the nodes are labeled
1,2,...,n, and there is an array B that stores the “Visited/Unvisited” status of each node.
We first grow the component R; containing 1, in time proportional to the number of nodes
and edges in R;. We then walk through the entries of the array B in sequence. Either we
reach the end and discover that all nodes have been visited, or we come to the first node 7
that is not yet visited. The node ¢ must belong to a different connected component, so we
proceed to grow the component R; containing it in time proportional to the number of nodes
and edges in R;. We then return to scanning the array B for unvisited nodes, starting from
the node i, and continue in this way.

We thus eventually construct all the connected components of G. The time spent on the
component-growing procedures is proportional to the sum of the sizes of all components,
which is just the number of nodes and edges of G. The additional time spent identifying a
new component to grow — by finding a node not yet visited — corresponds to just a single
scan of the array B over the course of the algorithm, since we always pick up scanning where
we left off. Thus, after O(m + n) time, we have produced all the connected components of

G.

2.4 Two Applications of Graph Traversal

We now discuss two applications that make direct use of the special structures of BFS and
DFS trees. We first describe how to tell if a graph is bipartite; we then give an algorithm
for identifying nodes whose deletion disconnects a graph.

Testing Whether a Graph is Bipartite

Recall the definition of a bipartite graph: it is one where the node set V' can be partitioned
into sets X and Y in such a way that every edge has one end in X and the other end in
Y. To make the discussion a little smoother, we can imagine that the nodes in the set X
are colored red, and the nodes in the set Y are colored blue; with this imagery, we can say a
graph is bipartite if it is possible to color its nodes red and blue so that every edge has one
red end and one blue end.

In the previous chapter, we saw examples of bipartite graphs. Here start here by asking:
what is an example of a non-bipartite graph, one where no such partition of V' is possible?

Clearly a triangle is not bipartite, since we can color one node red, another one blue, and
then we can’t do anything with the third node. More generally, consider a cycle C' of odd
length, with nodes number 1,2,3,...,2k, 2k + 1. If we color node 1 red, then we must color
node 2 blue, and then we must color node 3 red, and so on — coloring odd-numbered nodes



46 CHAPTER 2. ALGORITHMIC PRIMITIVES FOR GRAPHS

red and even-numbered nodes blue. But then we must color node 2k + 1 red, and it has an
edge to node 1, which is also red. This demonstrates that there’s no way to partition C' into
red and blue nodes as required. More generally, if a graph G simply contains an odd cycle,
then we can apply the same argument; thus we have established that

(2.7) If a graph G s bipartite, then it cannot contain an odd cycle.

It is easy to recognize that a graph is bipartite when appropriate sets X and Y (i.e. red
and blue nodes) have actually been identified for us; and in many setting where bipartite
graph arise, this is natural. But suppose we encounter a graph GG with no annotation provided
for us, and we’d like to determine for ourselves whether it is bipartite — i.e. whether there
exists a partition into red and blue nodes as required. How difficult is this?

In fact, there is a very simple procedure to test for bipartiteness. First, we assume the
graph G is connected, since otherwise we can first compute its connected components and
analyze each of them separately. Now, we pick any node s € V' and color it red — there is
no loss in doing this, since s must receive some color. It follows that all the neighbors of s
must be colored blue, so we do this. It then follows that all the neighbors of these nodes
must be colored red, their neighbors must be colored blue, and so on, until the whole graph
is colored. At this point, either we have a valid red/blue coloring of GG, in which every edge
has ends of opposite colors, or there is some edge with ends of the same color. In this latter
case, it seems clear that there’s nothing we could have done: G simply is not bipartite. We
now want to argue this point precisely, and also work out an efficient way to perform the
coloring.

In fact, our description of the coloring procedure is almost identical to our description
of BFS. Indeed, what we are doing is to color s red, then all of layer L; blue, then all of
layer Lo red, and so on. So in fact, by implementing the coloring on top of BFS, we can
easily perform it in O(m + n) time. The fact that we are correctly determining whether G
is bipartite is now a consequence of the following claim.

(2.8) Let G be a connected graph, and let Ly, L1, Lo, . .. be the layers produced by a BFS
starting at node s. Then exactly one of the following two things must hold.

(i) There is no edge of G joining two nodes of the same layer. In this case G is a
bipartite graph in which the nodes in even-numbered layers can be colored red, and the nodes
in odd-numbered layers can be colored blue.

(ii) There is an edge of G joining two nodes of the same layer. In this case, G must
contain on odd-length cycle, and so it cannot be bipartite.

Proof. In case (i), why does the specified coloring result in every edge having ends of opposite
colors? By (2.4), every edge of G joins nodes either in the same layer, or in adjacent layers.
Edges that join nodes of adjacenct layers have ends of opposite colors; and our assumption



2.4. TWO APPLICATIONS OF GRAPH TRAVERSAL 47
A
layer L;

IayerLj
X y

Figure 2.5: Discovering that a graph is not bipartite.

in (i) is that there are no edges joining nodes in the same layer. Thus, the specified coloring
establishes that G is bipartite.

In case (ii), why must G contain an odd cycle? We are told that G contains an edge
joining two nodes of the same layer; suppose this is the edge x = (x,y), with z,y € Lj;.
Consider the BFS tree T' produced by our algorithm, and let z be the node that is in as low
a layer as possible, subject to the condition that z is an ancestor of both x and y in T' — for
obvious reasons, we can call z the least common ancestor of x and y. Suppose z € L;, where
1 < 7. We now have the situation pictured in Figure 2.5. We consider the cycle C' defined
by following the z-x path in T', then the edge e, and then the y-z path in T'. The length of
this cycle is (j —i) + 1+ (j — 7), adding the length of its three parts separately; this is equal
to 2(j — i) + 1, which is an odd number. =

Finding Cut-Points in a Graph

The previous application illustrated how the properties of a BFS tree can be useful in rea-
soning about the structure of a graph. We now describe a problem for which the properties
of a DF'S tree — particularly the fact that non-tree edges only join ancestors to descendents
— become very useful.

Given a connected graph G = (V, E), we say that u € V is a cut-point if deleting u
disconnects G — in other words, if G—{u} is not connected. We can think of the cut-points
as the “weak points” of G; the destruction of a single cut-point separates the graph into
multiple pieces. For example, look at the connected graph G obtained by considering just
the nodes 1-8 in Figure 2.2. This graph has two cut-points: the nodes 3 and 5.

How can we find cut-points efficiently? The DFS tree of GG, as depicted in Figure 2.4,
holds the key to this. Consider, for example, the sub-tree rooted at node 3 — node 3, acting



48 CHAPTER 2. ALGORITHMIC PRIMITIVES FOR GRAPHS

Figure 2.6: Traveling from the root to a node w while avoiding the node wu.

as the “entry point” to this sub-tree, separates the nodes below it from the rest of the graph.
In particular, since non-tree edges only connect ancestors and descendents, it is enough to
observe that there is no edge that “jumps over” node 3, connecting one of its descendents
to one of its ancestors, and so there is no way for the nodes below 3 to reach the rest of
the graph except through 3. Node 4, on the other hand, lacks this property — both its
descendents can reach the rest of the graph through edges that jump over 4.

We now make this kind of reasoning more concrete. We first say that a node u is earlier
than a node v, relative to the execution of the DFS algorithm, if node u is marked as
“Visited” before node v is. We write u < v to denote this. We define earliest(u) to be the
earliest node = such that some node in the sub-tree rooted at u is joined by a non-tree edge
to z. So in the example of Figure 2.4, we have earliest(4) = 1, since node 3 has a non-tree
edge to 1; on the other hand, earliest(7) = 3 since node 8 itself has a non-tree edge to 3.
This latter fact — that earliest(7) = 3 — suggests why node 3 is a cut-point: the sub-tree
rooted at 7 cannot jump over 3 to get to the rest of the graph.

By looking at these earliest reachable nodes, we can identify in general whether any non-
tree edges jump over a given node u to one of its ancestors, and hence whether or not u is a
cut-point. Here is the fact that makes this precise.

(2.9) LetT be a DFS tree of G, with root r.

(i) A node w # r is a cut-point if and only if there is a child v of u for which u =<
earliest(v).

(ii) The root r is cut-point if and only if it has more than one child.

Proof. Statement (ii) is easier. If r has only one child in 7', then even after deleting r there



2.4. TWO APPLICATIONS OF GRAPH TRAVERSAL 49

are still paths in 7' connecting all other nodes. Conversely, if  has more than one child,
then by (2.6), there are no non-tree edges connecting the sub-trees rooted at these children.
Hence, deleting r will disconnect the nodes in these sub-trees from one another.

We now prove statement (i). For the first direction, suppose there is a child v of u for
which u =< earliest(v). Let X denote the set of nodes in sub-tree rooted at v; we claim that
there is no edge from a node in X to any node in G—X other than u. Indeed, by (2.6), such
an edge would have to go to an ancestor of u; but all such ancestors are earlier than v in the
order of the DFS. So it is not possible for such an edge to exist, since u =< earliest(v).

Conversely, suppose that all children v of u have the property that u A earliest(v). Then
we claim that for every node w # wu, there is a path from r to w that does not use u; it
will follow that G—{u} is still connected. Clearly, r can reach any node that is not in the
sub-tree rooted at u, just using the path in 7. Now, consider a node w that is in the sub-tree
rooted at w; it is also in the sub-tree rooted at v, for some particular child v of u. To get
from r to w, we can proceed as follows. Let x = earliest(v), and let y be a node in the
sub-tree rooted at v for which (x,y) is an edge. Using edges in T', we can walk from r to x;
we can then follow the edge (z,y); we can then use edges in T' again to walk from y to v,
and on to w. In this way, we have constructed an r-w path that avoids u. The construction
is depicted schematically in Figure 2.6. m

Given (2.9), we can determine the cut-points of GG in linear time provided that we can
compute the values of earliest(u) for each node u in linear time. The simplest way to do this
is straight from the definition of earliest(-), processing a DFS tree from the leaves upward.

To compute earliest(u) for all wu:
First compute a DFS tree 7T of (G rooted at r.
Now process the nodes in 7' from the leaves upward,
so that a node u is only processed after all its children:
To process node u:
If u is a leaf, then earliest(u) is just the earliest node
to which u is joined by a non-tree edge.
We define earliest(u) =u if u has no incident non-tree edges.
Else (u is not a leaf)
Consider the set
S={u} U
{w: (u,w) is a non-tree edge} U
{earliest(v) : v is a child of u}
Define earliest(u) to be the earliest node in S
Endif

The computation of the DFS tree takes O(m + n) time. After this, we spend constant time
per edge to compute all the values earliest(u), since we examine each edge at most once



50 CHAPTER 2. ALGORITHMIC PRIMITIVES FOR GRAPHS

from each end. Finally, we can implement the test in (2.9) in O(m + n) time as well, so as
to determine all the cut-points. Thus, the overall time is O(m + n).

It is possible to combine the computation of the values earliest(u) with the recursive
procedure that actually performs the DFS; this eliminates the need for an explicitly “two-
phase” algorithm that first builds the tree and then computes these values.

2.5 Extensions to Directed Graphs

Thus far, we have been looking at problems on undirected graphs; we now consider the extent
to which these ideas carry over the case of directed graphs. Recall that in a directed graph,
the edge (u,v) has a direction: it goes from wu to v. In this way, the relationship between u
and v is asymmetric, and this has qualitative effects on the structure of the resulting graph.
For example, consider how different one’s browsing experience would be on the World Wide
Web if it were possible to follow a hyperlink in either direction.

At the same time, many of our basic definitions, representations, and algorithms have
immediate analogues in the directed case. The notion of a path still makes sense in a directed
graph, but the direction of edges is incorporated into the definition: a path is a sequence of
nodes vy, vy, ..., Ux_1,Vx With the property that for each ¢ = 1,2,...,k — 1, there is an edge
(vi, vi41). Thus, it can easily happen that there is a path from u to v, but no path from v to
u. The notion of a cycle carries over to the directed case analogously: all edges on the cycle
must be oriented in the same direction.

The two basic representations — adjacency matrices and adjacency lists — also carry
over to the directed case. The adjacency matrix is no longer symmetric, since we will have
Ali, j] # Alj, 1] whenever one of (i, j) or (j,4) is an edge but the other isn’t. In the adjacency
list structure, it is often useful to have the entry V[i] point to two lists: the edges for which
i is the tail, and (separately) the edges for which 7 the head. By analogy with the undirected
case, we can have pointers cross-linking the appearance of the edge (7, j) in the tail list of i
with the appearance of (7, j) in the head list of j.

Finally, the two basic traversal algorithms — breadth-first search and depth-first search
— also carry over to the directed case. Each algorithm contains an inner loop in which, for
a given node u, we look at all edges incident to v and determine which neighboring nodes
have been visited. In a directed graph, we modify these algorithms so that they perform
this scan over the edges for which w is the tail; otherwise, the algorithms remain exactly the
same. The result of these algorithms is the set of nodes R to which u has a path, which
may be quite different from the set of nodes R’ that have a path to u. If we were interested
in computing this latter set R’, we could simply run DFS or BFS with the directions of all
edges reversed.

We now consider an algorithmic problem that is specific to directed graphs, and has no



2.6. DIRECTED ACYCLIC GRAPHS AND TOPOLOGICAL ORDERING 51

obvious analogue in the undirected case.

2.6 Directed Acyclic Graphs and Topological Ordering

If an undirected graph has no cycles, then it has an extremely simple structure — each of its
connected components is a tree. But it is possible for a directed graph to have no (directed)
cycles and still have a very rich structure. For example, such graphs can have a large number

of edges: if we start with the node set {1,2,...,n} and include an edge (i, j) whenever i < j,
2

cycles, we call it — naturally enough — a directed acyclic graph, or a DAG for short. (The

then the resulting directed graph has ( ) edges but no cycles. If a directed graph has no
term “DAG” is typically pronounced as a word, not spelled out as an acronym.)

DAGs are a very common structure in computer science, because they encode precedence
relations, or dependencies, in the following way. Suppose we have a list of tasks labeled
{1,2,...,n} that need to be performed, and there are dependencies among them stipulating,
for certain pairs i and j, that ¢ must be performed before j. For example, the tasks may be
courses, with pre-requisite requirements stating that certain courses must be taken before
others. Or the tasks may correspond to a pipeline of computing jobs, with assertions that
the output of job 7 is used in determining the input to job 7, and hence job ¢ must be done
before job j.

We can represent such an inter-dependent set of tasks by introducing a node for each
task, and a directed edge (i, 7) whenever i must be done before j. If the precedence relation
is to be at all meaningful, the resulting graph G must be a DAG. Indeed, if it contained a
cycle C, there would be no way to do any of the tasks in C: since each task in C' cannot
begin until some other one completes, no task in C' could ever be done, since none could be
done first.

Let’s continue a little further with this picture of DAGs as precedence relations. Given
a set of tasks with dependencies, it would be natural to seek a valid order in which the
tasks could be performed, so that all dependencies are respected. Specifically, for a directed
graph G, we say that a topological ordering of G is an ordering of its nodes as vy, vo, ..., v,
so that for every edge (v;,v;), we have i < j. In other words, all edges point “forwards” in
the ordering. A topological ordering on tasks provides an order in which they can be safely
performed; when we come to the task v, all the tasks that are required to precede it have
already been done.

We can also view a topological ordering of GG as providing an immediate “proof” that G
has no cycles, via the following.

(2.10) If G has a topological ordering, then G is a DAG.

Proof. Suppose by way of contradiction that G has a topological ordering vy, vy, ..., v,, and
also has a cycle C. Let v; be the lowest-indexed node on C, and let v; be the node on C just



52 CHAPTER 2. ALGORITHMIC PRIMITIVES FOR GRAPHS

before v; — thus (v;,v;) is an edge. But by our choice of i, we have j > ¢, which contradicts
the assumption that vy, v, ..., v, was a topological ordering. m

The main question we consider here is the converse of (2.10): does every DAG have a
topological ordering, and if so, how do we find one efficiently? A method to do this for every
DAG would be very useful: it would show that for any precedence relation on a set of tasks
without cycles, there is an efficiently computable order in which to perform the tasks.

In fact, the converse of (2.10) does hold, and we establish this via a linear-time algorithm
to compute a topological ordering. The key to this lies in finding a way to get started: which
node do we put at the beginning of the topological ordering” Such a node v; would need
to have no in-coming edges, since any such edge would violate the defining property of the
topological ordering, that all edges point forward. Thus, we need to prove the following fact.

(2.11) In every DAG G, there is a node v with no in-coming edges.

Proof. Let G be a directed graph in which every node has at least one in-coming edge. We
show how to find a cycle in G this will prove the claim. We pick any node v, and begin
following edges backward from v: since v has at least one in-coming edge (u, v), we can walk
backward to w; then, since u has at least one in-coming edge (z,u), we can walk backward
to x; and so on. We can continue this process indefinitely, since every node we encounter
has an in-coming edge. But after n 4 1 steps, we will have visited some node w twice. If we
let C' denote the sequence of nodes encountered between successive visits to w, then clearly
C forms cycle. m

In fact, the existence of such a node v is all we need to produce a topological ordering
of G by induction. We place v first in the topological ordering; this is safe, since all edges
out of v will point forward. Now, G—{v} is a DAG — deleting v cannot create any cycles
— and so by induction it has a topological ordering which we can append after v. In fact,
this argument is a complete proof of the desired converse of (2.10).

(2.12) If G is a DAG, then G has a topological ordering.

The inductive proof contains the following algorithm to compute a topological ordering
of G.

To compute a topological ordering of G:
Find a node v with no in-coming edges and order it first.
Delete v from G.
Recursively compute a topological ordering of G—{v}
and append this order after v



2.6. DIRECTED ACYCLIC GRAPHS AND TOPOLOGICAL ORDERING 53

Identifying the node v and deleting it from G can be done in O(n) time. Since the algorithm
runs for n iterations, the total running time is O(n?).

This is not a bad running time; and if G is very dense, containing ©(n?) edges, then it
is linear in the size of the input. But we may well want something better when the number
of edges m is much less than n?; in such a case, a running time of O(m + n) could be a
significant improvement over ©(n?).

In fact, we can achieve a running time of O(m + n) using the same high-level algorithm
— iteratively deleting nodes with no in-coming edges. We simply have to be more efficient
in finding these nodes. We will maintain a queue S consisting of nodes without in-coming
edges, which we initialize at the outset. In each iteration, we extract the node v that is at
the front of the queue S, and we delete v from G. As we delete each of v’s out-going edges
(v,w), we check whether this was the last edge entering w; if so, we add w to the end of the
queue S.

Observe that this is indeed just an implementation of the high-level inductive algorithm
above: by the time each node v comes to the front of the queue S, there are no nodes either
in S or still in the graph that have an edge to v, and so it is safe to place v next in the
topological ordering. We summarize the algorithm as follows.

Improved algorithm to compute a topological ordering of G:
Initialize a queue S consisting of all nodes without in-coming edges.
While S is not empty
Let v be the node at the front of S.
Delete v from G:
For each edge (v,w) in list of v’s out-going edges
Delete (v,w) from the list of w’s in-coming edges
If the list of w’s in-coming edges is now empty then
Add w to the end of S
Endif
Endfor
Place v in the next position of the topological ordering
Endwhile
If all nodes have been deleted from (G then
The algorithm has produced a topological ordering of G
Else
In the graph on the nodes that remain, every node has
an in-coming edge, and so there is a cycle by (2.11)
Endif

What is the running time of this algorithm? Initializing S takes O(n) time. We spend
constant time per node when it comes to the front of the queue S. We spend constant time
per edge (v, w), at the time when its tail v is being deleted from G. Thus, the overall running
time is O(m + n).



o4 CHAPTER 2. ALGORITHMIC PRIMITIVES FOR GRAPHS

2.7 Exercises

1. Inspired by the example of that great Cornellian, Vladimir Nabokov, some of your
friends have become amateur lepidopterists. (They study butterflies.) Often when
they return from a trip with specimens of butterflies, it is very difficult for them to
tell how many distinct species they’ve caught — thanks to the fact that many species
look very similar to one another.

One day they return with n butterflies, and they believe that each belongs to one of
two different species, which we’ll call A and B for purposes of this discussion. They’d
like to divide the n specimens into two groups — those that belong to A, and those
that belong to B — but it’s very hard for them to directly label any one specimen. So
they decide to adopt the following approach.

For each pair of specimens ¢ and j, they study them carefully side-by-side; and if they’re
confident enough in their judgment, then they label the pair (7, j) either “same” (mean-
ing they believe them both to come from the same species) or “different” (meaning they
believe them to come from opposite species). They also have the option of rendering
no judgment on a given pair, in which case we’ll call the pair ambiguous.

So now they have the collection of n specimens, as well as a collection of m judgments
(either “same” or “different”) for the pairs that were not declared to be ambiguous.
They’d like to know if this data is consistent with the idea that each butterfly is from
one of species A or B; so more concretely, we’ll declare the m judgments to be consistent
if it is possible to label each specimen either A or B in such a way that for each pair
(1,7) labeled “same,” it is the case that i and j have the same label; and for each pair
(1,7) labeled “different,” it is the case that ¢ and j have opposite labels. They're in
the middle of tediously working out whether their judgments are consistent, when one
of them realizes that you probably have an algorithm that would answer this question
right away.

Give an algorithm with running time O(m + n) that determines whether the m judg-

ments are consistent.

2. We have a connected graph G = (V, E), and a specific vertex u € V. Suppose we
compute a depth-first search tree rooted at u, and obtain the spanning tree T. Suppose
we then compute a breadth-first search tree rooted at u, and obtain the same spanning
tree T. Prove that G = T. (In other words, if 7" is both a depth-first search tree and
a breadth-first search tree rooted at u, then GG cannot contain any edges that do not
belong to T'.)

3. When we discussed the problem of determining the cut-points in a graph, we mentioned



2.7. EXERCISES 95

that one can compute the values earliest(u) for all nodes u as part of the DFS com-
putation — rather than computing the DFS tree first, and these values subsequently.

Give an algorithm that does this: show how to augment the recursive procedure
DFS(v) so that it still runs in O(m + n), and it terminates with globally stored
values for earliest(u).

4. A number of recent stories in the press about the structure of the Internet and the
Web have focused on some version of the following question: How far apart are typical
nodes in these networks? If you read these stories carefully, you find that many of them
are confused about the difference between the diameter of a network and the average
distance in a network — they often jump back and forth between these concepts as
though they’re the same thing.

As in the text, we say that the distance between two nodes u and v in a graph G =
(V, E) is the minimum number of edges in a path joining them; we’ll denote this by
dist(u,v). We say that the diameter of G is the maximum distance between any pair
of nodes; and we’'ll denote this quantity by diam/(G).

Let’s define a related quantity, which we’ll call the average pairwise distance in G
(denoted apd(G)). We define apd(G) to be the average, over all (g) sets of two distinct
nodes u and v, of the distance between u and v. That is,

apd(G) = [ > dist(u,v)] /(Z)

{uvicVv

Here’s a simple example to convince yourself that there are graphs G for which diam(G) #
apd(G). Let G be a graph with three nodes u, v, w; and with the two edges {u, v} and
{v,w}. Then

diam(G) = dist(u,w) = 2,

while

apd(G) = [dist(u,v) + dist(u, w) + dist(v,w)]/3 = 4/3.

Of course, these two numbers aren’t all that far apart in the case of this 3-node graph,
and so it’s natural to ask whether there’s always a close relation between them. Here’s
a claim that tries to make this precise.

Claim: There exists a positive natural number ¢ so that for all graphs G, it

1s the case that
diam(G)

apd(G) —



56

CHAPTER 2. ALGORITHMIC PRIMITIVES FOR GRAPHS

Decide whether you think the claim is true or false, and give a proof of either the claim

or its negation.

. Some friends of yours work on wireless networks, and they’re currently studying the

properties of a network of n mobile devices. As the devices move around (really, as
their human owners move around), they define a graph at any point in time as follows:
there is a node representing each of the n devices, and there is an edge between device
1 and device j if the physical locations of ¢ and j are no more than 500 meters apart.
(If so, we say that ¢ and j are “in range” of each other.)

They’d like it to be the case that the network of devices is connected at all times, and
so they’ve constrained the motion of the devices to satisfy the following property: at
all times, each device 7 is within 500 meters of at least n/2 of the other devices. (We'll
assume n is an even number.) What they’d like to know is: Does this property by
itself guarantee that the network will remain connected?

Here’s a concrete way to formulate the question as a claim about graphs:

Claim: Let G be a graph on n nodes, where n is an even number. If every
node of G has degree at least n/2, then G is connected.

Decide whether you think the claim is true or false, and give a proof of either the claim

or its negation.



Chapter 3

Greedy Algorithms

In Wall Street, that iconic movie of the 80’s, Michael Douglas gets up in front of a room

R In

full of stockholders and proclaims, “Greed ... is good. Greed is right. Greed works.
this chapter, we’ll be taking a much more understated perspective as we investigate the pros
and cons of short-sighted greed in the design of algorithms. Indeed, our aim is to approach
a number of different computational problems with a recurring set of questions: Is greed
good? Does greed work?

It is hard, if not impossible, to define precisely what is meant by a greedy algorithm.
An algorithm is greedy if it builds up a solution in small steps, choosing a decision at each
step myopically to maximize some underlying criterion. One can often design many different
“oreedy algorithms” for the same problem, each one locally, incrementally optimizing some
different measure on its way to a solution.

When a greedy algorithm succeeds in solving a non-trivial problem optimally, it typically
implies something interesting and useful about the structure of the problem itself; there is
a local decision rule that one can use to construct optimal solutions. The same is true of
problems in which a greedy algorithm can produce a solution that is guaranteed to be close
to optimal, even if it does not achieve the precise optimum. These are the kinds of issues
we’ll be dealing with in this section: It’s easy to invent greedy algorithms for almost any
problem; finding cases in which they work well, and proving that they work well, is the
interesting challenge.

The first two sections of this chapter will develop two basic methods for proving that
a greedy algorithm produces an optimal solution to a problem. One can view the first
approach as establishing that “the greedy algorithm stays ahead”. By this we mean that if
one measures the greedy algorithm’s progress in a step-by-step inductive fashion, one sees
that it does better than any other algorithm at each step; it then follows that it produces an
optimal solution. The second approach is known as an exchange argument, and it is more
general — one considers any possible solution to the problem, and gradually transforms it
into the solution found by the greedy algorithm without hurting its quality. Again, it will

57



58 CHAPTER 3. GREEDY ALGORITHMS

follow that the greedy algorithm must have found a solution that is at least as good as any
other solution.

Following our introduction of these two styles of analysis, we focus on two of the most
well-known applications of greedy algorithms: shortest paths in a graph, and the minimum
spanning tree problem. They each provide nice examples of our analysis techniques. Finally,
we consider a more complex application, the minimum-cost arborescence problem, which
further extends of our notion of what a greedy algorithm can accomplish.

3.1 The Greedy Algorithm Stays Ahead

Interval Scheduling

Let’s recall the interval scheduling problem, which was the first of the five representative prob-
lems we considered in the introduction to the course. We have a set of requests {1,2,...,n};
the i*" request corresponds to an interval of time starting at s; and finishing at f;. We’ll say
that a subset of the requests is compatible if no two of them overlap in time, and our goal is
to accept as large a compatible subset as possible. (Compatible sets of maximum size will
called optimal.)

In defining the problem, we assume that all requests are known to the scheduling al-
gorithm when it is choosing the compatible subset. It would also be natural, of course,
to think about the version of the problem in which the scheduler needs to make decisions
about accepting or rejecting certain requests before knowing about the full set of requests:
Customers (requestors) may well be impatient, they may give up and leave if the scheduler
waits too long to gather information about all other requests. Towards the end of the course
we will briefly discuss such on-line algorithms, which must make decisions as time proceeds,
without knowledge of future input. For now we will be concerned with the off-line version
of the problem in which all information is available to the algorithm at the start.

Both off-line and on-line problems arise in many applications; off-line scheduling problems
come up in allocating lecture rooms for lectures, or exams for the semester, or a transporta-

tion timetable assuming that all routing data is known in advance.

Greedy Algorithms for Interval Scheduling. Using the interval scheduling problem,
we can make our discussion of greedy algorithms above much more concrete. The basic idea
in a greedy algorithm for interval scheduling is to use a simple rule to select a first request
11. Once a request i, is accepted we reject all requests that are not compatible with ;. We
then select the next request 75 to be accepted, and again reject all requests that are not
compatible with i,. We continue in this fashion until we run out of requests. The challenge
in designing a good greedy algorithm is in deciding which simple rule to use for the selection
— and there are many natural rules for this problem that do not give good solutions.



3.1. THE GREEDY ALGORITHM STAYS AHEAD 59

Let’s try to think of some of the most natural rules, and see how they work.

e Maybe the most obvious rule would be to always select the available request that starts
earliest. That is, we always pick the request with minimal start time s;. This way our
resource starts being used as quickly as possible.

This method does not yield an optimal solution. If the earliest request 7 is for a very
long interval, then by accepting request ¢ we have to possibly reject a lot of requests
for shorter time intervals; since our goal is to satisfy as many requests as possible,
we will end up with a sub-optimal solution. In a really bad case, say when the finish
time f; is the maximum among all requests, the accepted request ¢ keeps our resource
occupied for the whole time. In this case our greedy method would accept a single
request, while the optimal solution could accept many. We represent this in the simple
schematic picture below.

e The arguments above would suggest that we should accept first the request that re-
quires the smallest interval of time; namely, the request for which f; — s; is as small
as possible. As it turns out, this is a somewhat better rule than the previous one, but
still we can get a sub-optimal schedule. For example, consider the picture below: If
we have requests for the time intervals 0 — 10, 9 — 11, and 10 — 20, then our greedy
method would accept the short interval 9 — 11 and hence would have to reject both
of the other requests. Meanwhile, the optimum schedule rejects request 9 — 11 and
accepts the other two, which are compatible.

e In the previous greedy rule our problem was that the second request competes with both
the first and the third; i.e., accepting this request made us reject two other requests.
We could design a greedy algorithm that is based on this idea: for each request, we
count the number of other requests that are not compatible, and accept the request
which has the fewest number of non-compatible requests. This greedy choice would
lead to the optimum solution in the previous example. In fact, it is quite a bit harder
to design a bad example for this rule; but one can, and we’ve drawn an example in
the picture below. The unique optimal solution in this example is to accept the four
requests in the top row. The greedy method suggested here accepts the middle request
in the second row, and thereby ensures a solution of size no greater than three.



60 CHAPTER 3. GREEDY ALGORITHMS

The greedy rule that does lead to the optimal solution is based on a fourth idea: we
should accept first the request finishes first, i.e., the request ¢ for which f; is as small as
possible. This is also quite a natural idea: we ensure that our resource becomes free as soon
as possible while still satisfying one request. In this way we can maximize the time left to
satisfy other requests.

We state the algorithm a bit more formally. We will use R to denote the set of requests
that we have neither accepted nor rejected yet, and use A to denote the set of accepted
requests.

Initially let R be the set of all requests, and A be empty.
While R is not yet empty
Choose a request 7 € R that has smallest finishing time

fi = min fj

JER
Add request ¢ to A.
Delete all requests from R that are not compatible with request 7.
EndWhile

Return the set A as the set of accepted requests

While this greedy method is quite natural, it is certainly not obvious that it returns
an optimal set of intervals. Indeed, it would only be sensible to reserve judgment on its
optimality: the ideas that led to the previous non-optimal versions of the greedy method
also seemed promising at first.

As a start, we can immediately declare that the intervals in the set A returned by the
algorithm are all compatible.

(3.1) A is a compatible set of requests.

What we need to show is that this solution is optimal. So, for purposes of comparison, let
O be an optimal set of intervals. Ideally one might want to show that A = O, but this is
too much to ask: there may be many optimal solutions, and at best A is equal to a single
one of them. So instead we will simply show that |A| = |0, i.e., that A is also an optimal
solution.

The idea underlying the proof, as we suggested initially, will be to find a sense in which
our greedy algorithm “stays ahead” of this solution O. We will compare the partial solutions
that the greedy algorithm constructs to initial segments of the solution O, and show that
the greedy algorithm is doing better in a step-by-step fashion.



3.1. THE GREEDY ALGORITHM STAYS AHEAD 61

We introduce some notation to help with this proof. Let 7y,...,7; be the set of requests
in A in the order they were added to A. Note that |A| = k. Similarly, let the set of requests
in O be denoted by 7j1,...,jm. Our goal is to prove that k = m. Assume that the requests
in O are also ordered in the natural left to right order of the corresponding intervals, i.e.,
the order of the start and finish points. Note that the requests in O are compatible, and
this implies that the start points have the same order as the finish points.

Our intuition for the greedy method came from wanting our resource to become free
again as soon as possible after satisfying the first request. And indeed, our greedy rule
guarantees that f;; < f;. First we prove that this is also true for later requests: in the
algorithm’s schedule, the 7" accepted request finishes no later than the r*™ request in the
optimal schedule.

(3.2) For all indices r < k we have f; < fj,.

Proof. We will prove this statement by induction. For » = 1 the statement is clearly true:
the algorithm starts by selecting the request ¢; with minimum finish time.

Now let > 1. We will assume as our induction hypothesis that the statement is true for
r — 1, and we will try to prove it for r. In the figure below we use the lower line to indicate
the requests j,_; and j, in the optimal schedule, and the upper line to indicate the request
i,_1 from the algorithm’s schedule.

By the induction hypothesis we have f; | < f; _,. Since the optimal schedule consists of
compatible intervals, we also know that f; , <s; . Combining these two facts, we see that
the request j, is in our set R when request ¢, is selected. The greedy algorithm selects the
request 7, with smallest finish time, and request j,. is one of the options in R when it makes
the selection, so we must have that f; < f; . m

Thus, we have formalized the sense in which the greedy algorithm is remaining ahead of
O — for each r, the ™ interval it selects finishes at least as soon as the r*™ interval in O.
We now see why this implies the optimality of the greedy algorithm’s set A.

(3.3) The greedy algorithm returns an optimal set A.

Proof. We will prove the statement by contradiction. If A is not optimal, than an optimal
set O must have more requests, i.e., we must have m > k. Applying (3.2) with r = k, we get
that f;, < fj,. Since m > k, there is a request j,4; in O. This request starts after request
7 ends, and hence after 7, ends. So after deleting all requests that are not compatible with
requests i1, ..., ik, the set of possible requests R still contains ji.,. But the greedy algorithm
stops with request 7, and it is only supposed to stop when R is empty — a contradiction. m



62 CHAPTER 3. GREEDY ALGORITHMS

Implementation. We can make our algorithm run in time O(nlogn) as follows. We begin
by sorting the n requests in order of finishing time, and labeling them in this order; that is,
we will assume that f; < f; when ¢ < j. This takes time O(nlogn). In addition O(n) time,
we construct an array S[1...n| with the property that S[i] contains the value s;.

We now select requests by processing the intervals in order of increasing f;. We always
select the first interval; we then iterate through the intervals in order until reaching the first
interval j for which s; > fi; we then select this one as well. More generally, if the most
recent interval we've selected, we continue iterating through subsequent intervals until we
reach the first j for which s; > f. In this way, we implement the greedy algorithm analyzed
above in one pass through the intervals, spending constant time per interval. Thus, this part
of the algorithm takes time O(n) as well.

Variations. The interval scheduling problem we considered here is a quite a simple schedul-
ing problem. There are many further complications that could arise in practical settings.
The following are two issues that we will see later.

(i) In our problem we have only a single resource. But one could imagine having many
similar lecture rooms, and each request asks to use one of them (any free room is fine)
at a specified time.

(ii) Our goal was to maximize the number of satisfied requests. But we could picture the
situation in which each request has a different value to us. For example, each request
i could also have a weight w; (the amount gained by satisfying request i), and the goal
would be to maximize our income: the sum of the weights of all satisfied requests.
This leads to the weighted interval scheduling problem, the second of the representative
problems we described at the beginning of the course.

Clearly, there are many other variants and combinations that can arise. Interestingly,
these problems have quite a range of difficulty. The purpose of this section has been to show
that the simple interval scheduling problem discussed above can be solved optimally by a
greedy algorithm. Our algorithm can in fact be extended to solve variation (i) in which we
seek to schedule many identical resources. We will see a method for solving variation (ii)
when we discuss dynamic programming.

Selecting Breakpoints

We now discuss another natural setting in which one can see a greedy algorithm “staying
ahead” of all other algorithms, and ending up with an optimal solution.

Suppose that three of your friends, inspired by repeated viewings of that cult phenomenon
The Blair Witch Project, have decided to hike the Appalachian Trail this summer. They



3.1. THE GREEDY ALGORITHM STAYS AHEAD 63

want to hike as much as possible per day, but — for obvious reasons — not after dark.
On a map they’ve identified a large set of good stopping points for camping, and they're
considering the following system for deciding when to stop for the day. Each time they come
to a potential stopping point, they determine whether they can make it to the next one
before nightfall. If they can make it, then they keep hiking; otherwise, they stop.

Despite many significant drawbacks, they claim this system does have one good feature.
“Given that we’re only hiking in the daylight,” they claim, “it minimizes the number of
camping stops we have to make.”

Is this true? Might it not help to stop early on some day, so as to get better synchronized
with camping opportunities on future days? The proposed system is a greedy algorithm,
and we wish to determine whether it minimizes the number of stops needed.

To think about the fundamental issue at work here, we make a large number of simplifying
assumptions. We’ll model the Appalachian Trail as a long line segment of length L, and
assume that your friends can hike d miles per day (independent of terrain, weather conditions,
and so forth). We'll assume that the potential stopping points are located at distances
x1,T, ..., T, from the start of the Trail. We'll also assume (very generously) that your
friends are always correct when they estimate whether they can make it to the next stopping
point before nightfall.

We'll say that a set of stopping points is wvalid if the distance between each adjacent pair
is at most d, the first is at distance at most d from the start of the Trail, and the last is
at distance at most d from the end of the Trail. Thus, a set of stopping points is valid if
one could camp only at these places, and still make it across the whole Trail. We’ll assume,
naturally, that the full set of n stopping points is valid; otherwise, there would be no way
make it the whole way. Thus, the question is whether your friends’ greedy algorithm —
hiking as long as possible each day — is optimal, in the sense that it finds a valid set whose
size is as small as possible.

Indeed, the algorithm is optimal; and we will prove this by identifying the natural sense in
which the stopping points it chooses “stay ahead” of any other legal set of stopping points.
Note an interesting contrast with the interval scheduling problem — there we needed to
prove that a greedy algorithm maximized a quantity of interest, whereas here we seek to
minimize a certain quantity.

Let R = {xp,,...,2,,} denote the set of stopping points chosen by the greedy algo-
rithm, and suppose by way of contradiction that there is a valid set of stopping points
S ={zg,..., 24, } with m < k. We claim the following.

(3.4) Foreachj=1,2,...,m, we have x,, > x,.

Proof. We prove this by induction on j. The case j = 1 follows directly from the definition
of the greedy algorithm — your friends travel as long as possible on the first day before

stopping.



64 CHAPTER 3. GREEDY ALGORITHMS

Now let j > 1 and assume that the claim is true for all + < j. Then

Lg; — Tpj < Lg; — Lgj1 < d>

where the first inequality follows from our assumption that the claim is true for 5 — 1, and
the second inequality follows from the fact that S is a valid set. This means that your friends
have the option of hiking all the way from x,,_, to x, in one day; and hence the location
7,, at which they finally stop can only be farther along than z,,. m

(3.4) implies in particular that x,,, <z, ,. Now, if m < k, then we must have z,,, < L—d,
for otherwise your friends would never have stopped at the location x,,, . ,. Combining these
two inequalities, we have concluded that z,, < L — d; but this contradicts the assumption
that S is a valid set of stopping points.

Consequently, we cannot have m < k, and so we have proved

(3.5) The greedy algorithm produces a valid set of stopping points of minimum possible
size.

3.2 Exchange Arguments

Scheduling to Minimize Lateness

A greedy algorithm similar to what we saw for interval scheduling works for a closely related
problem as well. Proving its optimality for this problem, however, will require a more
sophisticated kind of analysis.

Consider again a situation in which we have a single resource, and a set of n requests to
use the resource for an interval of time. Assume that the resource is available starting at time
s. In contrast to the previous problem, however, each request is now more flexible: Instead
of a start time and finish time, the request 7 has a deadline d;, and requires a contiguous time
interval of length ¢;, but it is willing to be scheduled at any time before the deadline. Each
accepted request must be assigned an interval of time of length ¢;, and different requests
must be assigned non-overlapping intervals.

Selecting a maximum-size subset of requests that can be satisfied turns out to be com-
putationally very difficult. Here we consider the following other natural objective function.
Suppose that we plan to satisfy each request, but we are allowed to let certain requests run
late. Thus, beginning at our overall start time s, we will assign each request ¢ an interval of
time of length ¢;; let us denote this interval by [s;, fi], with f; = s; + t;. Unlike the previous
problem, then, the algorithm must actually determine a start time (and hence a finish time)
for each interval.

We say that a request ¢ is late if it misses the deadline, i.e., if f; > d;. The lateness of
a such a request ¢ is defined to be [; = f; — d;. We will say that [; = 0 if request ¢ is not



3.2. EXCHANGE ARGUMENTS 65

late. The goal in our new optimization problem will be to schedule all requests, using non-
overlapping intervals, so as to minimize the mazimum lateness, L = max;l;. This problem
arises naturally when scheduling jobs that need to use a single machine, and so we will refer
to our requests as jobs.

The natural greedy algorithm for this problem is analogous to the greedy algorithm for the
previous interval scheduling problem. We will consider the jobs in increasing order of their
deadlines d;, and schedule them in this order. This greedy rule for constructing schedules is
often called Farliest Deadline First.

By renaming the jobs if necessary, we can assume that the jobs are labeled in the order
of their deadlines, i.e., we have that

dy <...<d,.

We will simply schedule all jobs in this order. Again, let s be the start time for all jobs. Job
1 will start at time s = s; and end at time f; = s; + t1; job 2 will start at time s, = f; and
end at time fy = s9 + to; and so forth. We will use f to denote the finishing time of the last
scheduled job. We write this algorithm below.

Order the requests in order of their deadlines

Assume for simplicity of notation that d; <...<d,

Initially, f=s

Consider the requests ¢=1,...,n in this order
Assign request ¢ to the time interval from s; = f to f;=f+1;
Let f=f+1

End

Return the set of scheduled intervals [s;, f;] for i=1,...,n

As before, the greedy algorithm is quite natural here — we always work on the job with
the closest deadline — but it is not clear that the resulting solution should be optimal. For
example, if we were looking for things to worry about, we could observe that the decision
rule it uses to order the jobs throws away half the data — the lengths of the jobs — and
focuses only on their deadlines.

To reason about the optimality of the algorithm, we first observe that the schedule it
produces has no “gaps” — times when the machine is not working, yet there are requests
left. The time that passes during a gap will be called idle time — there is work to be done,
yet for some reason the machine is sitting idle. Not only does the schedule A produced by
our algorithm have no idle time; it is also very easy to show that there is an optimal schedule
with this property. We do not write down a proof for this.

(3.6) There is an optimal schedule with no idle time.



66 CHAPTER 3. GREEDY ALGORITHMS

Now, how can we prove that our schedule A is optimal, i.e., that its maximum lateness
L is as small as possible? We will consider an optimal schedule O. Our plan here is to
gradually modify O, preserving its optimality at each step, but eventually transforming it
into a schedule that is identical to the schedule A found by the greedy algorithm. We refer
to this type of analysis as an exchange argument.

We first try characterizing schedules in the following way. We say that a schedule A" has
an tnversion if a request ¢ with deadline d; is scheduled before another request 7 with earlier
deadline d; < d;. Notice that, by definition, the schedule A produced by our algorithm has
no inversions. If there are requests with identical deadlines, then there can be many different
schedules with no inversions. However, we can show that all these schedules have the same
maximum lateness.

(3.7) All schedules with no inversions and no idle time have the same mazimum lateness.

Proof. 1f two different schedules have neither inversions nor idle time, then they differ only
in the order in which jobs with identical deadlines are scheduled. Consider such a deadline d.
In both schedules, the jobs with deadline d are scheduled consecutively (after all jobs with
earlier deadlines, and before all jobs with later deadlines). Among the jobs with deadline d,
the last one has the the greatest lateness, and this lateness does not depend on the order of
the jobs. m

The main step in showing the optimality of our algorithm is to establish that there is
an optimal schedule that has no inversions and no idle time. To do this, we will start with
any optimal schedule having no idle time; we will then convert it into a schedule with no
inversions without increasing its maximum lateness. Thus, the resulting scheduling after this
conversion will be optimal as well.

(3.8) There is an optimal schedule that has no inversions and no idle time.

Proof. By (3.6), there is an optimal schedule O with no idle time. The proof will consist of
a sequence of statements. The first of these is simple to establish:

(a) If O has an inversion, then there is a pair of requests i and j such that j is scheduled
immediately after i and has d; < d;.

Suppose O has at least one inversion, and let ¢ and j be a pair of such adjacent inverted
requests.

We will decrease the number of inversions in O by swapping the requests ¢ and j in the
schedule O. The pair (i,j) formed an inversion in O, this inversion is eliminated by the

swap, and no new inversions are created. Thus we have



3.2. EXCHANGE ARGUMENTS 67

(b) After swapping i and j we get a schedule with one fewer inversion.
The hardest part of this proof is to argue that the inverted schedule is also optimal.

(¢) The new swapped schedule has a maximum lateness no larger than that of O.

Proof of (¢). We invent some notation to describe the schedule O: assume that each request

r is scheduled for the time interval [s", f/], and has lateness I’.. Let L' = max, [’. denote the

"
T

maximum lateness of this schedule. Let O” denote the swapped schedule; we will use s,
I, and L"” to denote the corresponding quantities in the swapped schedule. Now recall our
two adjacent, inverted jobs ¢ and j. All jobs other than jobs ¢ and j finish at the same time
in the two schedules. Using the notation just introduced, we have

s; < fi=si+t; =5, < fi =5+

Job 7 will get finished earlier in the new schedule, and hence the swap does not increase the
lateness of job j.

The thing to worry about is clearly job ¢ — its lateness has been increased, and what if
this actually raises the maximum lateness of the whole schedule? Note that after the swap,
job i will be finished at time f;, when job j was finished in the schedule O. If job i is late,
its lateness is I = f/ — d; = f; — d;. Our assumption d; > d; implies that the lateness [ of
request 7 in the new schedule is at most [, the lateness of request j in the schedule O. This
shows that the swap does not increase the maximum lateness of the schedule. m

We finish the proof of (3.8) by observing that the schedule O can have at most (Z)

") swaps we get an optimal

inversions (if all pairs are inverted), and hence after at most (2

schedule with no inversions. =

The optimality of our greedy algorithm now follows immediately.

(3.9) The schedule A produced by the greedy algorithm has optimal mazimum lateness
L.

Proof.  (3.8) proves that an optimal schedule with no inversions exists. Now by (3.7) all
schedules with no inversions have the same maximum lateness, and so the schedule obtained
by the greedy algorithm is optimal. m

Variations. There are many possible generalizations of this scheduling problem. For ex-
ample, we assumed that all jobs are available to start at the common start time s. A natural,
but harder, version of this problem would contain requests ¢ that in addition to the deadline
d; and the requested time ¢; would also have an earliest possible starting time r;. This earliest
possible starting time is usually referred to as the release time. Problems with release times



68 CHAPTER 3. GREEDY ALGORITHMS

arises naturally in scheduling problems where requests can take the form “Can I reserve the
room for a 2 hour lecture, sometime between Ipm and 5pm?’ Our proof that the greedy
algorithm finds an optimal solution relied crucially on the fact that all jobs are available at
the common start time s. (Do you see where?) Unfortunately, as we will see later in the
course, this more general version of the problem is much more difficult to solve optimally.

An Optimal Caching Strategy

We now consider a problem that involves processing a sequence of requests of a different
form, and we develop an algorithm whose analysis requires a more subtle use of the exchange
argument. The problem is that of cache maintenance.

To motivate caching, consider the following image. You're working on a long research
paper, and your draconian library will only allow you to have eight books checked out at
once. You know that you’ll probably need more than this over the course of working on the
paper, but any point in time, you’d like to have ready access to the eight books that are
most relevant at that time. How should you decide which books to check out, and when
should you return some in exchange for others, to minimize the number of times you have
to exchange a book at the library?

This is precisely the problem that arises when dealing with a memory hierarchy: There
is a small amount of data that can be accessed very quickly, and a large amount of data
that requires more time to access; and you must decide which pieces of data to have close at
hand.

Memory hierarchies have been a ubiquitous feature of computers since very early in their
history. To begin with, data in the main memory of a processor can be accessed much more
quickly than the data on its hard disk; but the disk has much more storage capacity. Thus,
it is important to keep the most regularly used pieces of data in main memory, and go to
disk as infrequently as possible. The same phenomenon, qualitatively, occurs with on-chip
caches in modern processors — these can be accessed in a few cycles, and so data can be
retrieved from cache much more quickly than it can be retrieved from main memory. This is
another level of hierarchy: small caches have faster access time than main memory, which in
turn is smaller and faster to access than disk. And one can see extensions of this hierarchy
in many other settings. When one uses a Web browser, the disk often acts as a cache for
frequently visited Web pages — since going to disk is still much faster than downloading
something over the Internet.

Caching is a general term for the process of storing a small amount of data in a fast
memory, so as to reduce the amount of time spent interacting with a slow memory. In the
examples above, the on-chip cache reduces the need to fetch data from main memory, the
main memory acts as a cache for the disk, and the disk acts as a cache for the Internet.
(And indeed, your desk acts as a cache for the campus library, and the assorted facts you're



3.2. EXCHANGE ARGUMENTS 69

able to remember without looking them up constitute a cache for the books on your desk.)

In order for caching to be as effective as possible, it should generally be the case that
when you go to access a piece of data, it is already in the cache. To achieve this, a cache
maintenance algorithm is responsible for determining what to keep in the cache, and what
to evict from the cache when new data needs to be brought in.

Of course, as the caching problem arises in different settings, it involves various different
considerations based on the underlying technology. For our purposes here, though, we take
an abstract view of the problem that underlies most of these settings. We consider a set U
of n pieces of data stored in main memory. We also have a faster memory, the cache, that
can hold k < n pieces of data at any one time. We will assume that the cache initially holds
some k items. A sequence of data items D = dy,ds,...,d,, drawn from U is presented to us
— this is the sequence of memory references we must process — and in processing them we
must decide at all time which £ items to keep in the cache. When item d; is presented, we
can access it very quickly if it is already in the cache; otherwise, we are required to bring it
from main memory into the cache and — if the cache is full — to evict some other piece of
data that is currently in the cache, so as to make room for d;. This is called a cache miss,
and we want to have as few of these as possible.

Thus on a particular sequence of memory references, a cache maintenance algorithm
determines an eviction schedule — specifying which items should be evicted from the cache
at which points in the sequence — and this determines the contents of the cache and the
number of misses over time. For example, suppose we have three items {a, b, c}, the cache
size is k = 2, and we are presented with the sequence

a,b,c,b,c,a,b.

Suppose that the cache initially contains the items a and b. Then on the third item in the
sequence, we could evict a so as to bring in ¢; and on the sixth item we could evict ¢ so as
to bring in a; we thereby incur two cache misses over the whole sequence. After thinking
about it, one concludes that any eviction schedule for this sequence must include at least
two cache misses.

Under real operating conditions, cache maintenance algorithms must process memory
references di, ds, ... without knowledge of what’s coming in the future; but for purposes
of evaluating the quality of these algorithms, systems researchers very early on sought to
understand the nature of the optimal solution to the caching problem. Given a full sequence
S of memory references, what is the eviction schedule that incurs as few cache misses as
possible?

In the 1960’s, Les Belady showed that the following simple rule will always incur the

minimum number of misses:

When d; needs to be brought into the cache,



70 CHAPTER 3. GREEDY ALGORITHMS
evict the item that is needed the farthest into the future.

We will call this the Farthest-in-Future algorithm. When it is time to evict something, we
look at the next time that each item in the cache will be referenced, and choose the one for
which this is as late as possible.

This is a very natural algorithm. At the same time, the fact that it is optimal on all
sequences is somewhat more subtle than it first appears. Why evict the item that is needed
farthest in the future, as opposed — for example — to the one that will be used least frequently
in the future? Moreover, consider a sequence like

a,b,c,d,a,d, e, a,d,b,c

with k& = 3 and items {a, b, c} initially in the cache. The Farthest-in-Future rule will
produce a schedule S that evicts ¢ on the fourth step and b on the seventh step; a different
eviction schedule S’ evicts b on the fourth step and ¢ on the seventh step, incurring the
same number of misses. So in fact it’s easy to find cases where schedules produced by rules
other than Farthest-in-Future are just as good; and given this flexibility, why might a
deviation from Farthest-in-Future early on not yield an actual savings farther along in
the sequence? For example, on the seventh step in the above example, the schedule S’ is
actually evicting an item (c) that is needed farther into the future than the item evicted at
this point by Farthest-in-Future, since Farthest-in-Future gave up c earlier on.

These are at least the kinds of things one should worry about before concluding that
Farthest-in-Future really is optimal. In thinking about the example above, we quickly
appreciate that it doesn’t really matter whether b or ¢ is evicted at the fourth step, since the
other one should be evicted at the seventh step; so given a schedule where b is evicted first,
we can swap the choices of b and ¢ without changing the cost. This reasoning — swapping
one decision for another — forms the first outline of an exchange argument that proves the
optimality of Farthest-in-Future.

Before delving into this analysis, we clear up one important issue. All the cache main-
tenance algorithms that we’ve been considering so far produce schedules that only bring an
item d into the cache in a step ¢ if there is a request to d in step 4, and d is not already in the
cache. Let us call such a schedule reduced — it does the minimal amount of work necessary
in a given step. But in general, one could imagine an algorithm that produced schedules
that are not reduced, by bringing in items in steps when they are not requested. We now
show that for every non-reduced schedule, there is an equally good reduced schedule.

Let S be a schedule that may not be reduced. We define a new schedule S — the reduction
of S — as follows. In any step ¢ where S brings in an item d that has not been requested,
our constructing of S “pretends” to do this, but actually leaves d in main memory. It only
actually brings d into the cache in the next step j after this when d is requested. In this way,



3.2. EXCHANGE ARGUMENTS 71

the cache miss incurred by S in step j can be charged to the earlier cache miss incurred by
S in step ¢. Hence we have the following fact.

(3.10) S is a reduced schedule that incurs at most as many misses as the schedule S.

We now proceed with the exchange argument showing that Farthest-in-Future is op-
timal. Consider an arbitrary sequence D of memory references; let Spp denote the schedule
produced by Farthest-in-Future, and let S* denote a schedule that incurs the minimum
possible number of misses. We will now gradually “transform” the schedule S* into the
schedule Srp, one eviction decision at a time, without increasing the number of misses.

Here is the basic fact we use to perform one step in the transformation.

(3.11) Let S be a reduced schedule that makes the same eviction decisions as Sgr through
the first 7 items in the sequence, for a number j. Then there is a reduced schedule S’ that
makes the same eviction decisions as Spr through the first j + 1 items, and incurs no more
misses than S does.

Proof. Consider the (j + 1) request, to item d = dj41. Since S and Spp have agreed up
to this point, they have the same cache contents. So if d is in the cache for both, then no
eviction decision is necessary (both schedules are reduced), and so S in fact agrees with Spp
through step j+ 1, and we can set S’ = S. Similarly, if d needs to be brought into the cache,
but S and Sgr both evict the same item to make room for d, then we can again set S’ = S.

So the interesting case arises when d needs to be brought into the cache — and to do
this S evicts item f while Spp evicts item e # f. Here, S and Spr do not already agree
through step 7 +1 — S has e in cache while Spr has f in cache. Hence we must actually
do something non-trivial to construct S’.

As a first step, we should have S’ evict e rather than f. Now we need to further ensure
that S’ incurs no more misses than S. An easy way to do this would be to have S’ agree
with S for the remainder of the sequence; but this is no longer possible, since S and S’ have
slightly different caches from this point onward. So instead, we’ll have S’ try to get its cache
back to the same state as S as quickly as possible, while not incurring unnecessary misses —
once the caches are the same, we can finish the construction of S’ by just having it behave
like S.

Specifically, from request j+2 onward, S’ behaves exactly like S until one of the following
things happens for the first time.

(i) There is a request to an item g # e, f that is not in the cache of S, and S evicts e to
make room for it. Since S’ and S only differ on e and f, it must be that g is not in
the cache of S’ either; so we can have S’ evict f, and now the caches of S and S’ are
the same. We can then have S’ behave exactly like S for the rest of the sequence.



72 CHAPTER 3. GREEDY ALGORITHMS

(ii) There is a request to f, and S evicts an item e’. If ¢/ = e, then we're all set: S’
can simply access f from the cache, and after this step the caches of S and S’ will
be the same. If ¢ # e, then we have S’ evict €' as well, and bring in e from main
memory; this too results in S and S’ having the same caches. However, we must be
careful here, since S’ is no longer a reduced schedule — it brought in e when it wasn’t
immediately needed. So to finish this part of the construction, we further transform
S’ to its reduction S’ using (3.10) ; this doesn’t increase the number of misses of S,
and it still agrees with Sgp through step 7 + 1.

Hence in both these cases, we have a new reduced schedule S that agrees with Sgpr through
the first 7 + 1 items, and incurs no more misses than S does. And crucially — here is where
we use the defining property of the Farthest-in-Future algorithm — one of these two cases
will arise before there is a reference to e. This is because in step j + 1, Farthest-in-Future
evicted the item (e) that would be needed farthest in the future; so before there could be a
request to e, there would have to be a request to f, and then case (ii) above would apply. =

Using this result, it is easy to complete the proof of optimality. We begin with an optimal
schedule S*, and use (3.11) to construct a schedule S; that agrees with Sgpr through the first
step. We continue applying (3.11) inductively for j = 1,2,3,...,m, producing schedules
S; that agree with Spp through the first j steps. Each schedule incurs no more misses than
the previous one; and by definition S,, = Sgp, since it agrees with it through the whole
sequence. Thus we have

(3.12) Spr incurs no more misses than any other schedule S*, and hence is optimal.

Caching under Real Operating Conditions. As we discussed above, Belady’s optimal
algorithm provides a benchmark for caching performance; but in applications, one generally
must make eviction decisions on the fly without knowledge of future requests. Experi-
mentally, the best caching algorithms under this requirement seem to be variants of the
Least-Recently-Used (LRU) principle, which proposes evicting the item from the cache that
was referenced longest ago.

If one thinks about it, this is just Belady’s algorithm with the direction of time reversed
— longest in the past rather than farthest in the future. It is effective because applications
generally exhibit locality of reference — a running program will generally keep accessing
the things it has just been accessing. (It is easy to invent pathological exceptions to this
principle, but these are relatively rare in practice.) Thus, one wants to keep the more recently
referenced items in the cache.

Although we won’t go into it here, it’s worth mentioning that long after the adoption of
LRU in practice, Sleator and Tarjan showed that one could actually provide some theoretical
analysis of the performance of LRU, bounding the number of misses it incurs relative to
Farthest-in-Future.



3.3. SHORTEST PATHS IN A GRAPH 73

3.3 Shortest Paths in a Graph

Some of the basic algorithms for graphs are based on greedy design principles. Here we apply
a greedy algorithm to the problem of finding shortest paths, and in the next section we look
at the construction of minimum-cost spanning trees.

As we’ve seen, graphs are often used to model networks in which one travels from one
point to another — traversing a sequence of highways through interchanges, or traversing
a sequence of communication links through intermediate routers. As a result, a basic algo-
rithmic problem is to determine the shortest path between nodes in a graph. We may ask
this as a point-to-point question: given nodes u and v, what is the shortest u-v path? Or
we may ask for more information: given a start node s, what is the shortest path from s to
each other node?

The concrete set-up of the shortest paths problem is as follows. We are given a directed
graph G = (V, E), with a designated start node s. We assume that s has a path to each
other node in G. Each edge e has a length ¢, > 0, indicating the time (or distance, or cost)
it takes to traverse e. For a path P, the length of P — denoted ¢(P) — is the sum of the
lengths of all edges in P. Our goal is to determine the shortest path from s to each other
node in the graph. We should mention that although the problem is specified for a directed
graph, we can handle the case of an undirected graph by simply replacing each undirected
edge (u,v) of length ¢ by two directed edges (u,v) and (v, u), each of length ¢.

In 1959, Edsger Dijkstra proposed a very simple greedy algorithm to solve the single-
source shortest paths problem. We begin by describing an algorithm that just determines the
length of the shortest path from s to each other node in the graph; it is then easy to produce
the paths as well. The algorithm maintains a set S of vertices u for which we have determined
a shortest-path distance d(u) from s; this is the “explored” part of the graph. Initially
S = {s}, and d(s) = 0. Now, for each node v € V-5, we determine the shortest path the can
be constructed by traveling along a path through the explored part S to some u € S, followed

by the single edge (u,v). That is, we consider the quantity d’'(v) = mi)n Sd(u) + /(.. We
RIS

— U

choose the node v € V—S for which this quantity is minimized, add v to S, and define d(v)
to be the value d'(v).

Dijkstra’s Algorithm (G, /)
Let S be the set of explored nodes.

For each u € S, we store a distance d(u).
Initially S = {s} and d(s) =0.

While S #V
Select a node v ¢ S with at least one edge from S for which
d(v)= min d(u)+ /¢, is as small as possible.

e=(u,v):ues
Add v to S and define d(v) =d'(v).
EndWhile



74 CHAPTER 3. GREEDY ALGORITHMS

It is simple to produce the s-u paths corresponding to these distances. As each node
v is added to the set S, we simply record the edge (u,v) on which it achieved the value
min  d(u) + f.. The path P, is implicitly represented by these edges: if (u,v) is the edge

e=(u,v):ues

we have stored for v, then P, is just (recursively) the path P, followed by the single edge
(u,v). In other words, to construct P,, we simply start at v, follow the edge we have stored
for v in the reverse direction to u; then follow the edge we have stored for u in the reverse
direction to its predecessor; and so on until we reach s. Note that s must be reached, since
our backwards walk from v visits nodes that were added to S earlier and earlier.

Now we must prove the correctness of Dijkstra’s algorithm, by showing that these paths
P, really are shortest paths. Dijkstra’s algorithm is greedy in the sense that we always form
the shortest new s-v path we can make from a path in .S followed by a single edge. And we
prove its correctness using our first style of analysis, showing a concrete sense in which it
“stays ahead” of any other solution.

In previous analysis based on the “greedy algorithm stays ahead” principle, the underlying
problem always had a natural one-dimensional character — so it was clear what “staying
ahead” meant. But what do we mean here? It turns out that the set S has a special property
that is not obvious from the statement of the algorithm — nodes are added to it in increasing
order of their distance from s. Thus, the first £ nodes discovered by Dijkstra’s algorithm are
at least as close to s as the first k£ nodes discovered by any algorithm.

(3.13) Consider the point in the algorithm at which |S| = k. Then S consists of the k
closest nodes to s, and for each u € S, the path P, is a shortest s-u path.

Note that this fact immediately establishes the correctness of Dijkstra’s algorithm, by
applying it when |S| = n, in which case S includes all nodes.

Proof of (3.13). We prove this by induction on k. The case k = 1 is easy, since then we
have S = {s} and d(s) = 0. Suppose the claim holds for some value of £ > 1 and set S; we
now grow S to size k + 1 by adding the node v. Let (u,v) be the final edge on our s-v path
P,.

By induction hypothesis, P, is the shortest s-u path for each u € S. Now, consider any
other s-v path P; we wish to show that it is at least as long as P,. See Figure 3.1. Let z
be the first node on P that is not in S, let y be the node on P just before z, and let P’ be
the sub-path of P from s to y. Then ¢(P’) > ¢(P,), and so ¢(P’) + {(y, z) > d'(z). But the
full path length ¢(P) is at least as large as ¢(P’) + {(y, z), and by our choice of v we have
d(z) > d(v). Thus, ¢(P) > d'(v) = {(P,), establishing that no other s-v path is shorter
than P,.

Moreover, the argument in the previous paragraph also establishes that for any node
z ¢ S, the length of the shortest s-z path is at least d’(z), which is at least d'(v). Thus v is
as close to s as any other node in V—-S. m



3.3. SHORTEST PATHS IN A GRAPH 75

Figure 3.1: The shortest path P, and an alternate path P in the graph.

Here are two things to notice about Dijkstra’s algorithm and its analysis. First, the
algorithm does not always find shortest paths if some of the edges can have negative lengths.
(Do you see where the proof breaks?) Many shortest-path applications involve negative edge
lengths, and a more complex algorithm — due to Bellman and Ford — is required for this
case. We will see this algorithm when we consider the topic of dynamic programming.

The second observation is that Dijkstra’s algorithm is, in a sense, even simpler than we’ve
described here. Recall how breadth-first search discovered the nodes of G one “layer” at a
time, from a start node s. Dijkstra’s algorithm is really a “continuous” version of breadth-
first search, motivated by the following picture. Suppose the edges of GG formed a system of
pipes filled with water, joined together at the nodes; each edge e has length ¢, and a fixed
cross-sectional area. Now suppose an extra droplet of water falls at node s, and starts a
wave from s. As the wave expands out of node s at a constant speed, the expanding sphere
of wavefront reaches nodes in increasing order of their distance from s. It is easy to believe
(and also true) that the path taken by the wavefront to get to any node v is a shortest path.
Indeed, it is easy to see that this is exactly the path to v found by Dijkstra’s algorithm,
and that the nodes are discovered by the expanding water in the same order that they are
discovered by Dijkstra’s algorithm.

Implementation. To conclude our discussion of Dijkstra’s algorithm, we consider its run-
ning time. There are n — 1 iterations of the While loop for a graph with n nodes, as each
iteration adds a new node v to S. Selecting the correct node v efficiently is a more subtle is-
sue. One’s first impression is that each iteration would have to consider each node v ¢ S, and

go through all the edges between S and v to determine the minimum (mi)n Sd(u) + L., so
e=(u,v):ue

that we can select the node v for which this minimum is smallest. For a graph with m edges,
computing all these minima can take O(m) time, so this would lead to an implementation
that runs in O(mn) time.



76 CHAPTER 3. GREEDY ALGORITHMS

We can do considerably better if we use the right data structures. First, we will explicitly

maintain the values of the minima d'(v) = (mi)n < d(u) + ¢, for each node v € V — S, rather
e=(u,v):ue

than recomputing them in each iteration. We can further improve the efficiency by keeping
the nodes V — S in a priority queue with d'(v) as their keys. A priority queues is a data
structure that should be familiar from earlier courses. It is designed to maintain a set of
n elements, each with a key; it can efficiently insert elements, delete elements, change an
element’s key, and extract the element with minimum key. We will need the third and fourth
of the above operations: ChangeKey and ExtractMin.

How do we implement Dijkstra’s algorithm using a priority queue? To select the node v
that should be added to the set S, we need the ExtractMin operation. To see how to update
the keys, consider an iteration in which node v is added to S, and let w ¢ S be a node
that remains in the priority queue. What do we have to do to update the value of d'(w)?
If (v,w) is not an edge, then we don’t have to do anything: the set of edges considered

in the minimum (mi)n Sd(u) + (. is exactly the same before and after adding v to S. If
e=(u,w):ue

¢/ = (v,w) € E, on the other hand, then the new value for the key is min(d'(w), d(v) + £e).
If d'(w) > d(v) + £ then we need to use the ChangeKey operation to decrease the key of
node w appropriately. This ChangeKey operation can occur at most once per edge, when the
tail of the edge €’ is added to S. In summary, we have the following result.

(3.14) Using a priority queue, Dijkstra’s algorithm can be implemented on a graph with n
nodes and m edges to run in O(m) time, plus the time for n ExtractMin, and m ChangeKey

operations.

Using a simple heap-based priority queue as discussed in previous courses, each prior-
ity queue operation can be made to run in O(logn) time. Thus the overall time for the
implementation is O(mlogn).

3.4 The Minimum Spanning Tree Problem

We now apply an exchange argument in the context of a second fundamental problem on
graphs — the minimum spanning tree problem. Suppose we have a set of locations V =
{v1,v9,...,v,}, and we want to build a communication network on top of them. The network
should be connected — there should be a path between every pair of nodes — but subject
to this requirement, we wish to build it as cheaply as possible.

For certain pairs (v;, v;), we may build a direct link between v; and v; for a certain cost
c(v;,v;) > 0. Thus, we can represent the set of possible links that may be built using a graph
G = (V, E), with a positive cost ¢, associated with each edge e = (v;,v;). The problem is to
find a subset of the edges T" C E so that the graph (V,T') is connected, and the total cost



3.4. THE MINIMUM SPANNING TREE PROBLEM 7

Z ce 1s as small as possible. (We will assume that the full graph G is connected; otherwise,
ecT
no solution is possible.)

Here is a basic thing to notice.

(3.15) Let T be a minimum-cost solution to the network design problem defined above.
Then (V,T) is a tree.

Proof. By definition, (V,T) must be connected; we show that it also will contain no cycles.
Indeed, suppose it contained a cycle C, and let e be any edge on C'. We claim that (V,T—{e})
is still connected; for any path that previously used the edge e can now go “the long way”
around the remainder of the cycle C instead. It follows that (V,T — {e}) is also a valid
solution to the problem, and it is cheaper — a contradiction. m

We will call a subset T' C E a spanning tree of G if (V,T) is a tree. In view of (3.15),
our network design problem is generally called the minimum spanning tree problem.

Unless G is a very simple graph, it will have exponentially many different spanning trees,
whose structures may look very different from one another. It is not at all clear how to
find the cheapest among these efficiently. In this section, we will discuss two simple greedy
algorithms for the problem. Both algorithms are very natural, and the hard part in each
case is to actually prove that they produce a minimum spanning tree for every graph.

In describing both algorithms, we will make the simplifying assumption that all edge
costs are distinct from one another (i.e. no two are equal). This assumption makes make
things cleaner to think about, while preserving the all main issues in the problem.

Prim’s Algorithm

The first approach we discuss, Prim’s algorithm, is a natural adaptation of Dijkstra’s al-
gorithm to the present setting. Rather than seeking short paths from a single source, we
now want to link up all the nodes of an undirected graph; this new goal is in a sense more
“symmetric.” At all times, we maintain a growing set S C V', together with a spanning tree
T on S. (S will start out as a single arbitrary node.) We grow S one node at a time; but
rather than looking at the distances of nodes from a particular source in S, we use an even
simpler greedy rule: we just choose the node v that costs the least to add in this step. Given
a node v, what’s the least we have to pay to attach v to S? We need to join it to some node

in S by an edge, so the cost is (mi)n o Ce- This “attachment cost” is the crucial quantity
e=(u,v):ue

in Prim’s algorithm.

Prim’s Algorithm (G,c)
Initially S ={s} and T =1
While S #V



78 CHAPTER 3. GREEDY ALGORITHMS

Select a node v ¢ S which has an edge into S and
for which the attachment cost min ¢, is as small as possible

e=(u,v):ues
Add v to S
Add the edge e where the minimum is obtained to 7T
EndWhile

Return the spanning tree T

It is fairly easy to see that the set of edges T returned by the algorithm is indeed a
spanning tree of G.

(3.16) If the graph G is connected, then the set of edges T returned by the algorithm is
a spanning tree of G.

Proof. First we make sure that the algorithm is well defined: could we reach a point where
S # V, but there is no v ¢ S with an edge into S? In this case, the algorithm could never
finish the While loop. But this cannot happen, for in a connected graph G every subset of
nodes S C V has an edge leaving the set; i.e., an edge (v, w) with v ¢ S and w € S.

To show that the set of edges T forms a spanning tree, we prove the following fact by
induction on the number of steps of the algorithm: in each iteration, the graph (S, 7)) is a
tree. (In other words, T' “spans” S at all times.) This is clearly true when S = {s}. And if
it is true for some set S, then it remains true after we add a node v to S, and an edge (v, w)
(w € S) to T — the resulting graph is still connected, and no cycle has been created. m

As has been the case with previous greedy algorithms, making up the algorithm was not
difficult. What is not at all obvious is that Prim’s algorithm is computing a spanning tree of
minimum cost. With Dijkstra’s algorithm, we ultimately came up with an intuitive reason
why it was doing the right thing — it was essentially visiting nodes by a uniformly expanding

b

“wavefront.” But Prim’s algorithm seems harder to believe in — why shouldn’t it be the
case that adding a more expensive edge initially would make it possible to add many cheap
edges later on, so that suppressing our greed in the short term might pay off in the long
run? And here is another thing to worry about: We know that we’re trying to minimize
a quantity (the spanning tree cost) that is a sum of many terms; yet nowhere does Prim’s
algorithm ever add two numbers together.

We now prove that the algorithm does find a minimum spanning tree. This result holds
even without the assumption that all edge costs are distinct; but adopting this assumption
will make the proof somewhat cleaner, and it will yield an additional consequence: the
minimum spanning tree of GG is unique.

The key to our analysis is the following fact. Its proof contains the fundamental exchange
argument we need for reasoning about the algorithm — given any spanning tree, we will
transform it into one that is no more expensive, and “closer” to the one found by Prim’s
algorithm.



3.4. THE MINIMUM SPANNING TREE PROBLEM 79

(3.17) Assume that all edge costs are distinct. For any subset ) .S GV, let edge e be
the minimum-cost edge with one end in S and the other in V —.S. Then every minimum-cost
spanning tree contains the edge e.

Proof. Let T be a minimum-cost spanning tree that does not contain e. We need to show
that T does not have the minimum possible cost. Write e = (v, w). T is a spanning tree, so
there must is a path P in T from v to to w. Starting at v, suppose we follow the nodes of
P in sequence; there is a first node w’ on P that is in V — S. See Figure 3.2. Let v' € S be
the node just before w’ on P, and let ¢ = (v',w’) be the edge joining them. Thus, €' is an
edge of T" with one end in S and the other in V' — S.

S

Figure 3.2: A spanning tree T' that does not contain edge e.

Let’s consider the set of edges 7" =T — {¢'} U {e}. First we claim that 7" is a spanning
tree. Clearly it has n—1 edges. Also, (V,T") is connected, since (V,T) is connected, and any
path in (V,T') that used the edge ¢’ = (v',w’) can now be “re-routed” in (V,T") to follow
the portion of P from v’ to v, then the edge e, and then the portion of P from w to w'.

We noted above that the edge ¢’ has one end in S and the other in V' — S. But e is the
cheapest edge with this property, and so ¢, < c.r. (The inequality is strict since no two edges
have the same cost.) Thus the total cost of 7" is less than that of 7', which proves that 7" is
not a minimum-cost spanning tree. m

Now, to show that Prim’s algorithm produces a minimum spanning tree, we observe that
every time we add an edge e to the tree, e is the minimum-cost edge leaving the set S, and
so we can apply (3.17).

(3.18) If all edge costs are distinct, then the spanning tree T returned by Prim’s algorithm

is the unique minimum-cost spanning tree in G.

Proof. Assume by way of contradiction that 7™ # T is a minimum spanning tree. Consider
the first iteration in which Prim’s algorithm adds an edge e ¢ T*. Let S be the set of nodes



80 CHAPTER 3. GREEDY ALGORITHMS

already connected at the start of this iteration; and let e = (v,w) with v ¢ S and w € S.
We claim that e is the minimum-cost edge with one end in S and the other end in V' — S.
For if there were a cheaper edge ¢/ = (v/,w’) with v" ¢ S and w’ € S, then it would have
been considered in this iteration; and the algorithm would have selected such a node v" and
edge €, rather than v and e. Thus, (3.17) implies that e is in every minimum spanning tree,
which contradicts our assumption that 7™ was minimum.

Hence, no tree other than 7' can be a minimum spanning tree, which proves the claim. m

As we noted above, one can prove by very similar means that Prim’s algorithm finds a
minimum spanning tree even when the edge costs are not all distinct; but in this case, it is
not necessarily the unique minimum spanning tree.

Implementation. The proof of correctness of Prim’s algorithm was quite different from
the proof of Dijkstra’s; but their implementations are almost identical. By analogy with
Dijkstra’s algorithm, we need to be able to decide which node v to add next to S, by

maintaining the attachment costs a(v) = (mi)n  Ce for each node v € V' —S. As before, we
e=(u,v):ue

keep the nodes in a priority queue with a(v) as the keys; we select a node with an ExtractMin
operation, and update the attachment costs using ChangeKey operations. There are n — 1
iterations in which we perform ExtractMin, and we perform ChangeKey at most once for
each edge. Thus we have

(3.19) Using a priority queue, Prim’s algorithm can be implemented on a graph with n
nodes and m edges to run in O(m) time, plus the time for n ExtractMin, and m ChangeKey

operations.

Using a heap-based priority queue, we can implement both ExtractMin and ChangeKey
in O(logn) time, and so get an overall running time of O(mlogn). Alternatively, we can
use an array-based priority queue, taking O(n) time on each ExtractMin, but only O(1) for
ChangeKey , and so get an overall running time of O(n?), which is better for dense graphs.

Kruskal’s Algorithm

We derived the optimality of Prim’s algorithm from the very general statement of (3.17).
Looking more closely at the proof of its optimality, we can ask what was really important in
the analysis. Could we construct a minimum spanning tree by greedily considering edges in
any order at all? Clearly this would be too much to expect. What (3.17) proves is that we
can safely add an edge to our solution as long as it is the minimum-cost edge leaving some
set S.

There is another basic greedy algorithm for the minimum spanning tree problem that
follows this principle, and in a sense it is even simpler than Prim’s algorithm. This is



3.4. THE MINIMUM SPANNING TREE PROBLEM 81

Kruskal’s algorithm, and it behaves as follows. It initially sorts all the edges in order of
increasing weight. It then considers them in a single pass; when it comes to the edge e, it
includes it in the tree if and only if it does not form a cycle when added to the set of edges
already chosen.

Kruskal’s Algorithm (G, c)
Sort the edges in order of increasing cost.
Initially 7 =0
For each edge ¢ = (v,w) in the sorted order
If there is currently no path from v to w in (V,7') then
(Adding e won’t create a cycle)
Add e to T.
EndIf
EndFor
Return the set of edges T

Note the basic difference between Prim and Kruskal. In Prim’s algorithm we grow a
single connected component S, and as the algorithm proceeds we add more and more nodes
to this one component. In Kruskal’s algorithm there are many components growing at the
same time, and edges are added to connect up these separate components.

(3.20) If all edge costs are distinct, then the set of edges T returned by Kruskal’s algo-
rithm is the unique minimum-cost spanning tree in G.

Proof. First we argue that (V,T) is a tree. By the definition of the algorithm, it has no
cycles. Suppose it is not connected; then there are two nodes v and w with no path between
them. Let S be the set of all nodes to which v has a path in (V,T'). Since G is connected,
and ¢ # S ¢V, we know there is at least one edge with exactly one end in S; let € be such
an edge. Note that ¢ ¢ T. But then when Kruskal’s algorithm considered é, it could have
added it without forming a cycle, a contradiction. Thus (V,T) is a tree.

The proof that T is a minimum spanning tree is almost the same as our proof of the
optimality of Prim’s algorithm: each edge added by Kruskal’s algorithm is the cheapest edge
leaving some set S, and so it is guaranteed to belong to every minimum spanning tree, by
(3.17). More concretely, suppose that 7% # T' is a minimum spanning tree, and consider the
first edge e = (v, w) & T™* that Kruskal’s algorithm adds to T'. At the point just before e is
added, let S be the set of all nodes to which v has a path in (V,T). e is the cheapest edge
with exactly one end in S, and so by (3.17), every minimum spanning tree contains e. This

contradicts our assumption that 7™ was minimum. m

One can prove similarly that Kruskal’s algorithm also produces a minimum spanning tree
when the edge costs are not all distinct.



82 CHAPTER 3. GREEDY ALGORITHMS

What do we need in order to implement Kruskal’s algorithm? The first step, sorting
the edges, takes time O(mlogm). For the remainder of the algorithm, we need to maintain
the connected components of (V,T') as they change under the insertion of new edges. It
is possible to design a data structure for maintaining the connected components that al-
lows us to test whether or not to add each edge e in O(logm) time; consequently, we can
implement Kruskal’s algorithm in O(mlogm) time. We will not discuss the details of this

implementation here.

A Clustering Perspective

We motivated the construction of minimum spanning trees through the problem of finding
a low-cost network connecting a set of sites. But minimum spanning trees arise in a range
of different settings, several of which appear on the surface to be quite different from one
another. An appealing example is the role that minimum spanning trees play in the area of
clustering.

Clustering arises whenever one has a collection of objects — say a set of photographs,
or documents, or micro-organisms — that one is trying to classify, or organize into coherent
groups. Faced with such a situation, it is natural to look first for measures of how similar or
dissimilar each pair of objects is. One common approach is to define a distance function on
the objects, with the interpretation that objects at larger distance from one another are less
similar to each other. For points in the physical world, distance may actually be related to
their physical distance; but in many applications, distance takes on a much more abstract
meaning. For example, we could define the distance between two species to be the number
of years since they diverged in the course of evolution; we could define the distance between
two images in a video stream as the number of corresponding pixels at which their intensity
values differ by at least some threshold.

Now, given a distance function on the objects, the clustering problem seeks to divide
them into groups so that, intuitively, objects within the same group are “close,” and objects
in different groups are “far apart.” Starting from this vague set of goals, the field of clustering
branches into a vast number of technically different approaches, each seeking to formalize
this general notion of what a good set of groups might look like.

Clusterings of Maximum Spacing. Minimum spanning trees play a role in one of the
most basic formalizations, which we describe here. Suppose we are given a set U of n objects,
labeled py,pa,...,p,. For each pair, p; and p;, we have a numerical distance d(p;,p;). We
require only that d(p;, p;) = 0; that d(p;,p;) > 0 for distinct p; and p;; and that distances
are symmetric: d(p;, p;) = d(p;, pi)-

Suppose we are seeking to divide the objects in U into k groups, for a given parameter k.
We say that a k-clustering of U is a partition of U into k non-empty sets Cy,Cs, ..., Cy. We



3.4. THE MINIMUM SPANNING TREE PROBLEM 83

define the spacing of a k-clustering to be the minimum distance between any pair of points
lying in different clusters. Given that we want points in different clusters to be far apart
from one another, a natural goal is to seek the k-clustering with maximum possible spacing.

The question now becomes the following. There are exponentially many different k-
clusterings of a set U; how can we efficiently find the one that has maximum spacing?

To do this, we consider growing a graph on the vertex set U. The connected components
will be the clusters, and we will try to bring nearby points together into the same cluster
as rapidly as possible. (This way, they don’t end up as points in different clusters that are
very close together.) Thus, we start by drawing an edge between the closest pair of points.
We then draw an edge between the next closest pair of points. We continue adding edges
between pairs of points, in order of increasing distance d(p;, p;). In this way, we are growing
a graph H on U edge-by-edge, with connected components corresponding to clusters. Notice
that we are only interested in the connected components of the graph H, not the full set of
edges; so if we are about to add the edge (p;, p;) and find that p; and p; already belong to the
same cluster, we will refrain from adding the edge — it’s not necessary, since it won’t change
the set of components. In this way, our graph-growing process will never create a cycle;
so H will actually be a union of trees. Each time we add an edge that spans two distinct
components, it is as though we have merged the two corresponding clusters. In the clustering
literature, the iterative merging of clusters in this way is often termed single-link clustering,
a special case of hierarchical agglomerative clustering. (“Agglomerative” here means that
we combine clusters; “single-link” means that we do so as soon as a single link joins them
together.)

What is the connection to minimum spanning trees? It’s very simple: although our graph-
growing procedure was motivated by this cluster-merging idea, our procedure is precisely
Kruskal’s minimum spanning tree algorithm. We are doing exactly what Kruskal’s algorithm
would do if given a graph G on U in which there was an edge of cost d(p;, p;) between each
pair of nodes (p;,p;). The only different is that we seek a k-clustering, so we stop the
procedure once we obtain k connected components.

In other words, we are running Kruskal’s algorithm but stopping it just before it adds its
last k —1 edges. This is equivalent to taking the full minimum spanning tree 7' (as Kruskal’s
algorithm would have produced it), deleting the k—1 most expensive edges (the ones that we
never actually added), and defining the k-clustering to be the resulting connected components
Ch,Cy, ..., C. Thus, iteratively merging clusters is equivalent to computing a minimum
spanning tree and deleting the most expensive edges.

So two superficially different approaches yield the same set of clusters C1,Cs, ..., Cy.
Have we achieved our goal of producing clusters that are as spaced apart as possible? The
following claim shows that we have.

(3.21) The components Cy,Cs, ..., Cy formed by deleting the k — 1 most expensive edges



84 CHAPTER 3. GREEDY ALGORITHMS

of the minimum spanning tree T' constitute a k-clustering of maximum spacing.

Proof. Let C denote the clustering C, Cs, ..., Ck. The spacing of C is precisely the length
d* of the (k — 1)* most expensive edge in the minimum spanning tree; this is the length of
the edge that Kruskal’s algorithm would have added next, at the moment we stopped it.

Now, consider some other k-clustering C’, which partitions U into non-empty sets C1, C, . . ., C}..
We must show that the spacing of C’ is at most d*.

Since the two clusterings C and C’ are not the same, it must be that one of our clusters
C, is not a subset of any of the k sets C? in C’. Hence there are points p;, p; € C, that belong
to different clusters in C’; say p; € C! and p; € C} # C..

Since p; and p; belong to the same component (), it must be that Kruskal’s algorithm
added all the edges of a p;-p; path P before we stopped it. In particular, this means that
each edge on P has length at most d*. Now, we know that p; € C7 but p; & C%; so let p'
be the first node on P that does not belong to C’, and let p be the node on P that comes
just before p’. We have just argued that d(p,p’) < d*, since the edge (p,p’) was added by
Kruskal’s algorithm. But p and p’ belong to different sets in the clustering C’, and hence the
spacing of C’ is at most d(p, p’) < d*. This completes the proof. =

3.5 Minimum-Cost Arborescences: A Multi-Phase Greedy
Algorithm

As we’ve seen more and more examples of greedy algorithms, we’ve come to appreciate that
there can be considerable diversity in the way they operate. Many greedy algorithms make
some sort of an initial “ordering” decision on the input, and then process everything in a
one-pass fashion. Others make more incremental decisions — still local and opportunistic,
but without a global “plan” in advance. In this lecture, we consider a problem that stresses
our intuitive view of greedy algorithms still further. The problem is to compute a minimum-
cost arborescence of a directed graph. This is essentially an analogue of the the minimum
spanning tree problem for directed, rather than undirected, graphs; we will see that the move
to directed graphs introduces significant new complications. At the same time, the style of
the algorithm has a strongly “greedy” flavor, since it still constructs a solution according to
a local, myopic rule.

We begin with the basic definitions. Let G = (V, E') be a directed graph in which we’ve
distinguished one node r € V as a root. An arborescence (with respect to r) is essentially a
directed tree rooted at r — specifically, it is a subgraph T' = (V, F') such that T is a spanning
tree of GG if we ignore the direction of edges; and there is a path in T" from r to each other
node v € V if we take the direction of edges into account. Figure 3.3 gives an example of
two different arborescences in the same directed graph.

There is a useful equivalent way to characterize arborescences, and this is as follows.



3.5. MINIMUM-COST ARBORESCENCES: A MULTI-PHASE GREEDY ALGORITHMS5

Figure 3.3: Two arborescences in the same underlying graph.

r

.

S

(3.22) A subgraph T = (V, F') of G is an arborescence with respect to root r if and only
if T has no cycles, and for each node v # r, there is exactly one edge in F that enters v.

Proof. 1f T is an arborescence with root r, then indeed each other node v has exactly one
entering edge: this is simply the last edge on the unique r-v path.

Conversely, suppose T has no cycles, and each node v # r has exactly one entering edge.
Then in order to establish that 7" is an arborescence, we need only show that there is a
directed path from r to each other node v. Here is how to construct such a path. We start
at v, and repeatedly follow edges in the backward direction. Since T has no cycles, we can
never return to a node we've previously visited, and thus this process must terminate. But
r is the only node without incoming edges, and so the process must in fact terminate by
reaching r; the sequence of nodes thus visited yields a path (in the reverse direction) from r
tov. m

Just as every connected graph has a spanning tree, it is easy to show that a directed
graph has an arborescence rooted at r provided that r can reach every node. Indeed, in this
case, the edges traversed in a breadth-first search beginning at r will form an arborescence.

(3.23) A directed graph G has an arborescence rooted at r if and only if there is a directed
path from r to each other node.

Now, here is the central problem for this lecture: we are given a directed graph G =
(V, E), with a distinguished root node r and with a non-negative cost ¢, > 0 on each edge,
and we wish to compute an arborescence rooted at r of minimum total cost. (We will refer
to this as the optimal arborescence.) We will assume throughout that G at least has an
arborescence rooted at r; by (3.23), this can be easily checked at the outset.

Given the relationship between arborescences and trees, the minimum-cost arborescence
problem certainly has a strong initial resemblance to the minimum spanning tree problem for



86 CHAPTER 3. GREEDY ALGORITHMS

N

10 10

1 4
v
8 4

Figure 3.4: A directed graph with edge costs, and the optimal arborescence rooted at 7.

’/O‘M—o
B -

o

undirected graphs. Thus, it’s natural to start by asking whether the ideas we developed for
that problem can be carried over directly to this setting. For example, must the minimum-
cost arborescence contain the cheapest edge in the whole graph? Can we safely delete the
most expensive edge on a cycle, confident that it cannot be in the optimal arborescence?

Clearly the cheapest edge e in G will not belong to the optimal arborescence if e enters
the root; for the arborescence we're seeking is not supposed to have any edges entering the
root. But even if the cheapest edge in G belongs to some arborescence rooted at r, it need
not belong to the optimal one, as the example of Figure 3.4 shows. Indeed, including the
edge of cost 1 in Figure 3.4 would prevent us from including the edge of cost 2 out of the
root r (since there can only be one entering edge per node); and this in turn would force us
to incur an unacceptable cost of 10 when we included one of the other edges out of r. This
kind of argument never clouded our thinking in the minimum spanning tree problem, where
it was always safe to plunge ahead and include the cheapest edge; it suggests that finding
the optimal arborescence may be a significantly more complicated task. (It’s worth noticing
that the optimal arborescence in Figure 3.4 also includes the most expensive edge on a cycle;
with a different construction, one can even cause the optimal arborescence to include the
most expensive edge in the whole graph.)

Despite this, it is possible to design a greedy type of algorithm for this problem; it’s just
that our myopic rule for choosing edges has to be a little more sophisticated. First, let’s
consider a little more carefully what goes wrong with the general strategy of including the
cheapest edges. Here’s a particular version of this strategy: for each node v # r, select the
cheapest edge entering v (breaking ties arbitrarily), and let F'* be this set of n — 1 edges.
Now consider the subgraph (V, F*). Since we know that the optimal arborescence needs to



3.5. MINIMUM-COST ARBORESCENCES: A MULTI-PHASE GREEDY ALGORITHMST7

have exactly one edge entering each node v # r, and (V, F’*) represents the cheapest possible
way of making these choices, we have the following fact.

(3.24) If (V, F*) is an arborescence, then it is a minimum-cost arborescence.

So the difficulty is that (V, F*) may not be an arborescence. In this case, (3.22) implies
that (V, F'*) must contain a cycle C, which does not include the root. We now must decide
how to proceed in this situation.

To make matters somewhat clearer, we begin with the following observation. Every
arborescence contains exactly one edge entering each node v # r; so if we pick some node v
and subtract a uniform quantity from the cost of every edge entering v, then the total cost
of every arborescence changes by exactly the same amount. This means, essentially, that
the actual cost of the cheapest edge entering v is not important; what matters is the cost of
all other edges entering v relative to this. Thus, let y, denote the minimum cost of any edge
entering v. For each edge e = (u,v), with cost c. > 0, we define its modified cost ¢, to be
ce — Yy Note that since ¢, > vy, all the modified costs are still non-negative. More crucially,
our discussion motivates the following fact.

(3.25) T is an optimal arborescence in G subject to costs {c.} if and only if it is an
optimal arborescence subject to costs {c.}.

Proof.  Consider an arbitrary arborescence 1. The difference between its cost with costs
{ce} and {c.} is exactly 3=, yo; i.e.

D Ce= D =D Y

eeT eeT vFET
This is because an arborescence has exactly one edge entering each node v in the sum. Since
the difference between the two costs is independent of the choice of the arborescence T', we
see that 7" has minimum cost subject to {c.} if and only if it has minimum cost subject to

{cc}. =

We now consider the problem in terms of the costs {c.}. All the edges in our set F*
have cost 0 under these modified costs; and so if (V, F*) contains a cycle C', we know that
all edges in C' have cost 0. This suggests that we can afford to use as many edges from C' as
we want (consistent with producing an arborescence), since including edges from C' doesn’t
raise the cost.

Thus, our algorithm continues as follows. We contract C' into a single super-node, ob-
taining a smaller graph G’ = (V/, E’). Here, V' contains the nodes of V—C plus a single
node ¢* representing C'. We transform each edge e € E to an edge e’ € E’ by replacing each
end of e that belongs to C' with the new node ¢*. This can result in G’ having parallel edges



88 CHAPTER 3. GREEDY ALGORITHMS

(i.e. edges with the same ends), which is fine; however, we delete self-loops from E’ — edges
that have both ends equal to ¢*. We recursively find an optimal arborescence in this smaller
graph G’, subject to the costs {c,}. The arborescence returned by this recursive call can be
converted into an arborescence of G by including all but one edge on the cycle C.

In summary, here is the full algorithm.

For each node v #r
Let y, be the minimum cost of an edge entering node v.
Modify the costs of all edges e entering v to ¢, =c.—vy,.
Choose one (-cost edge entering each v # r, obtaining a set F*.
If F* forms an arborescence, then return it.
Else there is a directed cycle C C F*
Contract C to a single super-node, yielding a graph G' = (V' E').
Recursively find an optimal arborescence (V' ,F’) in G’
with costs {c.}.
Extend (V',F’) to an arborescence (V,F) in G
by adding all but one edge of C.

It is easy to implement this algorithm so that it runs in polynomial time. But does it
lead to an optimal arborescence? Before concluding that it does, we need to worry about the
following point: not every arborescence in G corresponds to an arborescence in the contracted
graph G’; could we perhaps “miss” the true optimal arborescence in G by focusing on G'?
What is true is the following: the arborescences of G’ are in one-to-one correspondence with
arborescences of G that have exactly one edge entering the cycle C; and these corresponding
arborescences have the same cost with respect to {c.}, since C' consists of 0-cost edges. (We
say that an edge e = (u,v) enters C if v € C; it does not matter in this definition whether
or not u also belongs to C.) So to prove that our algorithm finds an optimal arborescence
in GG, we must prove that GG has an optimal arborescence with exactly one edge entering C'.
We do this now.

(3.26) Let C be a cycle in G consisting of edges of cost 0, such that r ¢ C'. Then there
s an optimal arborescence rooted at r that has exactly one edge entering C'.

Proof. Consider any arborescence T"in G. Since r has a path in 7" to every node, there is at
least one edge of T" that enters C'. If T" enters C exactly once, then we are done. Otherwise,
suppose that T enters C' more than once; we show how to modify it to obtain an arborescence
of no greater cost that enters C' exactly once.

Let e = (a,b) be an edge entering C' that lies on as short a path from r as possible; this
means in particular that no edges on the path from r to e can enter C. We delete all edges
of T' that enter C', except for the edge e. We add in all edges of C' except for the one edge
that enters b, the head of edge e. Let T” denote the resulting subgraph of G.



3.6. EXERCISES 89

We claim that T” is also an arborescence. This will establish the result, since the cost of
T" is clearly no greater than that of T": the only edges of 7" that do not also belong to T" have
cost 0. So why is 7" an arborescence? First, observe that 7’ has exactly one edge entering
each node v # r, and no edge entering r. So 7" has exactly n — 1 edges, and hence if we
can show there is an r-v path in 7" for each v, then 7" must be connected in an undirected
sense, and hence a tree. Thus it would satisfy our initial definition of an arborescence.

So consider any node v # r; we must show there is an r-v path in 7". If v € C', we can
use the fact that the path in T from r to e has been preserved in the construction of T”;
thus, we can reach v by first reaching e, and then following the edges of the cycle C'. Now
suppose that v € C, and let P denote the r-v path in 7. If P did not touch C, then it still
exists in 7”. Otherwise, let w be the last node in P N C, and let P’ be the sub-path of P
from w to v. Observe that all the edges in P’ still exist in 7”. We have already argued that
w is reachable from r in T”, since it belongs to C; concatenating this path to w with the
sub-path P’ gives us a path to v as well. m

We can now put all the pieces together to argue that our algorithm is correct.
(3.27) The algorithm finds an optimal arborescence rooted at r in G.

Proof.  The proof is by induction on the number of nodes in G. If the edges of F' form
an arborescence, then the algorithm returns an optimal arborescence by (3.24). Otherwise,
we consider the problem with the modified costs {c.}, which is equivalent by (3.25). After
contracting a 0-cost cycle C' to obtain a smaller graph G’, the algorithm produces an optimal
arborescence in G’ by the inductive hypothesis. Finally, by (3.26) , there is an optimal
arborescence in GG that corresponds to the optimal arborescence computed for G’. m

3.6 Exercises

1. You are consulting for a trucking company that does a large amount of business ship-
ping packages between New York and Boston. The volume is high enough that they
have to send a number of trucks each day between the two locations. Trucks have a
fixed limit W on the maximum amount of weight they are allowed to carry. Boxes
arrive to the New York station one-by-one, and each package ¢ has a weight w;. The
trucking station is quite small, so at most one truck can be at the station at any time.
Company policy requires that boxes are shipped in the order they arrive — otherwise,
a customer might get upset upon seeing a box that arrived after his make it to Boston
faster. At the moment the company is using a simple greedy algorithm for packing:
they pack boxes in the order they arrive, and whenever the next box does not fit, they
send the truck on its way.



90

CHAPTER 3. GREEDY ALGORITHMS

But they wonder if they might be using too many trucks, and want your opinion on
whether the situation can be improved. Here is how they are thinking: maybe one
could decrease the number of trucks needed by sometimes sending off a truck that was
less full, and in this way allowing the next few trucks to be better packed.

Prove that the greedy algorithm currently in use actually minimizes the number of
trucks that are needed. Your proof should follow the type of analysis we used for the
Interval Scheduling problem — it should establish the optimality of this greedy packing
algorithm by identifying a measure under which it “stays ahead” of all other solutions.

. Some of your friends have gotten into the burgeoning field of time-series data mining,

in which one looks for patterns in sequences of events that occur over time. Purchases
at stock exchanges — what’s being bought — are one source of data with a natural
ordering in time. Given a long sequence S of such events, your friends want an efficient
way to detect certain “patterns” in them — e.g. they may want to know if the four

events
buy Yahoo, buy eBay, buy Yahoo, buy Oracle

occur in this sequence S, in order but not necessarily consecutively.

They begin with a finite collection of possible events (e.g. the possible transactions)
and a sequence S of n of these events. A given event may occur multiple times in S
(e.g. Yahoo stock may be bought many times in a single sequence S). We will say that
a sequence S’ is a subsequence of S if there is a way to delete certain of the events from
S so that the remaining events, in order, are equal to the sequence S’. So for example,
the sequence of four events above is a subsequence of the sequence

buy Amazon, buy Yahoo, buy eBay, buy Yahoo, buy Yahoo, buy Oracle

Their goal is to be able to dream up short sequences and quickly detect whether they
are subsequences of S. So this is the problem they pose to you: Give an algorithm
that takes two sequences of events — S’ of length m and S of length n, each possibly
containing an event more than once — and decides in time O(m + n) whether S’ is a
subsequence of S.

. Let’s consider a long, quiet country road with houses scattered very sparsely along

it. (We can picture the road as a long line segment, with an eastern endpoint and a
western endpoint.) Further, let’s suppose that despite the bucolic setting, the residents
of all these houses are avid cell phone users. You want to place cell phone base stations
at certain points along the road, so that every house is within 4 miles of one of the
base stations.

Give an efficient algorithm that achieves this goal, using as few base stations as possible.



3.6. EXERCISES 91

4. Consider the following variation on the Interval Scheduling Problem from lecture. You
have a processor that can operate 24 hours a day, every day. People submit requests
to run daily jobs on the processor. Each such job comes with a start time and an end
time; if the job is accepted to run on the processor, it must run continuously, every
day, for the period between its start and end times. (Note that certain jobs can begin
before midnight and end after midnight; this makes for a type of situation different
from what we saw in the Interval Scheduling Problem.)

Given a list of n such jobs, your goal is to accept as many jobs as possible (regardless
of their length), subject to the constraint that the processor can run at most one job
at any given point in time. Provide an algorithm to do this with a running time that
is polynomial in n, the number of jobs. You may assume for simplicity that no two
jobs have the same start or end times.

Example: Consider the following four jobs, specified by (start-time, end-time) pairs.
(6 pm, 6 am), (9 pm, 4 am), (3 am, 2 pm), (1 pm, 7 pm).

The unique solution would be to pick the two jobs (9 pm, 4 am) and (1 pm, 7 pm),
which can be scheduled without overlapping.

5. Consider the following scheduling problem. You have a n jobs, labeled 1, ..., n, which
must be run one at a time, on a single processor. Job j takes time ¢; to be processed.
We will assume that no two jobs have the same processing time; that is, there are no
two distinct jobs ¢ and j for which ¢; = t;.

You must decide on a schedule: the order in which to run the jobs. Having fixed an
order, each job j has a completion time under this order: this is the total amount of
time that elapses (from the beginning of the schedule) before it is done being processed.

For example, suppose you have a set of three jobs {1, 2,3} with
t1:37 t2:17 t3:57

and you run them in this order. Then the completion time of job 1 will be 3, the
completion of job 2 will be 3 + 1 = 4, and the completion time of job 3 will be
3+14+5=09.

On the other hand, if you run the jobs in the reverse of the order in which they’re
listed (i.e. 3, 2, 1), then the completion time of job 3 will be 5, the completion of job
2 will be 54 1 = 6, and the completion time of job 1 will be 5+ 1+ 3 =9.

(a) Give an algorithm that takes the n processing times ¢y, ..., t,, and orders the jobs
so that the sum of the completion times of all jobs is as small as possible. (Such an
order will be called optimal.)



92

CHAPTER 3. GREEDY ALGORITHMS

The running time of your algorithm should be polynomial in n. You should give a
complete proof of correctness of your algorithm, and also briefly analyze the running
time. As above, you can assume that no two jobs have the same processing time.

(b) Prove that if no two jobs have the same processing time, then the optimal order is
unique. In other words, for any order other than the one produced by your algorithm
in (a), the sum of the completion times of all jobs is not as small as possible.

You may find it helpful to refer to parts of your analysis from (a).

. Your friend is working as a camp counselor, and he is in charge of organizing activities

for a set of junior-high-school-age campers. One of his plans is the following mini-
triathalon exercise: each contestant must swin 20 laps of a pool, then bike 10 miles,
then run 3 miles. The plan is to send the contestants out in a staggered fashion, via
the following rule: the contestants must use the pool one at a time. In other words,
first one contestant swins the 20 laps, gets out, and starts biking. As soon as this first
person is out of the pool, a second contestant begins swimming the 20 laps; as soon as
he/she’s out and starts biking, a third contestant begins swimming ... and so on.)

Each contestant has a projected swimming time (the expected time it will take him or
her to complete the 20 laps), a projected biking time (the expected time it will take
him or her to complete the 10 miles of bicycling), and a projected running time (the
time it will take him or her to complete the 3 miles of running. Your friend wants to
decide on a schedule for the triathalon: an order in which to sequence the starts of
the contestants. Let’s say that the completion time of a schedule is the earliest time
at which all contestants will be finished with all three legs of the triathalon, assuming
they each spend exactly their projected swimming, biking, and running times on the
three parts.

What’s the best order for sending people out, if one wants the whole competition to
be over as early as possible? More precisely, give an efficient algorithm that produces
a schedule whose completion time is as small as possible.

. The wildly popular Spanish-language search engine El Goog needs to do a serious

amount of computation every time it re-compiles its index. Fortunately, the company
has at its disposal a single large super-computer together with an essentially unlimited
supply of high-end PC’s.

They’'ve broken the overall computation into n distinct jobs, labeled Ji, Js, ..., J,,
which can performed completely independently of each other. Each job consists of two
stages: first it needs to be pre-processed on the super-computer, and then it needs to
be finished on one of the PC’s. Let’s say that job J; needs p; seconds of time on the
super-computer followed by f; seconds of time on a PC.



3.6. EXERCISES 93

Since there are at least n PC’s available on the premises, the finishing of the jobs can be
performed fully in parallel — all the jobs can be processed at the same time. However,
the super-computer can only work on a single job at a time, so the system managers
need to work out an order in which to feed the jobs to the super-computer. As soon as
the first job in order is done on the super-computer, it can be handed off to a PC for
finishing; at that point in time a second job can be fed to the super-computer; when
the second job is done on the super-computer, it can proceed to a PC regardless of
whether or not the first job is done or not (since the PC’s work in parallel); and so on.

Let’s say that a schedule is an ordering of the jobs for the super-computer, and the
completion time of the schedule is the earliest time at which all jobs will have finished
processing on the PC’s. This is an important quantity to minimize, since it determines
how rapidly El Goog can generate a new index.

Give a polynomial-time algorithm that finds a schedule with as small a completion
time as possible.

8. Suppose you have n video streams that need to be sent, one after another, over a
communication link. Stream i consists of a total of b; bits that need to be sent, at a
constant rate, over a period of t; seconds. You cannot send two streams at the same
time, so you need to determine a schedule for the streams: an order in which to send
them. Whichever order you choose, there cannot be any delays between the end of one
stream and the start of the next. Suppose your schedule starts at time 0 (and therefore
ends at time Y1, ¢;, whichever order you choose). We assume that all the values b;
and t; are positive integers.

Now, because you're just one user, the link does not want you taking up too much

bandwidth — so it imposes the following constraint, using a fixed parameter r:

(%) For each natural number ¢ > 0, the total number of bits you send over
the time interval from 0 to ¢ cannot exceed rt.

Note that this constraint is only imposed for time intervals that start at 0, not for time
intervals that start at any other value.

We say that a schedule is valid if it satisfies the constraint (x) imposed by the link.

The problem is: Given a set of n streams, each specified by its number of bits b; and
its time duration t;, as well as the link parameter r, determine whether there exists a
valid schedule.



94

CHAPTER 3. GREEDY ALGORITHMS

Example. Suppose we have n = 3 streams, with
(bl, t1> - (2000, 1), (bg,tg) == (6000, 2), (bg, tg) - (2000, 1),

and suppose the link’s parameter is » = 5000. Then the schedule that runs the streams
in the order 1,2, 3, is valid, since the constraint (x) is satisfied:

t = 1: the whole first stream has been sent, and 2000 < 5000 - 1
t = 2: half the second stream has also been sent,

and 2000 4 3000 < 5000 - 2
Similar calculations hold for t = 3 and t = 4.

(a) Consider the following claim:

Claim: There exists a valid schedule if and only if each stream i satisfies
bi < rt;.

Decide whether you think the claim is true or false, and give a proof of either the claim

or its negation.

(b) Give an algorithm that takes a set of n streams, each specified by its number of
bits b; and its time duration ¢;, as well as the link parameter r, and determines whether
there exists a valid schedule.

The running time of your algorithm should be polynomial in n. You should prove that
your algorithm works correctly, and include a brief analysis of the running time.

. (a) Suppose you're a consultant for a communications company in northern New Jersey,

and they come to you with the following problem. Consider a fiber-optic cable that
passes through a set of n terminals, t1, ..., t,, in sequence. (Le. it begins at terminal
t1, then passes through terminals to,t3,...,t,_1, and ends at t¢,.) Certain pairs of
terminals wish to establish a connection on which they can exchange data; for ¢; to ¢;
to establish a connection, they need to reserve access to the portion of the cable that
runs between t; and ;.

Now, the magic of fiber-optic technology is that you can accomodate all connections
simultaneously as follows. You assign a wavelength to each connection in such a way
that two connections requiring overlapping portions of the cable need to be assigned
different wavelengths. (So you can assign the same wavelength more than once, pro-
vided it is to connections using non-overlapping portions of the cable.) Of course, you
could safely assign a different wavelength to every single connection, but this would be
wasteful: the goal is to use as few distinct wavelengths as possible.

Define the load of the set of connection to be the maximum number of connections
that require access to any single point on the cable. The load gives a natural lower



3.6. EXERCISES 95

10.

bound on the number of distinct wavelengths you need: if the load is L, then there is
some point on the cable through which L connections will be sending data, and each
of these needs a different wavelength.

For an arbitrary set of connections (each specified by a pair of terminals) having a load
of L, is it always possible to accomodate all connections using only L wavelengths?
If so, give an algorithm to assign each connection one of L possible wavelengths in a
conflict-free fashion; if not, give an example of a set of connections requiring a number
of wavelengths greater than its load.

(b) Instead of routing on a linear cable, let’s look at the problem of routing on a
ring. So we consider a circular fiber-optic cable, passing through terminals ¢q,...,%, in
clockwise order. For t; and t; to establish a connection, they must reserve the portion
of the cable extending clockwise from ¢; to ¢;.

The rest of the set-up is the same as in part (a), and we can ask the same question:
For an arbitrary set of connections (each specified by a pair of terminals) having a load
of L, is it always possible to accomodate all connections using only L wavelengths?
If so, give an algorithm to assign each connection one of L possible wavelengths in a
conflict-free fashion; if not, give an example of a set of connections requiring a number
of wavelengths greater than its load.

Timing circuits are a crucial component of VLSI chips; here’s a simple model of such
a timing circuit. Consider a complete binary tree with n leaves, where n is a power of
two. Each edge e of the tree has an associated length /., which is a positive number.
The distance from the root to a given leaf is the sum of the lengths of all the edges on
the path from the root to the leaf.

The root generates a clock signal which is propagated along the edges to the leaves.
We’ll assume that the time it takes for the signal to reach a given leaf is proportional
to the distance from the root to the leaf.

Now, if all leaves do not have the same distance from the root, then the signal will
not reach the leaves at the same time, and this is a big problem: we want the leaves
to be completely synchronized, and all receive the signal at the same time. To make
this happen, we will have to increase the lengths of certain of the edges, so that all
root-to-leaf paths have the same length (we're not able to shrink edge lengths). If we
achieve this, then the tree (with its new edge lengths) will be said to have zero skew.
Our goal is to achieve zero skew in a way that keeps the sum of all the edge lengths as
small as possible.

Give an algorithm that increases the lengths of certain edges so that the resulting tree
has zero skew, and the total edge length is as small as possible.



96

11.

12.

CHAPTER 3. GREEDY ALGORITHMS

Example. Consider the tree in accompanying figure, with letters naming the nodes
and numbers indicating the edge lengths.

Figure 3.5: An instance of the zero-skew problem.

The unique optimal solution for this instance would be to take the three length-1 edges,
and increase each of their lengths to 2. The resulting tree has zero skew, and the total
edge length is 12, the smallest possible.

Given a list of n natural numbers dy,ds,...,d,, show how to decide in polynomial
time whether there exists an undirected graph G = (V, E) whose node degrees are
precisely the numbers dy,ds, ..., d,. (That is, if V' = {vy,vs,...,v,}, then the degree
of v; should be exactly d;.) G should not contain multiple edges between the same pair
of nodes, or “loop” edges with both endpoints equal to the same node.

Your friends are planning an expedition to a small town deep in the Canadian north
next winter break. They’ve researched all the travel options, and have drawn up a
directed graph whose nodes represent intermediate destinations, and edges represent
the roads between them.

In the course of this, they’ve also learned that extreme weather causes roads in this
part of the world to become quite slow in the winter, and may cause large travel delays.
They’ve found an excellent travel Web site that can accurately predict how fast they’ll
be able to travel along the roads; however, the speed of travel depends on the time of
year. More precisely, the Web site answers queries of the following form: given an edge
e = (v, w) connecting two sites v and w, and given a proposed starting time t from
location v, the site will return a value f.(t), the predicted arrival time at w. The Web
site guarantees that f.(t) > ¢ for all edges e and all times ¢ (you can’t travel backwards
in time), and that f.(¢) is a monotone increasing function of ¢ (that is, you do not
arrive earlier by starting later). Other than that, the functions f.(¢) may be arbitrary.
For example, in areas where the travel time does not vary with the season, we would
have f.(t) = t+ (., where /. is the time needed to travel from the beginning to the end
of edge e.



3.6. EXERCISES 97

13.

14.

15.

Your friends want to use the Web site to determine the fastest way to travel through
the directed graph from their starting point to their intended destination. (You should
assume that they start at time 0, and that all predictions made by the Web site are
completely correct.) Give a polynomial-time algorithm to do this, where we treat a
single query to the Web site (based on a specific edge e and a time t) as taking a single
computational step.

Suppose you are given an undirected graph G, with edge weights that you may assume
are all distinct. G has n vertices and m edges. A particular edge e of G is specified.
Give a algorithm with running time O(m + n) to decide whether e is contained in a
minimum-weight spanning tree of G.

Let G = (V, E) be an (undirected) graph with costs ¢, > 0 on the edges e € E. Assume
you are given a minimum cost spanning tree 7' in G. Now assume that a new edge is
added, connecting two nodes v, w € V with cost c.

a Give an efficient algorithm to test if 7' remains the minimum cost spanning tree
with the new edge added. Make your algorithm run in time O(|E]). Can you
do it in O(|V]) time? Please note any assumption you make about what data
structure is used to represent the tree T and the graph G.

b Suppose T is no longer the minimum cost spanning tree. Give a linear time
algorithm to update the tree T' to the new minimum cost spanning tree.

One of the basic motivations behind the minimum spanning tree problem is the goal
of designing a spanning network for a set of nodes with minimum total cost. Here, we
explore another type of objective: designing a spanning network for which the most
expensive edge is as cheap as possible.

Specifically, let G = (V, E) be a connected graph with n vertices, m edges, and positive
edge weights that you may assume are all distinct. Let 7' = (V| E’) be a spanning tree
of GG; we define the bottleneck edge of T' to be the edge of T" with the greatest weight.

A spanning tree T of G is a minimum bottleneck spanning tree if there is no spanning
tree T of G with a lighter bottleneck edge.

(a) Is every minimum bottleneck tree of G' a minimum spanning tree of G? Prove or
give a counter-example.

(b) Is every minimum spanning tree of G a minimum bottleneck tree of G? Prove or

give a counter-example.

(c)(x) Give an algorithm with running time O(m + n) that, on input G, computes a
minimum bottleneck spanning tree of G. (Hint: You may use the fact that the median
of a set of k numbers can be computed in time O(k).)



98

16.

17.

18.

CHAPTER 3. GREEDY ALGORITHMS

In trying to understand the combinatorial structure of spanning trees, we can consider
the space of all possible spanning trees of a given graph, and study the properties of
this space. This is a strategy that has been applied to many similar problems as well.

Here is one way to do this. Let G be a connected graph, and T" and 7" two different
spanning trees of G. We say that T and 1" are neighbors if T contains exactly one
edge that is not in 7", and T” contains exactly one edge that is not in 7.

Now, from any graph G, we can build a (large) graph H as follows. The nodes of
‘H are the spanning trees of G, and there is an edge between two nodes of H if the
corresponding spanning trees are neighbors.

Is it true that for any connected graph G, the resulting graph H is connected? Give
a proof that H is always connected, or provide an example (with explanation) of a
connected graph G for which H is not connected.

Suppose you're a consultant for the networking company CluNet, and they have the
following problem. The network that they’re currently working on is modeled by a
connected graph G = (V, E) with n nodes. Each edge e is a fiber-optic cable that is
owned by one of two companies — creatively named X and Y — and leased to CluNet.

Their plan is to choose a spanning tree T" of G, and upgrade the links corresponding to
the edges of T'. Their business relations people have already concluded an agreement
with companies X and Y stipulating a number &k so that in the tree 7" that is chosen,
k of the edges will be owned by X and n — k — 1 of the edges will be owned by Y.

CluNet management now faces the following problem: It is not at all clear to them
whether there even exists a spanning tree 1" meeting these conditions, and how to find
one if it exists. So this is the problem they put to you: give a polynomial-time algorithm
that takes G, with each edge labeled X or Y, and either (i) returns a spanning tree
with exactly k edges labeled X, or (ii) reports correctly that no such tree exists.

Suppose you are given a connected graph G = (V, E), with a weight w, on each edge
e. On the first problem set, we saw that when all edge weights are distinct, G' has a
unique minimum-weight spanning tree. However, G may have many minimum-weight
spanning trees when the edge weights are not all distinct. Here, we formulate the
question: can Kruskal’s algorithm be made to find all the minimum-weight spanning
trees of G?

Recall that Kruskal’s algorithm sorted the edges in order of increasing weight, then
greedily processed edges one-by-one, adding an edge e as long as it did not form a cycle.
When some edges have the same weight, the phrase “in order of increasing weight” has
to be specified a little more carefully: we’ll say that an ordering of the edges is valid
if the corresponding sequence of edge weights is non-decreasing. We’'ll say that a valid



3.6. EXERCISES 99

19.

execution of Kruskal’s algorithm is one that begins with a valid ordering of the edges
of G.

For any graph G, and any minimum spanning tree 7" of G, is there a valid execution
of Kruskal’s algorithm on G that produces T as output? Give a proof or a counter-
example.

Every September, somewhere in a far-away mountainous part of the world, the county
highway crews get together and decide which roads to keep clear through the coming
winter. There are n towns in this county, and the road system can be viewed as a
(connected) graph G = (V, E) on this set of towns, each edge representing a road
joining two of them. In the winter, people are high enough up in the mountains that
they stop worrying about the length of roads and start worrying about their altitude
— this is really what determines how difficult the trip will be.

So each road — each edge e in the graph — is annotated with a number a,. that gives
the altitude of the highest point on the road. We’ll assume that no two edges have
exactly the same altitude value a.. The height of a path P in the graph is then the
maximum of a, over all edges e on P. Finally, a path between towns ¢ and j is declared
to be winter-optimal if it achieves the minimum possible height over all paths from i
to j.

The highway crews are going to select a set £/ C E of the roads to keep clear through
the winter; the rest will be left unmaintained and kept off limits to travelers. They all
agree that whichever subset of roads E’ they decide to keep clear, it should clearly have
the property that (V, E’) is a connected subgraph; and more strongly, for every pair
of towns i and j, the height of the winter-optimal path in (V, E’) should be no greater
than it is in the full graph G = (V, E). We'll say that (V, E’) is a minimum-altitude
connected subgraph if it has this property.

Given that they’re going to maintain this key property, however, they otherwise want
to keep as few roads clear as possible. One year, they hit upon the following conjecture:

The minimum spanning tree of G, with respect to the edge weights a., is a
minimum-altitude connected subgraph.

(In an earlier problem, we claimed that there is a unique minimum spanning tree when
the edge weights are distinct. Thus, thanks to the assumption that all a. are distinct,
it is okay for us to speak of the minimum spanning tree.)

Initially, this conjecture is a somewhat counter-intuitive claim, since the minimum
spanning tree is trying to minimize the sum of the values a., while the goal of minimiz-
ing altitude seems to be asking for a fairly different thing. But lacking an argument
to the contrary, they begin considering an even bolder second conjecture:



100

20.

21.

CHAPTER 3. GREEDY ALGORITHMS

A subgraph (V, E') is a minimum-altitude connected subgraph if and only if
it contains the edges of the minimum spanning tree.

Note that this second conjecture would immediately imply the first one, since the
minimum spanning tree contains its own edges.

So here’s the question:

(a) Is the first conjecture true, for all choices of G and altitudes a.? Give a proof or a
counter-example with explanation.

(b) Is the second conjecture true, for all choices of G and altitudes a.? Give a proof
or a counter-example with explanation.

One of the first things you learn in calculus is how to minimize a differentiable function
like y = ax? + bz + ¢, where a > 0. The minimum spanning tree problem, on the other
hand, is a minimization problem of a very different flavor: there are now just a finite
number of possibilities for how the minimum might be achieved — rather than a
continuum of possibilities — and we are interested in how to perform the computation
without having to exhaust this (huge) finite number of possibilities.

One can ask what happens when these two minimization issues are brought together,
and the following question is an example of this. Suppose we have a connected graph
G = (V,E). Each edge e now has a time-varying edge cost given by a function f, :
R — R. Thus, at time t, it has cost f.(f). We’ll assume that all these functions are
positive over their entire range. Observe that the set of edges constituting the minimum
spanning tree of G may change over time. Also, of course, the cost of the minimum
spanning tree of G becomes a function of the time ¢; we’ll denote this function cg(t).
A natural problem then becomes: find a value of ¢ at which ¢g(t) is minimized.

Suppose each function f, is a polynomial of degree 2: f.(t) = a.t* + bet + c., where
a. > 0. Give an algorithm that takes the graph G and the values {(ac, be, ce) : € € E},
and returns a value of the time ¢ at which the minimum spanning tree has minimum
cost. Your algorithm should run in time polynomial in the number of nodes and edges of
the graph G. You may assume that arithmetic operations on the numbers {(a., b, c.)}

can be done in constant time per operation.

Suppose we are given a set of points P = {p1,po,...,pn}, together with a distance
function d on the set P; as usual, d is simply a function on pairs of points in P with
the properties that d(p;, p;) = d(pj, p;) > 0if i # j, and that d(p;, p;) = 0 for each i.

We define a stratified metric on P to be any distance function 7 that can be constructed
as follows. We build a rooted tree T" with n leaves, and we associate with each node



3.6. EXERCISES 101

22.

v of T' (both leaves and internal nodes) a height h,. These heights must satisfy the
properties that h(v) = 0 for each leaf v, and if u is the parent of v in 7', then h(u) >
h(v). We place each point in P at a distinct leaf in 7. Now, for any pair of points p;
and p;, their distance 7(p;, p;) is defined as follows. We determine the least common
ancestor v in T of the leaves containing p; and p;, and define 7(p;, p;) = h,.

We say that a stratified metric 7 is consistent with our distance function d if for all
pairs i, j, we have 7(p;, p;) < d(ps, p;)-

Give a polynomial-time algorithm that takes the distance function d and produces a
stratified metric 7 with the following properties:

(i) 7 is consistent with d, and

(ii) if 7’ is any other stratified metric consistent with d, then 7/(p;, p;) < 7(p;, p;) for
each pair of points p; and p;.

Let’s go back to the original motivation for the minimum spanning tree problem: we
are given a connected, undirected graph G = (V| E) with positive edge lengths {¢.},
and we want to find a spanning subgraph of it. Now, suppose we are willing to settle
for a subgraph H = (V, F') that is “denser” than a tree, and we are interested in
guaranteeing that for each pair of vertices u,v € V', the length of the shortest u-v path
in H is not much longer than the length of the shortest u-v path in G. By the length
of a path P here, we mean the sum of ¢, over all edges e in P.

Here’s a variant of Kruskal’s algorithm designed to produce such a subgraph.

e First, we sort all the edges in order of increasing length. (You may assume all
edge lengths are distinct.)

e We then construct a subgraph H = (V| F') by considering each edge in order.

e When we come to edge e = (u,v), we add e to the subgraph H if there is currently
no u-v path in H. (This is what Kruskal’s algorithm would do as well.) On the
other hand, if there is a u-v path in H, we let d,, denote the total length of the
shortest such path; again, length is with respect to the values {/.}. We add e to
H it 30, < dy,.

In other words, we add an edge even when u and v are already in the same connected
component, provided that the addition of the edge reduces their shortest-path distance
by a sufficient amount.

Let H = (V, F') be the subgraph of G returned by the algorithm.

(a) Prove that for every pair of nodes u,v € V, the length of the shortest u-v path in
H is at most 3 times the length of the shortest u-v path in G.



102

23.

24.

25.

CHAPTER 3. GREEDY ALGORITHMS

(b)(x)  Despite its ability to approximately preserve shortest-path distances, the
subgraph H produced by the algorithm cannot be too dense. Let f(n) denote the
maximum number of edges that can possibly be produced as the output of this algo-
rithm, over all n-node input graphs with edge lengths. Prove that

lim ()

=0.

Let G = (V,E) be a graph with n nodes in which each pair of nodes is joined by
an edge. There is a positive weight w;; on each edge (7,7); and we will assume these
weights satisfy the triangle inequality w;, < w;; + wjx. For a subset V' C V, we will
use G[V'] to denote the subgraph (with edge weights) induced on the nodes in V.

We are given a set X C V of k terminals that must be connected by edges. We say
that a Steiner tree on X is a set Z so that X C Z C V, together with a sub-tree T of
G[Z]. The weight of the Steiner tree is the weight of the tree T'.

Show that the problem of finding a minimum-weight Steiner tree on X can be solved
in time O(n°®).

Recall the problem of computing a minimum-cost arborescence in a directed graph
G = (V, E), with a cost ¢, > 0 on each edge. Here we will consider the case in which
G is a directed acyclic graph; that is, it contains no directed cycles.

As in general directed graphs, there can in general be many distinct minimum-cost so-
lutions. Suppose we are given a directed acyclic graph G = (V| E'), and an arborescence
A C FE with the guarantee that for every e € A, e belongs to some minimum-cost ar-
borescence in G. Can we conclude that A itself must be a minimum-cost arborescence
in G? Give a proof, or a counter-example with explanation.

Consider a directed graph G = (V, E) with a root r € V' and nonnegative costs on the
edges. In this problem we consider variants of the min-cost arborescence algorithm.

(a) The algorithm discussed in Section 3.5 works as follows: we modify the costs,
consider the subgraph of zero-cost edges, look for a directed cycle in this subgraph,
and contract it (if one exists). Argue briefly that instead of looking for cycles, we can
instead identify and contract strongly connected components of this subgraph.

(b) In the course of the algorithm, we defined y, to be the min cost of an edge entering
v, and we modified the costs of all edges e entering node v to be ¢, = ¢, — y,. Suppose
we instead use the following modified cost: ¢/ = max(0, ¢, — 2y,). This new change is
likely to turn more edges 0 cost. Suppose, now we find an arborescence T of 0 cost.
Prove that this T" has cost at most twice the cost of the minimum cost arborescence in
the original graph.



3.6. EXERCISES 103

26.

(c)(*) Assume you do not find an arborescence of 0 cost. Contract all O-cost strongly
connected components, and recursively apply the same procedure on the resulting
graph till an arborescence is found. Prove that this 7" has cost at most twice the cost
of the minimum cost arborescence in the original graph.

(%) Suppose you are given a directed graph G = (V, E) in which each edge has a
cost of either 0 or 1. Also, suppose that G has a node r such that there is a path
from r to each other node in G. You are also given an integer k. Give a polynomial-
time algorithm that either constructs an arborescence rooted at r of cost exactly k, or
reports (correctly) that no such arborescence exists.



104 CHAPTER 3. GREEDY ALGORITHMS



Chapter 4

Divide and Conquer

Divide-and-conquer refers to a class of algorithmic techniques in which one breaks the input
into several parts, solves the problem in each part recursively, and then combines the solutions
to these sub-problems into an overall solution. In many cases, it can be a simple and powerful
method.

We will not devote too much time to divide-and-conquer as a technique in its own right,
for two main reasons. First, it is an idea that should already be familiar from earlier courses.
many of the most fundamental methods for sorting and searching follow the divide-and-
conquer paradigm; these include binary search, QUICKSORT, and MERGESORT. Second, it
is a technique that pervades the design of many algorithms, and we will see it implicitly in
a number of subsequent chapters.

For our coverage of divide-and-conquer here, we focus on what is arguably its most
widespread impact — taking problems for which a naive approach requires O(n?) running
time, and producing an algorithm with the much better running time of O(nlogn). Im-
provements of this type are very often a consequence of the following general approach:

(1) Break the input into two pieces of equal size; solve the two sub-problems on
these pieces separately by recursion; and then spend linear time to combine the

two results into an overall solution.

The MERGESORT algorithm for sorting a list of n numbers does precisely this: it recursively
sorts the front half and back halves separately, and then “merges” these two sorted halves in
an additional O(n) steps. We will prove below that any algorithm with this general structure
has an O(nlogn) running time; and this fact actually goes a long way towards explaining
the ubiquity of the function O(nlogn) in computer science.

4.1 A Useful Recurrence Relation

Consider an algorithm that follows the technique outlined in (}), and let T'(n) denote its
maximum running time on input instances of size n. The algorithm divides the input into

105



106 CHAPTER 4. DIVIDE AND CONQUER

pieces of size [n/2] and [n/2], spends T'([n/2])+T(|n/2]) to solve these two sub-problems
recursively, and then spends O(n) to combine the solutions. Thus, the running time satisfies
the following recurrence relation:

(4.1) T(n) <T([n/2])+T(|n/2])+ O(n) forn>2, and T'(1) = ¢1 for a constant c.

You'll often see this written as T'(n) < 27'(n/2) + O(n), under the (often unstated) assump-
tion that n is power of 2.

This recurrence relation can be used to derive a tight upper bound on T'(n). In the
analysis we use logn to mean the base 2 logarithm log, n; but recall that the base of the
logarithm does not matter inside O(-) notation, since different bases result in a change of
only a constant factor.

(4.2) Any function T(-) satisfying (4.1) is bounded by O(nlogn), when n > 1.

Proof.  Let us make the constant inside the “O(-)” notation of (4.1) explicit: we write it
as ¢'n where ¢’ is an absolute constants. Assume that n > 1 and let k = [log, n]. Note that
applying (4.1) directly, we have T'(2) < 2¢; + ¢; let ¢ denote this constant quantity.

We claim that for n > 1 we have T'(n) < ckn, and prove this by induction on n. (Note
that we start the induction proof at n = 2 since log1 = 0. The claim is clearly true when
n = 2, since T'(2) < ¢ by definition.

Now, for a general value of n, write n; = [n/2] and ny = |n/2|. A key observation,
which is not difficult to show, is that [logyn;] < k —1 fori =1, 2.

We use this fact together with the induction hypothesis for 7'(n;) and T'(ns):

IA

T(n) T(n1) + T (n2) +cn

T(ny) +T(ng) +cn
clk—1)ny +c(k —1)ny+cn
c(k—1)(ny +n2) +cn

ckn.

(I VAN VAN

We apply this result in the remainder of the chapter. We consider two problems which
initially seem to require quadratic time, and show how to use the approach described above
to get a running time of O(nlogn). In both cases, it takes some work to make the general
divide-and-conquer strategy actually succeed.



4.2. COUNTING INVERSIONS 107

4.2 Counting Inversions

Variants of the MERGESORT technique can be used to solve some problems that are not
directly related to sorting elements.

A number of sites on the Web try to match your preferences (for books, movies, restau-
rants) with those of other people out on the Internet. You rank a set of n movies, and
then the site consults its database to look for other people who had “similar” rankings. But
what’s a good way to measure, numerically, how similar two people’s rankings are? Clearly
an identical ranking is very similar, and a completely reversed ranking is very different; we
want something that interpolates through the middle region.

Let’s consider comparing your ranking and a stranger’s ranking of the same set of n
movies. A natural method would to label the movies from 1 to n according to your ranking,
then order these labels according to the stranger’s ranking, and see how many pairs are “out
of order.” More concretely, we will consider the following problem. We are given a sequence
of n numbers ay, ..., a,; we will assume that all the numbers are distinct. We want to define
a measure that tells us how far this list is from being in ascending order; the value of the
measure should be 0 if a; < ay < ... < a,, and should increase as the numbers become more
scrambled.

A natural way to quantify this notion is by counting the number of inversions. We say
that two indices 7 < j form an inversion if a;, > a;, i.e., if the two elements a; and a; are “out
of order.” We will seek to determine the number of inversions in the sequence aq,...,a,.
Note that if the sequence is in ascending order, then there are no inversions; if the sequence
is in descending order (i.e. as bad as possible), then every pair forms an inversion, and so
there are n(n —1)/2 of them.

What is the simplest algorithm to count inversions? Clearly, we could look at every
pair of numbers (a;, a;) and determine whether they constitute an inversion; this would take
O(n?) time.

We now show how to count the number of inversions much more quickly, in O(nlogn)
time. Note that since there can be a quadratic number of inversions, such an algorithm must
be able to compute the total number without ever looking at each inversion individually. The
basic idea is to follow the strategy (T) defined above. We set m = [n/2] and divide the list
into the two pieces aq,...,a, and amyi1,...,a,. We first count the number of inversions in
each of these two halves separately. Then, we count the number of inversions (a;, a;), where
the two numbers belong to different halves; the trick is that we must do this part in O(n)
time, if we want to apply (4.2) . Note that these first-half/second-half inversions have a
particularly nice form: they are precisely the pairs (a;,a;) where @; is in the first half, a; is
in the second half, and a; > a;.

To help with counting the number of inversions between the two halves, we will make
the algorithm recursively sort the numbers in the two halves as well. Having the recursive



108 CHAPTER 4. DIVIDE AND CONQUER

step do a bit more work (sorting as well as counting inversions) will make the “combining”
portion of the algorithm easier.

So the crucial routine in this process is Merge-and-Count. Suppose we have recursively
sorted the first and second halves of the list, and counted the inversions in each. We now
have two sorted lists A and B, containing the first and second halves respectively. We want
to produce a single sorted list C' from their union, while also counting the number of pairs
(a,b) with a € A, b € B, and a > b. By our discussion above, this is precisely what we will
need for the “combining” step that computes the number of first-half/second-half inversions.

The Merge-and-Count routine walks through the sorted lists A and B, removing elements
from the front and appending them to the sorted list C'. In one step, it compares the elements
a; and b; being pointed to in each list, removes the smaller one from its list, and appends
it to the end of list C. Now, because A and B are sorted, it is very easy to keep track of
the number of inversions we encounter. Every time the element a; is appended to C', no
new inversions are encountered — since a; is smaller than everything left in list B, and it
comes before all of them. On the other hand, if b; is appended to list C, then it is smaller
than all the remaining items in A, and it comes after all of them — so we increase our count
of the number of inversions by the number of elements remaining in A. This is the crucial
idea: in constant time, we have accounted for a potentially large number of inversions. See
Figure 4.1 for an illustration of this process.

Elements inverted withbj

[ 7777172 | A
merged result /
| |
\ 77/ b_] B

Figure 4.1: Merging the first half of the list A with the second half B

We use this Merge-and-Count routine in a recursive procedure that simultaneously sorts

and counts the number of inversions in a list L.

Sort-and-Count (L)
If the list has one element then
there are no inversions
Else
Divide the list into two halves:
A contains the first [n/2]| elements.
B contains the remaining |[n/2] elements.
(ra, A)=Sort-and-Count (A)



4.3. FINDING THE CLOSEST PAIR OF POINTS 109

(rg, B)=Sort-and-Count (B)
(r, L)=Merge-and-Count (A, B)
Endif
Return r=7r4 +rp+1r, and the sorted list L

Since our Merge-and-Count procedure takes O(n) time, the running time 7°(n) of the
full Sort-and-Count procedure satisfies the recurrence (4.1). By (4.2), we have

(4.3) The Sort-and-Count algorithm correctly sorts the input list and counts the number

of inversions; it runs in O(nlogn) time for a list with n elements.

4.3 Finding the Closest Pair of Points

We now describe another problem that can be solved by an algorithm in the style we’ve been
discussing; but finding the right way to “merge” the solutions to the two sub-problems it
generates requires quite a bit of ingenuity. The problem itself is very simple to state: given
n points in the plane, find the pair that is closest together.

The problem was considered by M.I. Shamos and D. Hoey in the early 1970’s, as part of
their project to work out efficient algorithms for basic computational primitives in geometry.
These algorithms formed the foundations of the then-fledgling field of computational geome-
try, and they have found their way into areas such as graphics, computer vision, geographic
information systems, and molecular modeling. And although the closest-pair problem is
one of the most natural algorithmic problems in geometry, it is surprisingly hard to find an
efficient algorithm for it. It is immediately clear that there is an O(n?) solution — compute
the distance between each pair of points and take the minimum — and so Shamos and Hoey
asked whether an algorithm asymptotically faster than quadratic could be found. It took
quite a long time before they resolved this question, and the O(nlogn) algorithm we give
below is essentially the one they discovered.

We begin with a bit of notation. Let us denote the set of points by P = {p1,...,pn},
where p; has coordinates (z;,y;); and for two points p;,p; € P, we use d(p;,p;) to denote
the standard Euclidean distance between them. Our goal is to find the pair of points p;, p;
which minimizes d(p;, p;).

We will assume that no two points in P have the same z-coordinate or the same y-
coordinate. This makes the discussion cleaner; and it’s easy to eliminate this assumption
either by initially applying a rotation to the points that makes it true, or by slightly extending
the algorithm we develop here.

It’s instructive to consider the one-dimensional version of this problem for a minute, since
it is much simpler and the contrasts are revealing. How would we find the closest pair of
points on a line? We'd first sort them, in O(nlogn) time, and then we’d walk through the



110 CHAPTER 4. DIVIDE AND CONQUER

sorted list, computing the distance from each point to the one that comes after it. It is easy
to see that one of these distances must be the minimum one.

In two dimensions, we could try sorting the points by their y-coordinate (or z-coordinate),
and hoping that the two closest points were near one another in the order of this sorted list.
But it is easy to construct examples in which they are very far apart, preventing us from
adapting our one-dimensional approach.

Instead, our plan will be to apply the style of divide-and-conquer used in MERGESORT:
we find the closest pair among the points in the “left half” of P and the closest pair among
the points in the “right half” of P; and then we need to use this information to get the
final solution in linear time. This last part is the catch: the distances that have not been
considered by either of our recursive calls are precisely those that occur between a point in
the left half and a point in the right half; there are 2(n?) such distances, yet we need to find
the smallest one in O(n) time after the recursive calls return. If we can do this, our solution
will be complete: it will be the smallest of the values computed in the recursive calls and
this minimum “left-to-right” distance.

Setting up the Recursion. Let’s get a few easy things out of the way first. It will be
very useful if every recursive call, on a set P’ C P, begins with two lists: a list P, in which
all the points in P’ have been sorted by increasing z-coordinate, and a list P, in which all the
points in P’ have been sorted by increasing y-coordinate. We can ensure that this remains
true throughout the algorithm as follows.

First, before any of the recursion begins, we sort all the points in P by z-coordinate and
again by y-coordinate, producing lists P, and P,. Attached to each entry in each list is a
record of the position of that point in both lists.

The first level of recursion will work as follows, with all further levels working in a
completely analogous way. We define ) to be the set of points in the first [n/2] positions
of the list P, (the “left half”) and R to be the set of points in the final [n/2| positions of
the list P, (the “right half”). See Figure 4.2. By a single pass through each of P, and P,, in
O(n) time, we can create the following four lists: @),, consisting of the points in @) sorted by
increasing x-coordinate; (), consisting of the points in ) sorted by increasing y-coordinate;
and analogous lists R, and R,. For each entry of each of these lists, as before, we record the
position of the point in both lists it belongs to.

We now recursively determine the closest pair of points in @) (with access to the lists Q,
and @,). Suppose that ¢ and ¢f are (correctly) returned as a closest pair of points in Q.
Similarly, we determine the closest pair of points in R, obtaining r§ and r7.

Combining the Solutions. The general machinery of divide-and-conquer has gotten us
this far, without our really having delved into the structure of the closest-pair problem.



4.3. FINDING THE CLOSEST PAIR OF POINTS 111

Q line L R

Figure 4.2: The first level of recursion

But it still leaves us with the problem that we saw looming originally: how do we use the
solutions to the two sub-problems as part of a linear-time “combining” operation?

Let § be the minimum of d(qg,q7) and d(r§,ry). The real question is: are there points
q € @Q and r € R for which d(q,r) < 67 If not, then we have already found the closest pair
in one of our recursive calls. But if there are, then the closest such ¢ and r form the closest
pair in P.

Let z* denote the z-coordinate of the rightmost point in (), and let L denote the vertical
line described by the equation x = z*. This line L “separates” () from R. Here is a simple
fact:

(4.4) If there exists ¢ € Q and r € R for which d(q,r) < ¢, then each of q and r lies
within a distance § of L.

Proof. Suppose such ¢ and r exist; we write ¢ = (¢, ¢q,) and r = (r,,r,). By the definition
of z*, we know that ¢, < x* <r,. Then we have

I*_qu’cgrx_qgcgd(%r)<5

and
Ty — 2 <1y —qp < d(q,7) <9,

so each of ¢ and r has an z-coordinate within ¢ of x*, and hence lies within distance ¢ of the
line L. m



112 CHAPTER 4. DIVIDE AND CONQUER

So if we want to find a close ¢ and r, we can restrict our search to the narrow band
consisting only of points in P within § of L. Let S C P denote this set, and let S, denote
the list consisting of the points in S sorted by increasing y-coordinate. By a single pass
through the list P,, we can construct S, in O(n) time.

We can restate (4.4) as follows, in terms of the set S.

(4.5) There exist q € Q andr € R for which d(q,r) < 0 if and only if there exist s,s" € S
for which d(s,s") < 6.

It’s worth noticing at this point that S might in fact be the whole set P, in which case
(4.4) and (4.5) really seem to buy us nothing. But this is actually far from true, as the
following amazing fact shows.

(4.6) If s, s’ € S have the property that d(s,s’) <, then s and s are within 15 positions
of each other in the sorted list S,

line L

I I
| |
| |
/2 |
5/2 I
| |
|
/ [
boxes < i
| I
| |
| |
| |
| |
| |
| |
| |

) )

Proof.  Consider the subset Z of the plane consisting of all points within distance ¢ of L.
We partition Z into bozes: squares with horizontal and vertical sides of length §/2. One row
of Z will consist of four boxes whose horizontal sides have the same y-coordinates.



4.3. FINDING THE CLOSEST PAIR OF POINTS 113

Suppose two points of S lay in the same box. Since all points in this box lie on the same
side of L, these two points either both belong to () or both belong to R. But any two points
in the same box are within distance ¢ - v/2 /2 < §, which contradicts our definition of § as
the minimum distance between any pair of points in () or in R. Thus, each box contains at
most one point of S.

Now suppose that s,s’ € S have the property that d(s,s’) < ¢, and that they are at
least 16 positions apart in §,. Assume without loss of generality that s has the smaller
y-coordinate. Then since there can be at most one point per box, there are at least three
rows of Z lying between s and s’. But any two points in Z separated by at least three rows
must be a distance of at least 30/2 apart — a contradiction. m

We note that the value of 15 can be reduced; but for our purposes at the moment, the
important thing is that it is an absolute constant.

In view of (4.6), we can conclude the algorithm as follows. We make one pass through
Sy, and for each s € S, we compute its distance to each of the next 15 points in S,. (4.6)
implies that in doing so, we will have computed the distance of each pair of points in S (if
any) that are at distance less than § from one another. So having done this, we can compare
the smallest such distance to ¢, and we can report one of two things: (i) the closest pair of
points in S, if their distance is less than 0; or (ii) the (correct) conclusion that no pairs of
points in S are within § of one another. In case (i), this pair is the closest pair in P; in case
(i), the closest pair found by our recursive calls is the closest pair in P.

Note the resemblance between this procedure and the algorithm we rejected at the very
beginning, which tried to make one pass through P in order of y-coordinate. The reason
such an approach works now is due to the extra knowledge (the value of §) we've gained
from the recursive calls, and the special structure of the set S.

This concludes the description of the “combining” part of the algorithm, since by (4.5)
we have now determined whether the minimum distance between a point in () and a point
in R is less than §, and if so, we have found the closest such pair.

A complete description of the algorithm and its proof of correctness are implicitly con-
tained in the discussion so far, but for the sake of concreteness, we now summarize both.

Summary. A high-level description of the algorithm is the following, using the notation
we have developed above.

Closest-Pair(P)
Construct P, and P, (O(nlogn) time)
(ps,pi) = Closest-Pair-Rec(F;,P,)

Closest-Pair-Rec(P,, P,)
If |P| <3 then



114 CHAPTER 4. DIVIDE AND CONQUER

find closest pair by measuring all pairwise distances

Construct (),,Qy,,R,,R, (O(n) time)
(¢5,q7) = Closest-Pair-Rec(Q,, @Q,)
(ry,r7) = Closest-Pair-Rec(R,, R,)

0 = min(d(q,q7),d(r§,ry))
¥ =

= maximum z-coordinate of a point in set @)

L=A(z,y):x=2"}
S = points in P within distance § of L.

Construct S, (O(n) time)
For each point s € S,, compute distance from s
to each of next 15 points in 5.
Let s,s’ be pair achieving minimum of these distances

(O(n) time)

If d(s,s’) <6 then
Return (s,s)

Else if d(qj,q) < d(ry,r) then
Return (gg,q)

Else
Return (r,r})

(4.7) The algorithm correctly outputs a closest pair of points in P.

Proof. As we’ve noted, all the components of the proof have already been worked out above;
so here we just summarize how they fit together.

We prove the correctness by induction on the size of P, the case of |P| < 3 being clear.
For a given P, the closest pair in the recursive calls is computed correctly by induction. By
(4.6) and (4.5), the remainder of the algorithm correctly determines whether any pair of
points in S is at distance less than ¢, and if so returns the closest such pair. Now the closest
pair in P either has both elements in one of () or R, or it has one element in each. In the
former case, the closest pair is correctly found by the recursive call; in the latter case, this
pair is at distance less than ¢, and it is correctly found by the remainder of the algorithm. m

(4.8) The running time of the algorithm is O(nlogn).

Proof. The initial sorting of P by z- and y-coordinate takes time O(nlogn). The running
time of the remainder of the algorithm satisfies the recurrence (4.1), and hence is O(nlogn)
by (4.2). m



4.4. EXERCISES 115

4.4 Exercises

1. You are interested in analyzing some hard-to-obtain data from two separate databases.
Each database contains n numerical values — so there are 2n values total — and you
may assume that no two values are the same. You’d like to determine the median of
this set of 2n values, which we will define here to be the n'" smallest value.

However, the only way you can access these values is through queries to the databases.
In a single query, you can specify a value k to one of the two databases, and the chosen
database will return the &' smallest value that it contains. Since queries are expensive,
you would like to compute the median using as few queries as possible.

Give an algorithm that finds the median value using at most O(logn) queries.

2. Recall the problem of finding the number of inversions. As in the text, we are given a
sequence of n numbers aq, ..., a,, which we assume be all distinct, and we define an
inversion to be a pair ¢ < j such that a; > a;.

We motivated the problem of counting inversions as a good measure of how different
two orderings are. However, one might feel that this measure is too sensitive. Let’s
call a pair a significant inversion if i < j and a; > 2a;. Give an O(nlogn) algorithm
to count the number of significant inversions between two orderings.

3. (%) Hidden surface removal is a problem in computer graphics that scarcely needs an
introduction — when Woody is standing in front of Buzz you should be able to see
Woody but not Buzz; when Buzz is standing in front of Woody, ... well, you get the
idea.

The magic of hidden surface removal is that you can often compute things faster than
your intuition suggests. Here’s a clean geometric example to illustrate a basic speed-up
that can be achieved. You are given n non-vertical lines in the plane, labeled Ly, ..., L,,
with the i*" line specified by the equation y = a;x + b;. We will make the assumption
that no three of the lines all meet at a single point. We say line L; is uppermost at a
given x-coordinate xg if its y-coordinate at x( is greater than the y-coordinates of all
the other lines at xo: a;xo + b; > a;xo + b; for all j # i. We say line L; is wvisible if
there is some z-coordinate at which it is uppermost — intuitively, some portion of it

7

can be seen if you look down from “y = oo.

Give an algorithm that takes n lines as input, and in O(nlogn) time returns all of the
ones that are visible. The accompanying figure gives an example.

4. Suppose you're consulting for a bank that’s concerned about fraud detection, and they
come to you with the following problem. They have a collection of n “smart-cards”
that they’'ve confiscated, suspecting them of being used in fraud. Each smart-card is



116 CHAPTER 4. DIVIDE AND CONQUER

Figure 4.3: An instance with five lines (labeled “1”7—“5” in the figure). All the lines except
for “27 are visible.

a small plastic object, containing a magnetic stripe with some encrypted data, and it
corresponds to a unique account in the bank. Each account can have many smart-
cards corresponding to it, and we’ll say that two smart-cards are equivalent if they
correspond to the same account.

It’s very difficult to read the account number off a smart-card directly, but the bank
has a high-tech “equivalence tester” that takes two smart-cards and, after performing
some computations, determines whether they are equivalent.

Their question is the following: among the collection of n cards, is there a set of more
than n/2 of them that are all equivalent to one another? Assume that the only feasible
operations you can do with the cards are to pick two of them and plug them in to
the equivalence tester. Show how to decide the answer to their question with only
O(nlogn) invocations of the equivalence tester.



Chapter 5

Dynamic Programming

5.1 Weighted Interval Scheduling: The Basic Set-up

We have seen that a particular greedy algorithm produces an optimal solution to the interval
scheduling problem, where the goal is to accept as large a set of non-overlapping intervals
as possible. We also discussed a more general version of the problem, weighted interval
scheduling, in which each interval has a certain value to us, and we want to accept a set of
maximum value.

In this section, we’ll consider the following natural version of the weighted interval
scheduling problem: the wvalue of each interval is proportional to its length, so our goal
is to accept a set of intervals of maximum total length. This arises naturally in the case in
which our resource is available for rent, for a fixed rate per hour; then the amount of revenue
we accrue from a given interval is proportional to its length, and we want to maximize our
revenue. We'll see at the end that the solution we develop for this problem carries over
pretty much directly to the case in which each interval has an arbitrary value.

Using the same types of examples we applied to the original interval scheduling problem,
we can show that essentially every natural greedy algorithm one might think of can fail to
find the optimal solution. Even our previously successful algorithm, in which we sort by
increasing finish times, does not work for the current problem; see the picture below:

Since we last looked at interval scheduling problems, we’ve also seen the divide-and-
conquer technique. But it seems difficult to apply this to the current problem as well. For
example, we could divide the intervals into two sets, solve the problem optimally on each
set, and then combine these solutions; but the solutions will presumably overlap, and it is
not clear how to deal with this. Alternately we could divide “time” into two halves, and
try solving the problem optimally in each half. But it may well be the case that there is no

117



118 CHAPTER 5. DYNAMIC PROGRAMMING

dividing point on the time line that would not cut through several intervals; and then it is
not clear how even to set up the sub-problems.

There is, however, a very efficient algorithm for this problem. It is based on the idea of
breaking things down into sub-problems, but it manages the set of sub-problems in a more
careful way than we saw with divide-and-conquer. There are two styles in which to develop
the algorithm, conceptually different but arriving at essentially the same final result. We’ll
describe both of them, in an attempt to get at the subtle nature of the underlying idea:
dynamic programming.

Style #1: Branching with Memoization

We keep the notation from our previous encounter with interval scheduling problems: We
have n requests labeled 1,...,n, with each request i specifying a start time s; and a finish
time f;. The length ¢; of request ¢ is the difference between its finish time and its start
time: ¢; = f; — s;. Two requests are compatible if they do not overlap. The goal of our
current problem is to select a subset S C {1,...,n} of mutually compatible requests, so as
to maximize the sum of the lengths of the requests in S,

Z b= Z Ji — si.
i€S i€s
Let’s suppose that the requests are sorted in order of non-decreasing finish time: f; <

fo <o < fn. We'll say a request ¢ comes before a request j if i < j. Here’s a bit of notation
that will be very useful for us: for a request j, let p(j) denote the largest-numbered request
before j that is compatible with j. We define p(j) = 0 if no request before j is compatible
with j. Note that the set of all compatible requests before j is simply {1,2,...,p(j)}. An
example is illustrated below.

Now, let’s consider an optimal solution O, ignoring for now that we have no idea what
it is. Here’s something completely obvious that we can say about O: either request n (the
last one) belongs to O, or it doesn’t. Suppose we explore both sides of this dichotomy a
little further. If n € O, then clearly no interval strictly between p(n) and n can belong to



5.1. WEIGHTED INTERVAL SCHEDULING: THE BASIC SET-UP 119

O. Moreover, in this case, O must include an optimal solution to the problem consisting
of requests {1,...,p(n)} — for if it didn’t, we could replace its choice of requests from
{1,...,p(n)} with a better one, with no danger of overlapping request n. On the other
hand, if n € O, then O is simply equal to the optimal solution to the problem consisting
of requests {1,...,n — 1}. This is by completely analogous reasoning: we’re assuming that
O does not include request n; so if it does not choose the optimal set of requests from
{1,...,n — 1}, we could replace it with a better one.

For any value of ¢ between 1 and n, let OPT(i) denote the value of an optimal solution
to the problem consisting of requests {1, ...,i}. The optimal value we're seeking is precisely
OPT(n). So for our optimal solution O, we've observed that either n € O, in which case
OPT(n) = £, + OPT(p(n)), or n ¢ O, in which case OPT(n) = OPT(n — 1). Since these
are precisely the two possible choices (n € O or n & O), we can further say:

(5.1) OPT(n) =max(¢, + OPT(p(n)), OPT(n — 1)).

And how do we decide whether n belongs to an optimal solution? This too is easy: it belongs
to an optimal solution if and only if the first of the options above is at least as good as the
second; in other words,

(5.2) Request n belongs to an optimal solution if and only if

0, + OPT(p(n)) > OPT(n — 1).

These facts form the first crucial component on which a dynamic programming solution is
based: a recurrence equation that expresses the optimal solution (or its value) in terms of
the optimal solutions to smaller sub-problems.

Indeed, this recurrence equation (5.1) directly gives us a recursive algorithm to compute
OPT(n), assuming that we have already sorted the requests by finishing time and computed
the values of p(j) for each j.

Compute-0pt (n)
If n=0 then
Return 0O
Else
v = Compute-0pt (p(n))
v = Compute-Opt(n — 1)
If ¢, +v > then
Return /¢, +v
Else
Return v’
Endif
Endif



120 CHAPTER 5. DYNAMIC PROGRAMMING

The correctness of the algorithm follows directly from (5.1).

If we really implemented the algorithm as just written, it would take exponential time
to run in the worst case; this is not surprising, since each call generates two new calls, while
potentially only shrinking the problem size from n to n — O(1). Thus we have not achieved
a polynomial-time solution.

A fundamental observation, which forms the second crucial component of a dynamic
programming solution, is that our recursive algorithm is really only solving n + 1 different
sub-problems: Compute-0Opt(0), Compute-Opt(1), ... Compute-Opt(n). The fact it runs
in exponential time as written, is simply due to the spectacular redundancy in the number
of times it issues each of these calls.

How could we eliminate all this redundancy? We could store the value of Compute-0pt (7)
in a globally accessible place the first time we compute it, and then simply use this pre-
computed value in place of all future recursive calls. This technique of saving values that
have already been computed is often called memoization.

We implement the above strategy in the more “intelligent” procedure M-Compute-0Opt.
This procedure will make use of an array M[0...n]; M[i] will start with the value “empty,”
but will hold the value of Compute-0Opt(z) as soon as it is first determined. To determine
OPT(n), we invoke M-Compute-0pt (n).

M-Compute-0pt (n)

If M[n] = "empty" then
v = Compute-0pt(n)
Mn] =v.
Return wv.

Else
Return M|n]

Endif

Compute-0pt (n)
If n=0 then
Return 0
Else
v = M-Compute-0pt (p(n))
v = M-Compute-Opt(n — 1)
If ¢, +v > then
Return /¢, +v
Else
Return v’
Endif
Endif



5.1. WEIGHTED INTERVAL SCHEDULING: THE BASIC SET-UP 121

Clearly, this looks very similar to our previous implementation of the algorithm; however,

memoization has brought the running time way down.
(5.3) The running time of M-Compute-Opt(n) is O(n).

Proof. The time spent in a single call to Compute-0pt or M-Compute-0pt is O(1), excluding
the time spent in recursive calls it generates. So the running time is bounded by a constant
times the number of calls ever issued to either of these procedures. Since the implementation
itself gives no explicit upper bound, we invoke the strategy of looking for a good measure of
“progress.”

The most useful progress measure here is the number of entries in M that are not “empty.”
Initially this number is 0; but each call to Compute-0Opt increases the number by 1. Since
M has only n + 1 entries, there can be at most n + 1 calls to Compute-0Opt.

Now, each invocation of M-Compute-Opt is either the initial one, or it comes from
Compute-0pt. But each call to Compute-0pt generates only two calls to M-Compute-0pt; and
there are at most n + 1 calls to Compute-0Opt. Thus the number of calls to M-Compute-Opt
is at most 1 4+2(n+ 1) = 2n + 3.

It follows that the entire algorithm has running time O(n). m

Computing a solution, in addition to its value. So far we have simply computed the
value of an optimal solution; presumably we want a full optimal set of requests as well. It is
easy to extend M-Compute-Opt to do this: we change Compute-0pt (i) to keep track of the
optimal solution in addition to its value. We would maintain an additional array S so that
S[i] contains an optimal set of intervals among {1,2,...,i}. Enhancing the code to maintain
the solutions in the array S costs us an O(n) blow-up in the running time: While a position
in the M array can be updated in O(1) time, writing down a set in the S array takes O(n)
time. We can avoid this O(n) blow-up by not explicitly maintaining the S, but rather by
recovering the optimal solution from values saved in the array M after the optimum value
has been computed.

Using our observation from (5.2) , n belongs to some optimal solution for the set of
requests {1,...,i} if and only if in the comparison “/,, + v > v'” the left-hand-side is at
least as large as the right-hand-side. Using this observation for all values i < n we get the
following procedure, which “traces back” through the array M to find the set of intervals in
an optimal solution.

Find-Solution (i)

If i =0 then
Output nothing.
Else

v = Mlp(i)]



122 CHAPTER 5. DYNAMIC PROGRAMMING

v = M[i—1]
If ¢, +v > then
Output ¢ and the result of Find-Solution(p(i)).
Else
Output the result of Find-Solution(i — 1)
Endif
Endif

(5.4) Given the array M of the optimal values of the sub-problems as computed by
M-Compute-0pt, the code Find-Solution returns the optimal set S in O(n) time.

Proof. The time spent in a single call to Find-Solution is O(1), excluding the time spent in
recursive calls it generates. So the running time is bounded by a constant times the number
of calls ever issued. A call to Find-Solution() issues at most one recursive call to a problem
with smaller i value, so the number of calls ever issued by Find-Solution(n) is at most n.
]

Style #2: Building up Solutions to Sub-Problems

If we think for a little while, and unwind what the memoized version of Compute-Opt is
doing, we see that it’s really just building up entries in an array. One could argue that it’s
simpler just to do that with a For loop, as follows:

Iterative-Compute-0Opt(n)
Array MI0...n]
MI0] =0
For 1 =1,2,...,n
If ¢;+ Mp(i)] > M[i — 1] then
MTi] = £ + Mp(3)]

Else
MIi] = M][i — 1]
Endif
Endfor
Return M|n]

Using (5.1) one can immediately prove by induction that the value M[n] is an optimal
solution for the set of requests {1,...,n}. The running time can be bounded as follows.
There are n iterations of the For loop, each iteration takes O(1) time, and thus the overall
time of the algorithm as implemented above is O(n). Once the array M is computed we can
run Find-Solution(n) to find the optimal set S.

Different people have different intuitions about dynamic programming algorithms; in
particular, some people find it easier to invent such algorithms in the first style, others in



5.2. SEGMENTED LEAST SQUARES: MULTI-WAY CHOICES 123

the second. Here we've followed the route of memoization, and only devised an iterative
“building-up” algorithm once our intuition for the problem was firmly in place.

However, it is possible to develop “building-up” algorithms from scratch as well. Essen-
tially, for such an algorithm, one needs a collection of sub-problems derived from the original
problem that satisfy the following basic properties:

(i) There are only a polynomial number of sub-problems.

(ii) The solution to the original problem can be easily computed from the solutions to
the sub-problems. (For example, the original problem may actually be one of the
sub-problems.)

(iii) There is an easy-to-compute recurrence, as in (5.1) and (5.2), allowing one to determine
the solution to a sub-problem from the solutions to some number of “smaller” sub-
problems.

Naturally, these are informal guidelines; in particular, the notion of “smaller” in part (iii)
will depend on the type of recurrence one has.

In future uses of dynamic programming, we will specify our algorithm more compactly by
using the iterative approach, but will often use ideas from the recursive approach to design
the collection of sub-problems we use.

Weighted Interval Scheduling

The general weighted interval scheduling problem consists of n requests, with each request
1 specified by an interval and a non-negative value, or weight, w;. The goal is to accept a
compatible set of requests of maximum total value.

We started by saying that we would consider the special case of the problem in which
w; is defined to be the length ¢; of interval i, for i = 1,...,n. But if we go back over our
solution to this problem, we see that we never actually used the fact that ¢; was the length
of i, as opposed to a completely arbitrary non-negative value. Indeed, it is easy to check
that facts (5.1) and (5.2) remain true if in place of the lengths {/;} we assume general
non-negative values {w; }, and thus our algorithms in fact solve the general weighted interval
scheduling problem as well.

5.2 Segmented Least Squares: Multi-way Choices

We now discuss a different type of problem, which illustrates a slightly more complicated
style of dynamic programming. In the previous section, we developed a recurrence based on
a fundamentally binary choice: either the interval n belonged to an optimal solution or it
didn’t. In the problem we consider here, the recurrence will involve what might be called



124 CHAPTER 5. DYNAMIC PROGRAMMING

“multi-way choices” — at each step, we have a polynomial number of possibilities to consider
for the structure of the optimal solution. As we’ll see, the dynamic programming approach
adapts to this more general situation very naturally.

As a separate issue, the problem developed in this section is also a nice illustration of
how a clean algorithmic definition can formalize a notion that initially seems too fuzzy and
intuitive to work with mathematically.

Often when looking at scientific or statistical data, plotted on a two-dimensional set of
axes, one tries to pass a “line of best fit” through the data as in Figure 5.1.

Figure 5.1: A “line of best fit.”

This is a foundational problem in statistics and numerical analysis, formulated as follows.
Suppose our data consists of a set P of n points in the plane, denoted (z1,y1), (Z2,92), - - -, (Tn, Yn);
and suppose r1 < 3 < --- < x,. Given a line L defined by the equation y = ax + b, we say
that the error of L with respect to P is the sum of its squared “distances” to the points in
P:

Error(L, P) =Y (yi — ax; — b)*.
i=1
A natural goal is then to find the line with minimum error; this turns out to have a nice
closed-form solution that can be easily derived using calculus. Skipping the derivation here,
we simply state the result: The line of minimum error is y = ax + b, where

a:nzz’xiyi;(zé%)(%iyi) and b:Ziyi_aZixi.
nys gy — (i) n



5.2. SEGMENTED LEAST SQUARES: MULTI-WAY CHOICES 125

Now, here’s a kind of issue that these formulas weren’t designed to cover. Often we have
data that looks something like the picture in Figure 5.2. In this case, we’d like to make a
statement like: “The points lie roughly on a sequence of two lines.” How could we formalize
this concept?

Figure 5.2: Two lines would be better.

Essentially, any single line through the points in the figure would have a terrible error;
but if we use two lines, we could achieve quite a small error. So we could try formulating
a new problem as follows: rather than seek a single line of best fit, we are allowed to pass
an arbitrary set of lines through the points, and we seek a set of lines that minimizes the
error. But this fails as a good problem formulation, because it has a trivial solution: if we’re
allowed to fit the points with an arbitrarily large set of lines, we could fit the points perfectly
by having a different line pass through each pair of consecutive points in P.

At the other extreme, we could try “hard-coding” the number two into the problem: we
could seek the best fit using at most two lines. But this too misses a crucial feature of our
intuition: we didn’t start out with a pre-conceived idea that the points lay approximately on
two lines; we concluded that from looking at the picture. For example, most people would
say that the points in Figure 5.3 lie approximately on three lines.

Thus, intuitively, we need a problem formulation that requires us to fit the points well,
using as few lines as possible. We now formulate a problem — the segmented least squares
problem — that captures these issues quite cleanly.

As before, we are given a set of points P = {(x1,11), (T2, y2), ..., (Tn,yn)}, With 21 <
Ty < -+ < x,. We will use p; to denote the point (z;,y;). We must first partition P into
some number of segments. Each segment is a subset of P that represents a contiguous set of
x-coordinates; that is, it is a subset of the form {p;, pit1,...,pj—1,p;} for some indices i < j.
Then, for each segment S in our partition of P, we compute the line minimizing the error
with respect to the points in S, according to the formulas above.



126 CHAPTER 5. DYNAMIC PROGRAMMING

o
OOOO

o
O
O
o
o
o

o
oOOOOO

Figure 5.3: Three lines would be better.

The penalty of a partition is defined to be a sum of the following terms:

(i) The number of segments into which we partition P, times a fixed, given multiplier
¢ >0.

(ii) For each sequence, the error value of the optimal line through that segment.

Our goal in the segmented least squares problem is to find a partition of minimum penalty.
This minimization captures the trade-offs we discussed above. We are allowed to consider
partitions into any number of segments; as we increase the number of segments, we reduce
the penalty terms in part (ii) of the definition, but we increase the term in part (i). (The
multiplier C'is provided with the input, and by tuning C, we can penalize the use of additional
lines to a greater or lesser extent.)

There are exponentially many possible partitions of P, and initially it is not clear that
we should be able to find the optimal one efficiently. We now show how to use dynamic
programming to find a partition of minimum penalty in time polynomial in n. (We will
make the reasonable assumption, as always, that each arithmetic operation we perform
takes a constant amount of time.)

Designing the algorithm. To begin with, we should recall the ingredients we need in a
dynamic programming algorithm from page 123. We want a polynomial number of “sub-
problems,” the solutions of which should yield a solution to the original problem; and we
should be able to build up solutions to these sub-problems using a recurrence. As with the
weighted interval scheduling problem, it helps to think about some simple properties of the
optimal solution. Note, however, that there is not really a direct analogy to weighted interval
scheduling: there we were looking for a subset of n objects, whereas here we are seeking to
partition n objects.



5.2. SEGMENTED LEAST SQUARES: MULTI-WAY CHOICES 127

For segmented least squares, the following observation is very useful: The last point p,
belongs to a single segment in the optimal partition, and that segment begins at some earlier
point p;. This is the type of observation that can suggest the right set of sub-problems: if
we knew the identity of the last segment pj,...,p, (see Figure 5.4), then we could remove
those points from consideration and recursively solve the problem on the remaining points

b1,y Pj-1-

OPT(j-1)

Figure 5.4: The last segment.

Suppose we let OPT(i) denote the optimum solution for the points py,...,p;, and we
let e;,, denote the minimum error of any line with respect to p;, pjt+1, ..., pn. (We will write
OPT(0) =0 as a boundary case.) Then our observation above says that we should find the
best way to produce a final segment — paying the error plus an additive C' for this segment
— together with an optimal solution for the remaining points. In other words, we have
justified the following recurrence.

(5.5) If the last segment of the optimal partition is p;,...,pn, then the value of the
optimal solution is OPT(n) = e;, + C + OPT (i — 1). Therefore we have

OPT(n) = 1I£li<Il ein+C+OPT(i—1),

and the segment p;,...,p, s used in an optimum solution if and only if the minimum is
obtained using index 1.



128 CHAPTER 5. DYNAMIC PROGRAMMING

The hard part in designing the algorithm is now behind us. From here, we simply build
up the solutions OPT (i) in order of increasing i.

Segmented-Least-Squares(n)
Array M]J0...n]

Set M[0] =0
For i1=1,....,n
For j=1,...,1%
Compute the least squares error e;; for the segment pj,...,p;
Endfor
Use the recurrence (5.5) to compute M][i].
Endfor
Return M{n].

The correctness of the algorithm follows immediately from (5.5).
As in our algorithm for weighted interval scheduling, we can trace back through the array
M to compute an optimum partition.

Find-Segments(¢)

If + =0 then
Output nothing

Else
Find a j that minimizes ej; + C' + M[j — 1]
Output the segment {pj,...,p;} and the result of

Find-Segments(j — 1)
Endif

Finally, we consider the running time of Segmented-Least-Squares. The algorithm has
n iterations, for values i = 1,...,n. For each value of i we have to consider i options for the
value of j, compute the least squares error e;; for all ¢ of them, and choose the minimum.
We use the formula given above to compute the errors e;;, spending O(n) on each; thus, the
overall time to compute the array entry M[i] is O(n?). As there are n + 1 array positions,
the total time is O(n?).!

5.3 Subset Sums and Knapsacks: Adding a Variable

We're seeing more and more that issues in scheduling provide a rich source of practically
motivated algorithmic problems. So far we’ve considered problems in which requests are

1One can actually design essentially the same dynamic programming algorithm to run in total time O(n?).
The bottleneck in the current version is in computing e; ; for all pairs (j,); by cleverly saving intermediate
results, these can all be computed in total time O(n?). This immediately reduces the time for each array
entry M[i] to O(n), and hence the overall time to O(n?). We won’t go into the details of this faster version,
but it is an interesting exercise to consider how one might compute all values e;; in O(n?) time.



5.3. SUBSET SUMS AND KNAPSACKS: ADDING A VARIABLE 129

specified by a given interval of time on a resource, as well as problems in which requests
have a duration and a deadline, but do not mandate a particular interval during which they
need to be done.

In this section we consider a version of the second type of problem, with durations and
deadlines, which is difficult to solve directly using the techniques we’ve seen so far. We will
use dynamic programming to solve the problem, but with a twist — the “obvious” set of
sub-problems will turn out not be enough, and so we end up creating a richer collection of
sub-problems. As we will see below, this is done by adding a new variable to the recurrence
underlying the dynamic program.

In our problem formulation, we have a single machine that can process jobs, and we have
a set of requests {1,2,...,n}. We are only able to use this resource for the period between
time 0 and time W, for some number W. Each request corresponds to a job that requires
time w; to process. If our goal is to process jobs so as to keep the machine as busy as possible
up to the “cut-oft” W, which jobs should we choose?

More formally, we are given n items {1,...,n}, and each has a given nonnegative weight
w; (fori=1,...,n). We are also given a bound W. We would like to select a subset S of the
items so that > ;cqw; < W and, subject to this restriction, > ,cqw; is as large as possible.

This problem is a natural special case of a more general problem called the knapsack
problem, where each request ¢ has both a value v; and a weight w;. The goal in this more
general problem is to select a subset of maximum total value, subject to the restriction that
its total weight not exceed W. Knapsack problems often show up as sub-problems in other,
more complex problems. The name “knapsack” refers to the problem of filling a knapsack
of capacity W as full as possible (or packing in as much value as possible), using a subset of
the items {1,...,n}. We will use weight or time when referring to the quantities w; and W.

Since this sort of resembles other scheduling problems we’ve seen before, it’s natural to
ask whether a greedy algorithm can find the optimal solution. It appears that the answer
is no — in any case, no efficient greedy rule is known that always constructs an optimal
solution. Ome natural greedy approach to try would be to sort the items by decreasing
weight — or at least to do this for all items of weight at most W — and then start selecting
items in this order as long as the total weight remains below W. But if W is a multiple of
2, and we have three items with weights {WW/2+1, W/2, W /2}, then we see that this greedy
algorithm will not produce the optimal solution. Alternately, we could sort by increasing
weight and then do the same thing; but this fails on inputs like {1, W /2, W/2}.

The goal of this lecture is to show how to use dynamic programming to solve this problem.
Recall the main principles of dynamic programming: we have to come up with a polynomial
number of sub-problems,; so that each sub-problem can be solved easily from “smaller” sub-
problems, and the solution to the original problem can be obtained easily once we know
the solutions to all the sub-problems. As usual, the hard part in designing a dynamic



130 CHAPTER 5. DYNAMIC PROGRAMMING

programming algorithm lies in figuring out a good set of sub-problems.

A False Start. One general strategy, which worked for us in the case of weighted interval
scheduling, is to consider sub-problems involving only the first ¢ requests. We start by trying
this strategy here. We use the notation OPT'(i), analogously to the notation used before,
to denote the best possible solution using a subset of the requests {1,...,i}. The key to
our method for the weighted interval scheduling problem was to concentrate on an optimal
solution O to our problem and consider two cases, depending whether or not the last request
n is accepted or rejected by this optimum solution. Just as last time, we have the first part,
which follows immediately from the definition of O PT(7).

o If n & O then OPT(n) = OPT(n —1).

Next we have to consider the case in which n € O. What we’d like here is a simple
recursion, which tells us the best possible value we can get for solutions that contain the
last request n. For weighted interval scheduling this was easy, as we could simply delete
each request that conflicted with request n. In the current problem, this is not so simple.
Accepting request n does not immediately imply that we have to reject any other request.
Instead, it means that for the subset of requests S C {1,...,n — 1} that we will accept, we
have less available weight left: a weight of w,, is used on the accepted request n, and we only
have W — w,, weight left for the set S of remaining requests that we accept. See Figure 5.5.

A\

W

Figure 5.5: A knapsack of size W with the item w,, included.

A Better Solution. This suggests that we need more sub-problems: To find out the value
for OPT(n) we not only need the value of OPT'(n — 1), but we also need to know the best
solution we can get using a subset of the first n — 1 items, and total allowed weight W — w,,.
We are therefore going to use many more sub-problems: one for each initial set {1,... 7} of
the items, and each possible value for the remaining available weight w. Assume that W is
an integer, and all requests ¢ = 1,...,n have integer weights w;. We will have a sub-problem
for each © = 0,1,...,n and each integer 0 < w < W. We will use OPT(i,w) to denote the



5.3. SUBSET SUMS AND KNAPSACKS: ADDING A VARIABLE 131

value of the optimal solution using a subset of the items {1,...,7} with maximum allowed
weight w, i.e.,

OPT(i,w) mgx%wj,
where the maximum is over subsets S C {1,...,i} that satisfy >>;cgw; < w. Using this new
set of sub-problems, we will be able to express the value O PT(i,w) as a simple expression in
terms of values from smaller problems. Moreover, O PT'(n, W) is the quantity we’re looking
for in the end. As before, let O denote an optimum solution for the original problem.

o If n ¢ O then OPT(n,W)=0OPT(n—1,W)
o If n € O then OPT(n,W) =w, + OPT(n —1,W —w,).

When the n'! item is too big, i.e., W < w,,, then we must have OPT(n, W) = OPT (n—1, W).
Otherwise, we get the optimum solution allowing all n requests by taking the better of these
two options. This gives us the recursion:

(5.6) IfW < w, then OPT(n,W) = OPT(n—1,W). Otherwise
OPT(n,W) =max(OPT(n —1,W),w, + OPT(n — 1,W —w,)).

As before, we want to design an algorithm that builds up a table of all OPT(i,w) values
while computing each of them at most once.

Subset-Sum(n, W)
Array M[0...n,0... W]
For w=0,..., W
M[0,w] =0
For 1 =1,2,...,n
For w=0,..., W
Use the recurrence (5.6) to compute M|i, w]
Endfor
Endfor
Return M{n, W]

There is an appealing pictorial way in which one can think about the computation of the
algorithm. To compute the value M i, w] we used two other values M[i — 1, w]| and M i, w —
w;], as depicted by Figure 5.6.

Using (5.6) one can immediately prove by induction that the returned value M{[n, W] is
the optimum solution value for the requests 1,...,n and available weight .

Next we will worry about the running time of this algorithm. As before in the case of
the weighted interval scheduling, we are building up a table of solutions M, and we compute
each of the values M[i,w] in O(1) time using the previous values. Thus the running time is
proportional to the number of entries in the table.



132 CHAPTER 5. DYNAMIC PROGRAMMING

n
i
"
i-1 L
2
1
1 2 w-w: A% W

1

Figure 5.6: How the table of OPT'(i,w) values is computed.

(5.7) The Subset-Sum(n, W) algorithm correctly computes the optimal value of the prob-
lem, and runs in O(nW) time.

Note that this method is not as efficient as our dynamic program for the weighted interval
scheduling problem. Indeed, its running time is not a polynomial function of n; rather, it is
a polynomial function of n and W, the largest integer involved in defining the problem. We
call such algorithms pseudo polynomial. Pseudo polynomial algorithms can be reasonably
efficient when the numbers {w;} involved in the input are reasonably small; however, they
become less practical as these numbers grow large.

To recover an optimal set S of items, we can trace back through the array M by a
procedure similar to those we developed in the previous sections.

(5.8) Given a table M of the optimal values of the sub-problems, the optimal set S can
be found in O(n) time.

The Knapsack Problem

The knapsack problem is a bit more complex then the scheduling problem we discussed
above. Consider a situation in which each item 7 has a nonnegative weight w; as before, and
also a distinct value v;. Our goal is now to find a subset S' of maximum value ;. g v; subject
to the restriction that the total weight of the set should not exceed W: Y ,cqw; < W.

It is not hard to extend our dynamic programming algorithm to this more general prob-
lem. We use the analogous set of sub-problems, O PT(i,w) to denote the value of the optimal



5.4. RNA SECONDARY STRUCTURE: DYNAMIC PROGRAMMING OVER INTERVALS133

solution using a subset of the items {1,...,i} and maximum available weight w. We consider
an optimal solution O, and identify two cases depending on whether or not n € O.

e If n ¢ O then OPT(n,W)=OPT(n—1,W).
o If n € O then OPT(n,W) =v, + OPT(n—1,W —w,).
This implies the following analogue of (5.6).
(5.9) IfW < w, then OPT(n,W) = OPT(n—1,W). Otherwise
OPT(n,W) =max(OPT(n —1,W),v, + OPT(n — 1, W —wy,)).
Using this recursion we can write down an analogous dynamic programming algorithm.

(5.10) Knapsack(n, W) takes O(nW) time, and correctly computes the optimal values
of the sub-problems.

As was done before we can trace back through the table M containing the optimal values of
the sub-problems, to find an optimal solution in O(n) time.

5.4 RNA Secondary Structure: Dynamic Programming
Over Intervals

In the Knapsack problem, we were able to formulate a dynamic programming algorithm by
adding a new variable. A different but very common way by which one ends up adding
a variable to a dynamic program is through the following scenario. We start by thinking
about the set of sub-problems on {1,2,...,j}, for all choices of j, and find ourselves unable
to come up with a natural recurrence. We then look at the larger set of sub-problems on
{i,i+1,...,7} for all choices of i and j (where i < j), and find a natural recurrence relation
on these sub-problems. In this way, we have added the second variable ¢; the effect is to
consider a sub-problem for every contiguous interval in {1,2,...,n}.

There are a few canonical problems that fit this profile; those of you who have studied
parsing algorithms for context-free grammars have probably seen at least one dynamic pro-
gramming algorithm in this style. Here we focus on the problem of RNA secondary structure
prediction, a fundamental issue in computational biology.

As one learns in introductory biology classes, Watson and Crick posited that double-
stranded DNA is “zipped” together by complementary base-pairing. Each strand of DNA
can be viewed as a string of bases, where each base is drawn from the set {A,C, G, T}. The
bases A and T pair with each other, and the bases C' and G pair with each; it is these A-T
and C-G pairings that hold the two strands together.



134 CHAPTER 5. DYNAMIC PROGRAMMING

OA
Figure 5.7: An RNA secondary structure. Dotted connections indicate adjacent elements of
the sequence; solid connections indicate pairs that are matched.

Now, single-stranded RN A molecules are key components in many of the processes that go
on inside a cell, and they follow more or less the same structural principles. However, unlike
double-stranded DNA, there’s no “second strand” for the RNA to stick to; so it tends to
loop back and form base pairs with itself, resulting in interesting shapes like the one depicted
in Figure 5.7. The set of pairs (and resulting shape) formed by the RNA molecule through
this process is called the secondary structure, and understanding the secondary structure is
essential for understanding the behavior of the molecule.

For our purposes, a single-stranded RNA molecule can be viewed as a sequence of n
symbols (bases) drawn from the alphabet {A,C,G,U}.?2 Let B = byby---b, be a single-
stranded RNA molecule, where each b; € {A,C,G,U}. To a first approximation, one can
model its secondary structure as follows. As usual, we require that A pairs with U, and

2Note that the symbol T from the alphabet of DNA has been replaced by a U, but this is not important
for us here.



5.4. RNA SECONDARY STRUCTURE: DYNAMIC PROGRAMMING OVER INTERVALS135

C' pairs with G; we also require that each base can pair with at most one other base —
in other words, the set of base pairs forms a matching. It also turns out that secondary
structures are (again, to a first approximation) “knot-free,” which we will formalize as a
kind of “non-crossing” condition below.

Thus, concretely, we say that a secondary structure on B is a set of pairs S = {(b;,b;)}
that satisfies the following conditions:

(i) (No sharp turns.) The ends of each pair in S are separated by at least four intervening
bases; that is, if (b;,0;) € S, then i < j — 4.

(ii) The elements of any pair in S consist of either {A,U} or {C,G} (in either order).
(iii) S is a matching: no base appears in more than one pair.

(iv) (The non-crossing condition.) If (b;, b;) and (by, by) are two pairs in S, then we cannot
have i < k < j < /.

Note that the RNA secondary structure in Figure 5.7 satisfies properties (i) through (iv).
From a structural point of view, condition (i) arises simply because the RNA molecule cannot
bend too sharply; and conditions (ii) and (iii) are the fundamental Watson-Crick rules of
base-pairing. Condition (iv) is the striking one, since it’s not obvious why it should hold in
nature. But while there are sporadic exceptions to it in real molecules (via so-called “pseudo-
knotting”), it does turn out to be a very good approximation to the spatial constraints on
real RNA secondary structures.

Now, out of all the secondary structures that are possible for a single RNA molecule,
which are the ones that are likely to arise under physiological conditions? The usual hy-
pothesis is that a single-stranded RNA molecule will form the secondary structure with the
optimum total free energy. The correct model for the free energy of a secondary structure is
a subject of much debate; but a first approximation here is to assume that the free energy
of a secondary structure is proportional simply to the number of base pairs that it contains.

Thus, having said all this, we can state the basic RNA secondary structure prediction
problem very simply. We want an efficient algorithm that takes a single stranded RNA
molecule B = bibs - - - b, and determines a secondary structure S with the maximum possible
number of base pairs.

A first attempt at dynamic programming. The natural first attempt to apply dy-
namic programming would presumably be based on the following sub-problems: we say that
OPT(j) is the maximum number of base pairs in a secondary structure on biby ---b;. By
the no-sharp-turns condition above, we know that OPT(7) = 0 for j < 5; and we know that
OPT(n) is the solution we're looking for.



136 CHAPTER 5. DYNAMIC PROGRAMMING

G

Ge  ou
co  on
c ©—90g
AO—oO U
Uo—o A
Ue—o A

A C AUGAUGGT CCAUGWU

Figure 5.8: Two views of an RNA secondary structure. In the second view, the string has
been “stretched” lengthwise, and edges connecting matched pairs appear as non-crossing
“bubbles” over the string.

The trouble comes when we try writing down a recurrence that expresses OPT(j) in
terms of the solutions to smaller sub-problems. We can get partway there: in the optimal
secondary structure on bibs - - - b;, it’s the case that either

e b; is not involved in a pair; or
e b; pairs with b, for some t < j — 4.

In the first case, we just need to consult our solution for OPT'(j — 1). The second case is
depicted in Figure 5.9(a); because of the non-crossing condition, we now know that no pair
can have one end between 1 and ¢ — 1 and the other end between t + 1 and j — 1. We've
therefore effectively isolated two new sub-problems: one on the bases b1bs - - -b;_1, and the
other on the bases by - - - bj_1. The first is solved by OPT'(t — 1), but the second is not on
our list of sub-problems — because it does not begin with b;.



5.4. RNA SECONDARY STRUCTURE: DYNAMIC PROGRAMMING OVER INTERVALS137

(a)

00 0 00 00
1 2 t1 0t te 1

(b)

©0 00006 000O0O0O0O
i i+ -1t t+1 1 ]

Figure 5.9: Schematic view of the dynamic programming recurrence using (a) one variable,
and (b) two variables.

This is the insight that makes us realize we need to add a variable. We need to be able
to work with sub-problems that do not begin with b;; in other words, we need to consider
sub-problems on b;b;1; - - -b; for all choices of 7 < j.

Dynamic programming over intervals. Once we make this decision, our previous rea-
soning leads straight to a successful recurrence. Let OPT(1, j) denote the maximum number
of base pairs in a secondary structure on b;b;41 - - -b;. The no-sharp-turns condition lets us
initialize OPT(i,j) = 0 whenever i > j + 4.

Now, in the optimal secondary structure on b;b;;1 - - -b;, we have the same alternatives
as before:

e b; is not involved in a pair; or
e b, pairs with 0, for some t < j — 4.

In the first case, we have OPT(i,j) = OPT(i,j — 1). In the second case, depicted in
Figure 5.9(b); we recur on the two sub-problems OPT(i,t — 1) and OPT(t + 1,57 — 1); as



138 CHAPTER 5. DYNAMIC PROGRAMMING

argued above, the non-crossing condition has isolated these two sub-problems from each
other.
We have therefore justified the following recurrence.

(5.11) OPT(i,j) = max(OPT(i,j — 1),max(1 + OPT(i,t — 1) + OPT(t + 1,5 — 1))),
where the max is taken over t such that b, and b; are an allowable base pair (under the
Watson-Crick condition (ii)).

Now we just have to make sure we understand the proper order in which to build up the
solutions to the sub-problems. The form of (5.11) reveals that we're always invoking the
solution to sub-problems on shorter intervals: those for which j — ¢ is smaller. Thus, things
will work without any trouble if we build up the solutions in order of increasing interval
length.

Initialize OPT(i,j) =0 whenever i > j —4
For 1t =1,2,...n
For j=1+5,1+6,...,n
Compute OPT'(i,j) using the recurrence in (5.11)
Endfor
Endfor
Return OPT(1,n)

As always, we can recover the secondary structure itself (not just its value) by recording how
the minima in (5.11) are achieved, and tracing back through the computation.

It is easy to bound the running time: there are O(n?) sub-problems to solve, and evalu-
ating the recurrence in (5.11) takes time O(n) for each. Thus, the running time is O(n?).

5.5 Sequence Alignment

Dictionaries on the Web seem to get more and more useful: often it now seems easier to
pull up a book-marked on-line dictionary than to get a physical dictionary down from the
bookshelf. And many on-line dictionaries offer functions that you can’t get from a printed
one: if you're looking for a definition and type in a word it doesn’t contain — say, “ocurrance”
— it will come back and ask, “Perhaps you mean ‘occurrence?” ”. How does it do this? Did
it truly know what you had in mind?

Let’s defer the second question to a different course, and think a little about the first
one. To decide what you probably meant, it would be natural to search the dictionary for
the word most “similar” to the one you typed in. To do this, we have to answer the question:
how should we define similarity between two words or strings?

Intuitively we’d like to say that “ocurrance” and “occurrence” are similar because we can
make the two words identical if we add a ‘¢’ to the first word, and change the ‘a’ to an ‘e’.



5.56. SEQUENCE ALIGNMENT 139

Since neither of these changes seems so large, we conclude that the words are quite similar.
To put it another way, we can nearly line up the two words letter by letter:

o—currance

occurrence

The “-” symbol indicates a gap — we had to add a gap to the second word to get it to line
up with the first. Moreover, our lining up is not perfect in that an “e” is lined up with an
(La” .

We want a model in which similarity is determined roughly by the number of gaps and
mismatches we incur when we line up the two words. Of course, there are many possible

ways to line up the two words; for example, we could have written

o—curr—ance

occurre—nce

which involves three gaps and no mismatches. Which is better: one gap and one mismatch,
or three gaps and no mismatches?

This discussion has been made easier because we know roughly what the correspondence
“ought” to look like. When the two strings don’t look like English words — for example,
“abbbaabbbbaab” and “ababaaabbbbbab” — it may take a little work to decide whether
they can be lined up nicely or not:

abbbaa--bbbbaab
ababaaabbbbba-b

Dictionary interfaces and spell-checkers are not the most computationally intensive ap-
plication for this type of problem. In fact, determining similarities among strings is one of
the central computational problems facing molecular biologists today.

Strings arise very naturally in biology: an organism’s genome — its full set of genetic
material — is divided up into giant linear DNA molecules known as chromosomes, each
of which serves conceptually as a one-dimensional chemical storage device. Indeed, it does
not obscure reality very much to think of it as an enormous linear tape, containing a string
over the alphabet {A, C, G, T}.3 The string of symbols encodes the instructions for building
protein molecules; using a chemical mechanism for reading portions of the chromosome, a
cell can construct proteins that in turn control its metabolism.

Why is similarity important in this picture? We know that the sequence of symbols in an
organism’s genome directly determines everything about the organism. So suppose we have
two strains of bacteria, X and Y, which are closely related evolutionarily. Suppose further
that we've determined that a certain substring in the DNA of X codes for a certain kind of

3 Adenine, cytosine, guanine, and thymine, the four basic units of DNA.



140 CHAPTER 5. DYNAMIC PROGRAMMING

toxin. Then if we discover a very “similar” substring in the DNA of Y, we might be able to
hypothesize, before performing any experiments at all, that this portion of the DNA in Y
codes for a similar kind of toxin. This use of computation to guide decisions about biological
experiments is one of the hallmarks of the field of computational biology.

All this leaves us with the same question we asked initially, typing badly spelled words
into our on-line dictionary. How should we define the notion of similarity between two
strings?

In the early 1970’s, the two molecular biologists Needleman and Wunsch proposed a
definition of similarity which, basically unchanged, has become the standard definition in
use today. Its position as a standard was reinforced by its simplicity and intuitive appeal, as
well as through its independent discovery by several other researchers around the same time.
Moreover, this definition of similarity came with an efficient dynamic programming algorithm
to compute it. In this way, the paradigm of dynamic programming was independently
discovered by biologists some twenty years after Bellman first articulated it.

The definition is motivated by the considerations we discussed above, and in particular
the notion of “lining up” two strings. Suppose we are given two strings X and Y: X consists
of the sequence of symbols x1x5 - - -, and Y consists of the sequence of symbols y1ys - - - Y.
Consider the sets {1,2,...,m} and {1,2,...,n} as representing the different positions in
the strings X and Y, and consider a matching of these sets; recall that a matching is a
set of ordered pairs with the property that each item occurs in at most one pair. We
say that matching M of these two sets is an alignment if there are no “crossing” pairs: if
(1,7),(@,5") € M and i < ¢, then j < j'. Intuitively an alignment gives a way of “lining
up” the two strings, by telling us which pairs of positions will be lined up with one another.
Thus, for example,

stop-
-tops

corresponds to the alignment {(2,1), (3,2), (4,3)}.
Our definition of similarity will be based on finding the optimal alignment between X

and Y, according to the following criteria. Suppose M is a given alignment between X and
Y.

e First, there is a parameter 0 > 0 that defines a “gap penalty.” For each position that
is not matched in M — it is a “gap” — we incur a cost of 4.

e Second, for each pair of letters p, ¢ in our alphabet, there is a “mismatch cost” of o,
for lining up p with ¢. Thus, for each (i,j) € M, we pay the appropriate mismatch
cost gy, for lining up x; with y;. One generally assumes that a,, = 0 for each letter
p — there is no mismatch cost to line up a letter with another copy of itself — though
this will not be necessary in anything that follows.



5.56. SEQUENCE ALIGNMENT 141

e The cost of M is the sum of its gap and mismatch costs, and we seek an alignment of

minimum cost.

The process of minimizing this cost is often referred to as sequence alignment in the biology
literature. The quantities 6 and {a,,} are external parameters that must be plugged into
software for sequence alignment; indeed, a lot of work goes into choosing the settings for
these parameters. From our point of view, in designing an algorithm for sequence alignment,
we will take them as given. To go back to our first example, notice how these parameters
determine which alignment of “ocurrance” and “occurrence” we should prefer: the first is
strictly better if and only if § + age < 3.

Computing an Optimal Alignment. We now have a concrete numerical definition for
the similarity between strings X and Y: it is the minimum cost of an alignment between X
and Y. Let’s denote this cost by o(X,Y"). The lower this cost is, the more similar we declare
the strings to be. We now turn to the problem of computing o(X,Y’), and the optimal
alignment that yields it, for a given pair of strings X and Y.

One of the approaches we could try for this problem is dynamic programming, and we
are motivated by the following basic dichotomy:

e In the optimal alignment M, either (m,n) € M or (m,n) & M. (That is, either the
last symbols in the two strings are matched to each other, or they aren’t.)

By itself, this fact would be too weak to provide us with a dynamic programming solution.
Suppose, however, that we compound it with the following basic fact.

(5.12) Let M be any alignment of X and Y. If (m,n) &€ M, then either the m*™™ position
of X or the n' position of Y is not matched in M.

Proof. Suppose by way of contradiction that (m,n) ¢ M, but there are numbers i < m and
Jj < mnso that (m,j) € M and (i,n) € M. But this contradicts our definition of alignment:
we have (i,m), (m,j) € M with i < m but n > i so the pairs (i,n) and (m, j) cross. =

Given (5.12), we can turn our original dichotomy into the following, slightly less trivial,
set of alternatives.

(5.13) In an optimal alignment M, at least one of the following is true:
(i) (m,n) € M; or
(ii) the m™ position of X is not matched; or

(iii) the n'™ position of Y is not matched.



142 CHAPTER 5. DYNAMIC PROGRAMMING

Now, let OPT(i,j) denote the minimum cost of an alignment between zqxzs---z; and
y1y2 - -y I case (i) of (5.13) holds, we pay ay,,,, and then align z129--- 2,1 as well
as possible with y1y5 - - - yn—1; we get OPT(m,n) = ay,,,, + OPT(m —1,n — 1). If case
(ii) holds, we pay a gap cost of § since the m'™ position of X is not matched, and then we
align x1xs - 2,1 as well as possible with y1y2---y,. In this way, we get OPT(m,n) =
d +OPT(m — 1,n). Similarly, if case (iii) holds, we get OPT(m,n) =6 + OPT(m,n — 1).

Thus we get the following fact.

(5.14) The minimum alignment costs satisfy the following recurrence:
OPT(m,n) = min|ay,,,, + OPT(m —1,n—1),6+OPT(m —1,n),§ + OPT(m,n — 1)].

Moreover, (m,n) is in an optimal alignment M if and only if the minimum is achieved by
the first of these values.

We have maneuvered ourselves into a position where the dynamic programming algorithm
has become clear: we build up the values of OPT'(7, j) using the recurrence in (5.14). There
are only O(mn) sub-problems, and OPT(m,n) is the value we are seeking.

We now specify the algorithm to compute the value of the optimal alignment. For
purposes of initialization, we note that that OPT(i,0) = OPT(0,47) = i0 for all i, since the
only way to line up an i-letter word with a 0O-letter word is to use ¢ gaps.

Alignment (X ,Y)

Array A[0...n,0...m)]

For :=0,...,m
A[i,0] = id

Endfor

For j=0,...,n
A0, j] = jo

Endfor

For j=1,...,n
For 1=1,...,m

Use the recurrence (5.14) to compute Al j]

Endfor

Endfor

Return A[m,n]

As in previous dynamic programming algorithms, we can “trace back” through the array
A, using the second part of fact (5.14), to construct the alignment itself. The correctness
of the algorithm follow directly from (5.14). Their running time is O(mn), since the array
A has O(mn) entries, and at worst we spend constant time on each.

There is an appealing pictorial way in which people think about this sequence alignment
algorithm. Suppose we build a two-dimensional m xn grid graph G xy, with the rows labeled



5.5. SEQUENCE ALIGNMENT 143

by prefixes of the string X, the columns labeled by prefixes of Y, and directed edges as in
Figuregatiqq

Yg Yy

Figure 5.10: A graph-based picture of sequence alignment.

We number the rows from 0 to m and the columns from 0 to n; we denote the node in the
row and the j* column by the label (4, 7). We put costs on the edges of G xy: the cost of
each horizontal and vertical edge is §, and the cost of the diagonal edge from (i — 1,j — 1)
to (4,7) is ;-

The purpose of this picture now emerges: the recurrence in (5.14) for OPT(i,j) is
precisely the recurrence one gets for the minimum-cost path in Gxy from (0,0) to (7,7).
Thus we can show

Z’th

(5.15) Let f(i,j) denote the minimum cost of a path from (0,0) to (i,7) in Gxy. Then
all for i, j, we have f(i,7) = OPT(i,j).

Proof. We can easily prove this by induction on ¢ + 5. When 7 + 5 = 0, we have i = j = 0,
and indeed f(i,7) = OPT(i,7) = 0.

Now consider arbitrary values of ¢ and j, and suppose the statement is true for all pairs
(¢, 7") with i'4+j" < i+7. The last edge on the shortest path to (i, j) is either from (i—1, j—1),
(t—1,7), or (i, —1). Thus we have

— mina,,, + OPT(i—1,j—1),6+ OPT(i—1,5),6 + OPT(i,j — 1)]
= OPT(ij),

where we pass from the first line to the second using the induction hypothesis, and we pass
from the second to the third using (5.14). m



144 CHAPTER 5. DYNAMIC PROGRAMMING

Thus, the value of the optimal alignment is the length of the shortest path in Gxy from
(0,0) to (m,n). (Well call any path in Gy from (0,0) to (m,n) a corner-to-corner path.)
Moreover, the diagonal edges used in a shortest path correspond precisely to the pairs used
in a minimum-cost alignment. These connections to the shortest path problem in the graph
Gxy do not directly yield an improvement in the running time for the sequence alignment
problem; however, they do help one’s intuition for the problem, and have been useful in
suggesting algorithms for more complex variations on sequence alignment.

5.6 Sequence Alignment in Linear Space

We have discussed the running time requirements of the sequence alignment algorithm,
but — in keeping with our main focus in dynamic programming — we have not explicitly
tabulated the space requirements. This is not difficult to do: we need only maintain the
array A holding the values of OPT(+,-), and hence the space required is O(mn).

The real question is: should we be happy with O(mn) as a space bound? If our application
is to compare English words, or even English sentences, it is quite reasonable. In biological
applications of sequence alignment, however, one often compares very long strings against one
another; and in these cases, the ©(mn) space requirement can potentially be a more severe
problem than the ©(mn) time requirement. Suppose, for example, that we are comparing
two strings of length 100, 000 each. Depending on the underlying processor, the prospect of
performing roughly ten billion primitive operations might be less cause for worry than the
prospect of working with a single ten-gigabyte array.

Fortunately, this is not the end of the story. In this section we describe a very clever
enhancement of the sequence alignment algorithm that makes it work in O(mn) time using
only O(m + n) space. For ease of description, we'll describe various steps in terms of paths
in the graph Gy, with the natural equivalence back to the sequence alignment problem.
Thus, when we seek the pairs in an optimal alignment, we can equivalently ask for the edges
in a shortest corner-to-corner path in G yy.

A Space-Efficient Algorithm for the Optimal Value. We first show that if we only
care about the value of the optimal alignment, and not the alignment itself, it is easy to get
away with linear space. The crucial observation is that to fill in an entry of the array A, the
recurrence in (5.14) only needs information from the current column of A and the previous
column of A. Thus we will we “collapse” the array A to an m x 2 array B: as the algorithm
iterates through values of j, Bli,0] will hold the “previous” column’s value A[i, j — 1], and
BJi, 1] will hold the “current” column’s value Ali, j].

Space-Efficient-Alignment (X ,Y)
Array B[0...m,0...1]



5.6. SEQUENCE ALIGNMENT IN LINEAR SPACE 145

For :=0,...,m
Bli,0] =4

Endfor

For j=1,...,n
B[0,1] = jé
For 1=1,...,m

Bli, 1] = min|[ay,,, + B[i —1,0],
d+ B[i — 1,1],0 + BJi,0]].

Endfor
For i=1,...,m
Bi,0] = Bl[i, 1]
Endfor
Endfor

It is easy to verify that when this algorithm completes, the array entry Bli, 1] holds the
value of OPT(i,n) = f(i,n), fori =0,1,...,m. Moreover, it uses O(mn) time and O(m+n)
space. The problem is: where is the alignment itself? We haven’t left enough information
around to be able to run a procedure like Find-Alignment; and as we think about it, we see
that it would be very difficult to try “predicting” what the alignment is going to be as we run
our space-efficient procedure. In particular, as we compute the values in the 5™ column of
the (now implicit) array A, we could try hypothesizing that a certain entry has a very small
value, and hence that the alignment that passes through this entry is a promising candidate
to be the optimal one. But this promising alignment might run into big problems later on,
and a different alignment that currently looks much less attractive will turn out to be the
optimal one.

There is in fact a solution to this problem — we will be able to recover the alignment
itself using O(m + n) space — but it requires a genuinely new idea. The insight is based on
employing the divide-and-conquer technique that we’ve seen earlier in the course. We begin
with a simple alternative way to implement the basic dynamic programming solution.

A Backward Formulation of the Dynamic Program. Recall that we use f(i,7) to
denote the length of the shortest path from (0,0) to (¢,7) in the graph Gxy. Let’s define
g(i,7) to be the length of the shortest path from (i,7) to (m,n) in Gxy. The function g
provides an equally natural dynamic programming approach to sequence alignment, except
that we build it up in reverse: we start with g(m,n) = 0, and the answer we want is g(0,0).
By strict analogy with (5.14), we have the following recurrence for g.

(5.16) Fori<m and j <n we have g(i, j) = minfoy,, ., +9(@+1,5+1),0+g(i, 5 +
This is just the recurrence one obtains by taking the graph Gy, “rotating” it so that the
node (m,n) is in the upper left corner, and using the previous approach. Using this picture,



146 CHAPTER 5. DYNAMIC PROGRAMMING

we can also work out the full dynamic programming algorithm to build up the values of g,
backwards starting from (m,n).

Combining the Forward and Backward Formulations. So now we have symmetric
algorithms which build up the values of the functions f and g. The idea will be to use these
two algorithms in concert to find the optimal alignment. First, here are two basic facts
summarizing some relationships between the functions f and g.

(5.17) The length of the shortest corner-to-corner path in Gxy that passes through (i, j)
is f(i,7) + 9(i, 7).

Proof. Let {;; denote the length of the shortest corner-to-corner path in G xy that passes
through (7, j). Clearly any such path must get from (0,0) to (¢,7), and then from (7, j) to
(m,n). Thus its length is at least f(i,7)+g(i, ), and so we have ¢;; > f(i,7)+g(i,7). On the
other hand, consider the corner-to-corner path that consists of a minimum-length path from
(0,0) to (7, 7), followed by a minimum-length path from (4, j) to (m,n). This path has length
f(i,7)+ g(i, j), and so we have ¢;; < f(i,7) + g(i, 7). It follows that ¢;; = f(i,j) + g(i,7). m

(5.18) Let k be any number in {0,...,n}, and let q¢ be an index that minimizes the
quantity f(q,k) + g(q,k). Then there is a corner-to-corner path of minimum length that
passes through the node (q,k).

Proof. Let ¢* denote the length of the shortest corner-to-corner path in Gxy. Now, fix a
value of k € {0,...,n}. The shortest corner-to-corner path must use some node in the k'
column of Gxy — let’s suppose it is node (p, k) — and thus by (5.17)

= f(p. k) + g(p, k) = min f(q, k) + g(g, k).

Now consider the index ¢ that achieves the minimum in the right-hand-side of this expression;
we have

> flq, k) +g(q, k).

By (5.17) again, the shortest corner-to-corner path using the node (¢, k) has length f(q, k) +
9(q, k), and since ¢* is the minimum length of any corner-to-corner path, we have

" < flq, k) +g(q, k).

It follows that ¢* = f(q, k) + g(q, k). Thus the the shortest corner-to-corner path using the
node (g, k) has length ¢*, and this proves (5.18). m

Using (5.18) and our space-efficient algorithms to compute the wvalue of the optimal
alignment, we will proceed as follows. We divide G xy along its center column and compute



5.6. SEQUENCE ALIGNMENT IN LINEAR SPACE 147

the value of f(i,n/2) and g(i,n/2) for each value of i, using our two space-efficient algorithms.
We can then determine the minimum value of f(i,n/2) + ¢(i,n/2), and conclude via (5.18)
that there is a shortest corner-to-corner path passing through the node (i,n/2). Given this,
we can search for the shortest path recursively in the portion of Gxy between (0,0) and
(1,n/2), and in the portion between (i,n/2) and (m,n). The crucial point is that we apply
these recursive calls sequentially, and re-use the working space from one call to the next;
thus, since we only work on one recursive call at a time, the total space usage is O(m + n).
The key question we have to resolve is whether the running time of this algorithm remains
O(mn).

In running the algorithm, we maintain a globally accessible list P which will hold nodes
on the shortest corner-to-corner path as they are discovered. Initially, P is empty. P need
only have m + n entries, since no corner-to-corner path can use more than this many edges.
We also use the following notation: X[i : j|, for 1 <1i < j < m, denotes the substring of X
consisting of x;z;41 - - - x;; and we define Y[i : j] analogously. We will assume for simplicity
that n is a power of 2; this assumption makes the discussion much cleaner, although it can
be easily avoided.

Divide-and-Conquer-Alignment (X ,Y)

Let m be the number of symbols in X.

Let n be the number of symbols in Y.

If m<2 or n<2 then
Compute optimal alignment using Alignment(X,Y).

Call Space-Efficient-Alignment (X ,Y[l:n/2]),
obtaining array B.

Call Backwards-Space-Efficient-Alignment(X,Y [n/2+1:n]),
obtaining array B’.

Let ¢ be the index minimizing B|q, 1] + B'[¢,1].

Add (¢,n/2) to global list P.

Divide-and-Conquer-Alignment (X1 : ¢],Y[1,n/2])

Divide-and-Conquer-Alignment(X[q + 1:n|,Y[n/2 + 1,n])

Return P.

As an example of the first level of recursion, consider the figure below. If the “minimizing
index” ¢ turns out to be 1, we get the two sub-problems pictured.

The arguments above already establish that the algorithm returns the correct answer,
and that it uses O(m + n) space. Thus, we need only verify the following fact.

(5.19) The running time of Divide-and-Conquer-Alignment on strings of length m
and n is O(mn).

Proof. Let T'(m,n) denote the maximum running time of the algorithm on strings of length
m and n. The algorithm performs O(mn) work to build up the arrays B and B’; it then



148 CHAPTER 5. DYNAMIC PROGRAMMING

FEnly
Eji\ N
AN

runs recursively on strings of size ¢ and n/2, and on string of size m — ¢ and n/2. Thus, for

o
O—O~0—0

some constant ¢, we have

T(m,n) < emn+T(q¢,n/2)+T(m—q,n/2)
T(m,2) < cm
T(2,n) < cn.

Now we claim that this recurrence implies T'(m,n) < 2c¢mn; in other words, our space-
efficient strategy has at worst doubled the running time. We prove this by induction, with
the case of m < 2 and n < 2 following immediately from the inequalities above. For general

m and n, we have

T(m,n) emn +T(q,n/2)+T(m —q,n/2)

emn + 2cqn/2 4 2¢(m — q)n /2

IA A

cmn + cgn + cmn — cqn

2cnm.

5.7 Shortest Paths in a Graph

For the final two sections, we focus on the problem of finding shortest paths in a graph,
together with some closely related issues.

Let G = (V, E) be a directed graph. Assume that each edge (i,j) € E has an associated
weight ¢;;. The weights can be used to model a number of different things; we will picture



5.7. SHORTEST PATHS IN A GRAPH 149

here the interpretation in which the weight c¢;; represents a cost for going directly from node
17 to node 7 in the graph.

Earlier, we discussed Dijkstra’s algorithm for finding shortest paths in graphs with posi-
tive edge costs. Here we consider the more complex problem in which we seek shortest paths
when costs may be negative. Among the motivations for studying this problem, here are
two that particularly stand out. First, negative costs turn out to be crucial for modeling a
number of phenomena with shortest paths. For example, the nodes may represent agents in
a financial setting, and c¢;; represents the cost of a transaction in which we buy from agent
7 and then immediately sell to agent j. In this case, a path would represent a succession of
transactions, and edges with negative costs would represent transactions that result in prof-
its. Second, the algorithm that we develop for dealing with edges of negative cost turns out,
in certain crucial ways, to be more flexible and decentralized than Dijkstra’s algorithm. As a
consequence, it has important applications for the design of distributed routing algorithms
that determine the most efficient path in a communication network.

In this section and the next we will consider the following two related problems.

e Given a graph G with weights, as described above, decide if G has a negative cycle,

Z Cij < 0.

ijeC

i.e., a directed cycle C such that

e [f the graph has no negative cycles, find a path P from an origin node s to a destination

Z Cij

ijeP

node ¢t with minimum total cost:

should be as small as possible for any s-t path. This is called both the minimum-cost
path problem and the shortest path problem.

In terms of our financial motivation above, a negative cycle corresponds to a profitable
sequence of transactions that takes us back to our starting point: we buy from iy, sell to
19, buy from is, sell to i3, and so forth, finally arriving back at i; with a net profit. Thus,
negative cycles in such a network can be viewed as good arbitrage opportunities.

It makes sense to consider the minimum-cost s-t path problem under the assumption
that there are no negative cycles. If there is a negative cycle C, a path P, from s to the
cycle, and another path P, from the cycle to t, then we can build an s-t path of arbitrarily
negative cost: we first use P; to get to the negative cycle C', then we go around C' as many
times as we want, and then use P; to get from C' to the destination ¢.

Let’s begin by recalling Dijkstra’s algorithm for the shortest path problem when there
are no negative costs. The method computes a shortest path from the origin s to every other
node v in the graph, essentially using a greedy algorithm. The basic idea is to maintain a



150 CHAPTER 5. DYNAMIC PROGRAMMING

set S with the property that the shortest path from s to each node in S is known. We start
with S = {s} — since we know the shortest path from s to s has cost 0 when there are
no negative edges — and we add elements greedily to this set S. As our first greedy step,
we consider the minimum cost edge leaving node s, i.e., 13&1‘51 csi- Let v be a node on which
this minimum is obtained. The main observation underlying Dijkstra’s algorithm is that the
shortest path from s to v is the single-edge path {s,v}. Thus we can immediately add the
node v to the set S. The path {s,v} is clearly the shortest to v if there are no negative edge
costs: any other path from s to v would have to start on an edge out of s that is at least as
expensive as edge sv.

The above observation is no longer true if we can have negative edge costs. A path that
starts on an expensive edge, but then uses many edges with negative cost, can be cheaper than
a path that starts on a cheap edge. This suggests that the Dijkstra-style greedy approach
will not work here.

Another natural idea is to first modify the cost ¢;; by adding some large constant M to
each, i.e., we let ¢; = c;j + M for each edge (i,7) € E. If the constant M is large enough,
then all modified costs are non-negative, and we can use Dijstra’s algorithm to find the
minimum-cost path subject to costs ¢/. However, this approach also fails. The problem here
is that changing the costs from ¢ to ¢’ changes the minimum cost path. For example, if a
path P consisting of 3 edges is somewhat cheaper than another path P’ that has 2 edges,
than after the change in costs, P’ will be cheaper, since we only add 2M to the cost of P’
while adding 3M to the cost of P.

We will try to use dynamic programming to solve the problem of finding a shortest path
from s to t when there are negative edge costs but no negative cycles. We could try an idea
that has worked for us so far: sub-problem ¢ could be to find a shortest path using only the
first 4 nodes. This idea does not immediately work, but it can be made to work with some
effort. Here, however, we will discuss a simpler and more efficient solution, the Bellman-Ford
algorithm. The development of dynamic programming as a general algorithmic technique
is often credited to the work of Bellman in the 1950’s; and the Bellman-Ford shortest path
algorithm was one of the first applications.

The dynamic programming solution we develop will be based on the following crucial
observation.

(5.20) If G has no negative cycles, then there is a shortest path from s to t that is simple,
and hence has at most n — 1 edges.

Proof. Since every cycle has non-negative cost, the shortest path P from s to ¢t with the
fewest number of edges does not repeat any vertex v. For if P did repeat a vertex v, we could
remove the portion of P between consecutive visits to v, resulting in a path of no greater
cost and fewer edges. m



5.7. SHORTEST PATHS IN A GRAPH 151

Let’s use OPT(i,v) to denote the minimum cost of a v-t path using at most 7 edges.
By (5.20), our original problem is to compute OPT'(n — 1,s). We could instead design an
algorithm whose sub-problems correspond to the minimum cost of an s-v path using at most
1 edges. This would form a more natural parallel with Dijkstra’s algorithm, but it would not
be as natural in the context of the routing protocols we discuss later.

We now need a simple way to express OPT(i,v) using smaller sub-problems. We will
see that the most natural approach involves the consideration of many different cases; this
is another example of the principle of “multi-way choices” that we saw in the algorithm for
the segmented least squares problem.

Let’s fix an optimal path P representing O PT(i,v) as depicted on Figure 5.11.

e If the path P uses at most ¢ — 1 edges, then we have OPT'(i,v) = OPT(i — 1,v)

o If the path P uses i edges, and the first edge is (v, w), then OPT(i,v) = ¢y +OPT (i —
1, w).

O O
w P
Figure 5.11: The minimum cost path P from v to ¢ using at most ¢ edges.

This leads to the following recursive formula.

(5.21) Ifi> 0 then
OPT(i,v) = min(OPT (i — 1,v), mei‘r/l(OPT(i — 1, w) + cyy)).

Using this recurrence, we get the following dynamic programming algorithm to compute the
value OPT'(n — 1,1).

Shortest-Path(G, s, 1)

n = number of nodes in G

Array M[0...n—1,V]

For v € V in any order
M]I0,v] = o0

Endfor

M][0,t] =0

For 1=1,...,n—1
For v € V in any order



152 CHAPTER 5. DYNAMIC PROGRAMMING

M = M[i —1,0]
M = glei‘I/l(va + M[i —1,w])
MTi,v] = min(M, M")
Endfor
Endfor
Return M[n — 1, s]

The correctness of the method follows directly from the statement (5.21). We can bound
the running time as follows. The table M has n? entries; and each entry can take O(n) time
to compute, as there are at most n nodes w we have to consider.

(5.22) The Shortest-Path method correctly computes the minimum cost of an s-t path
in any graph that has no negative cycles, and runs in O(n3) time.

Given the table M containing the optimal values of the sub-problems, the shortest path
using at most i edges can be obtained in O(in) time, by tracing back through smaller sub-
problems.

Improved Versions

A big problem with the above version of the Bellman-Ford algorithm (and in fact, with many
dynamic programming algorithms) is that it uses too much memory. For a graph with n

2. Our first change to the algorithm will be aimed at

nodes, we used a table M of size n
decreasing the memory requirement. We will no longer record M]i, v] for each value 7; instead
we will use and update a single value M{v] for each node v, the length of the shortest path
from v to t that we have found so far. One can change the above algorithm to proceed in
rounds; in each round we let M’ = {Unei‘r/l(cvw + M[w]), and update M|v] to be min(M[v], M’).
Just as before, the code will have a “For ¢ = 1,...,n — 1”7 loop, but the only point of the

loop is to count the number of iterations. The following lemma is not hard to show.

(5.23) Throughout the algorithm M|v] is the length of some path from v to t, and after
i rounds of updates the value Mv] is no larger than the length of the shortest path from v to
t using at most v edges.

Now we can use (5.20) to show that after n — 1 iterations we are done.

Further, we can also improve the running time. A graph with n nodes can have close
to n? directed edges. When we work with a graph for which the number of edges m is
significantly less than n?, it is often useful to write the running time in terms of both m and
n; this way, we can quantify our speed-up when we work with a graph that doesn’t have
very many edges.

If we are a little more careful in the analysis of the method above, we can improve the
running time bound to O(mn) without significantly changing the algorithm itself.



5.7. SHORTEST PATHS IN A GRAPH 153

(5.24) The Shortest-Path method can be implemented in O(mn) time, using O(n)
memory.

Proof. The improvement is obtained through two changes to the algorithm. The improve-
ment in memory usage has been discussed above. To obtain the improvement in the running
time, we consider the line that computes

M' = min(cy, + M[i — 1, w))
weV

while building up the array entry M[i,v]. We assumed it could take up to O(n) time to
compute this minimum, since there are n possible nodes w. But of course, we need only
compute this minimum over all nodes w for which v has an edge to w; let us use n, to
denote this number. Then it takes time O(n,) to compute the array entry M|i, v]. We have
to compute an entry for every node v and every index 0 < i < n — 1, so this gives a running
time bound of O [ n Z Ny |.

veV
This bound can be written O(mn), as shown by the following fact. m

(5.25) Y,cvny=m
Proof. Each edge enters exactly one node, which implies the statement. m

Note that the path whose length is M[v] after i iterations, can have substantially more
edges than i. For example, if the graph is a single path, and we perform updates in the order
the edges appear on the path, then we get the final shortest path values in just one iteration.
To take advantage of the fact that the M[v] values may reach the length of the shortest path
in fewer than n — 1 iterations, we need to be able to terminate without reaching iteration
n — 1. This can be done using the following observation: if we reach an iteration ¢ in which
no M{v] value changes, then the algorithm can terminate — since there will be no further
changes in any subsequent iteration. Note that it is not enough for a particular M[v] value
to remain the same; in order to safely terminate, we need for all these values to remain the

same for a single iteration.

Shortest Paths and Distance Vector Protocols

One important application of the shortest path problem is for routers in a communication
network to determine the most efficient path to a destination. We represent the network
using a graph in which the nodes correspond to routers, and there is an edge between v and
w if the two routers are connected by a direct communication link. We define a cost ¢y,
representing the delay on the link (v, w); the shortest path problem with these costs is to
determine the path with minimum delay from a source node s to a destination t. Delays are



154 CHAPTER 5. DYNAMIC PROGRAMMING

naturally non-negative, so one could use Dijkstra’s algorithm to compute the shortest path.
However, Dijkstra’s shortest path computation requires global knowledge of the network: we
need to maintain a set S of nodes for which shortest paths have been determined, and make
a global decision about which node to add next to S. While routers could be made to run
a protocol in the background that gathers enough global information to implement such an
algorithm, it is cleaner and more flexible to use algorithms that require only local knowledge
of neighboring nodes.

If we think about it, the Bellman-Ford algorithm discussed above has just such a “local”
property. Suppose we let each node v maintain its value M|v]; then to update this value, v
needs only obtain the value M[w] from each neighbor w, and then compute

{Urlelg(cvw + Mi — 1, w])

based on the information obtained.

We now discuss two improvements to the Bellman-Ford algorithm that make it better
suited for routers, and at the same time also make it a faster algorithm in practice. First, our
current implementation of the Bellman-Ford algorithm can be thought of as a “pull”’-based
algorithm. In each iteration i, each node v has to contact each neighbor w, and “pull” the
new value M|w] from it. If a node w has not changed its value, then there is no need for
v to get the value again — however, v has has no way of knowing this fact, and so it must
execute the “pull” anyway.

This wastefulness suggeests a symmetric “push”-based implementation, where values are
only transmitted when they change. Specifically, each node w whose distance value M[w]
changes in an iteration informs all its neighbors of the new value in the next iteration; this
allows them to update their values accordingly. If M[w] has not changed, then the neighbors
of w already have the current value, and there is no need to “push” it to them again. Here
is a concrete description of the push-based implementation:

Shortest-Path(G, s, 1)
n = number of nodes in G
Array MI[V]
For v € V in any order
Mv] = o0
Endfor
M[t] =0
For i1=1,...,n—1 or While some value changes
For w € V in any order
If M[w| has been updated in the previous iteration then
For all edges (v,w) in any order
Mv] = min(Mv], ¢y + M[w])
Endfor



5.7. SHORTEST PATHS IN A GRAPH 155

Endfor
Endfor
Return M|s]

In this algorithm nodes are sent updates of their neighbors’ distance values in rounds,
and each node may send out updates in each iteration. This complete synchrony cannot be
enforced for nodes that are independently operating routers. However, even if nodes update
their distance values asynchronously, it is not hard to see the followng: the distances will
eventually converge to the correct values assuming only that the costs c¢,,, remain constant
and each node whose value changes eventually sends out the required updates.

The algorithm we developed uses a single destination ¢, and all nodes v € V' compute their
shortest path to t. More generally, we are presumably interested in finding distances and
shortest paths between all pairs of nodes in a graph. To obtain such distances, we effectively
use n separate computations, one for each destination. Such an algorithm is referred to as a
distance vector protocol, since each node maintains a vector of distances to every other node
in the network.

Problems with the distance vector protocol. One of the major problems with the
distributed implementation of Bellman-Ford on routers — the protocol we have been dis-
cussing above — is that it does not deal well with cases in which edges are deleted, or edge
costs increase significantly. If an edge (v, w) is deleted (say the link goes down), it is natural
for node v to react as follows: it should check whether its shortest path to some node t used
the edge (v, w), and, if so, it should increase the distance using other neighbors. Notice
that this increase in distance from v can now trigger increases at v’s neighbors, if they were
relying on a path through v, and these changes can cascade through the network. Consider
an example in which the original (undirected) graph has two edges (s, v) and (v, t) of cost 1
each as shown on Figure 5.12.

O O -0

S \Y t

Figure 5.12: The problem of counting to infinity.

Now, suppose the edge (v,t) in Figure 5.12 is deleted. How does node v react? Unfortu-
nately, it does not have a global map of the network; it only knows the shortest-path distances
of each of its neighbors to t. Thus, it does not know that the deletion of (v, ¢) has eliminated
all paths from s to t. Instead, it sees that M[s] = 2, and so it updates M[v] = ¢,s+ M|[s] =3



156 CHAPTER 5. DYNAMIC PROGRAMMING

— assuming that it will use its cost-1 edge to s, followed by the supposed cost-2 path from
s to t. Seeing this change, node s will update M[s| = ¢y, + M[v] = 4 — based on its cost-1
edge to v, followed by the supposed cost-3 path from v to t. Nodes s and v will continue
updating their distance to t until one of them finds an alternate route; in the case, as here,
that the network is truly disconnected, these updates will continue indefinitely — a behavior
known as the problem of counting to infinity.

To avoid this problem, the designers of routing algorithms have tended to move from
distance vector protocols to more expressive path vector protocols, in which each node stores
not just the distance and first hop of their path to a destination, but a representation of
the entire path. Given knowledge of the paths, nodes can avoid updating their paths to use
edges they know to be deleted; at the same time, they require significantly more storage to
keep track of the full paths. The path-vector approach is used in the border gateway protocol
(BGP) in the Internet core.

5.8 Negative Cycles in a Graph

In this section, we consider graphs that have negative cycles. There are two natural questions
we will consider.

e How do we decide if a graph contains a negative cycle?
e How do we actually construct a negative cycle in a graph that contains one?

The algorithm developed for finding negative cycles will also lead to an improved practical
implementation of the Bellman-Ford algorithm from the previous section.

It turns out that the ideas we’ve seen so far will allow us to find negative cycles that have
a path reaching a sink ¢. Before we develop the details of this, let’s compare the problem of
finding a negative cycle that can reach a given t with the seemingly more natural problem of
finding a negative cycle anywhere in the graph, regardless of its position related to a sink. It
turns out that if we develop a solution to the first problem, we’ll be able to obtain a solution
to the second problem as well, in the following way. Suppose we start with a graph G, add
a new node t to it, and connect each other node v in the graph to node t via an edge of cost
0 as shown on Figure 5.13. Let us call the new “augmented graph” G’.

(5.26) The augmented graph G’ has a negative cycle reachable C' such that there is a
path from C' to the sink t, if and only if the original graph has a negative cycle.

Proof. Assume G has a negative cycle. Then this cycle C' clearly has an edge to ¢ in G,
since all nodes have an edge to t.



5.8. NEGATIVE CYCLES IN A GRAPH 157

t

Figure 5.13: The augmented graph.

Now suppose G’ has a negative cycle with a path to t. Since no edge leaves t in G’, this
cycle cannot contain ¢. Since G’ is the same as G aside from the node ¢, it follows that this
cycle is also a negative cycle of G. m

So it is really enough to solve the problem of deciding whether GG has a negative cycle
that has a path to a given sink node ¢, and we do this now. To solve this problem, we first
extend our definitions of OPT(i,v) for values i > n. With the presence of a negative cycle
in the graph, (5.20) no longer applies, and indeed the shortest path may get shorter and
shorter as we go around a negative cycle. In fact, for any node v on a negative cycle that
has a path to ¢, we have the following.

(5.27) If node v can reach node t and is contained in a negative cycle, then

lim OPT(i,v) = —o0.

If the graph has no negative cycles, then (5.20) implies following statement.

(5.28) If there are no negative negative cycles in G, then OPT(i,v) = OPT(n — 1,v)
for all nodes v and all i > n.

But for how large an ¢ do we have to compute the values OPT(i,v) before concluding
that the graph has no negative cycles? For example, a node v may satisfy the equation
OPT(n,v) = OPT(n — 1,v), and yet still lie on a negative cycle. (Do you see why?)
However, it turns out that we will be in good shape if this equation holds for all nodes.

(5.29) There is no negative cycle reachable from s if and only if OPT(n,v) = OPT(n—
1,v) for all nodes v.



158 CHAPTER 5. DYNAMIC PROGRAMMING

Proof. (5.28) has already proved the forward direction of this statement. Now, suppose
OPT(n,v) = OPT(n — 1,v) for all nodes v. The values of OPT'(n + 1,v) can be computed
from OPT(n,v); but all these values are the same as the corresponding OPT(n — 1,v). It
follows that we will have OPT'(n 4+ 1,v) = OPT(n — 1,v). Extending this reasoning to
future iterations, we see that none of the values will ever change again, i.e., OPT(i,v) =
OPT(n — 1,v) for all nodes v and all ¢ > n. Thus, there cannot be a negative cycle C' that
has a path to ¢; such a cycle C' would contain a node w, and by (5.27) the values OPT (i, w)
would have to become arbitrarily negative as ¢ increased. m

(5.29) gives an O(mn) method to decide if G has a negative cycle reachable from s. We
compute values of OPT(i,v) for nodes of G and for values of ¢ up to n. By (5.29), there is
no negative cycle if and only if there is some value of ¢ at which OPT(i,v) = OPT(i — 1,v)
for all nodes v.

So far we have determined whether or not the graph has a negative cycle with a path
from the cycle to t, but we have not actually found the cycle. To find a negative cycle, we
consider a node v such that OPT'(n,v) # OPT(n — 1,v): for this node, a path P from v to
t of cost OPT(n,v) must use ezactly n edges. We find this minimum-cost path P from v to
t by tracing back through the sub-problems. As in our proof of (5.20), a simple path can
only have n — 1 edges, so P must contain a cycle C'. We claim that this cycle C' has negative
cost.

(5.30) If G has n nodes, and OPT (n,v) # OPT(n — 1,v), then a path P from v to t of
cost OPT(n,v) contains a cycle C, and C' has negative cost.

Proof. First observe that the path P must have n edges, as OPT (n,v) # OPT(n—1,v), and
so every path using n — 1 edges has cost greater than that of the path P. In a graph with
n nodes, a path consisting of n edges must repeat a node somewhere; let w be a node that
occurs on P more than once. Let C be the cycle on P between two consecutive occurrence
of node w. If C' were not a negative cycle, then deleting C' from P would give us an v-t
path with fewer than n edges, and no greater cost. This contradicts our assumption that
OPT(n,v) # OPT(n —1,v), and hence C' must be a negative cycle. m

(5.31) The algorithm above finds a negative cycle in G, if such a cycle exists, and runs
in O(mn) time.

An Improved Version

Earlier we saw that if a graph G has no negative cycles, the algorithm can often be stopped
early: if for some value of ¢ < n, we have OPT(i,v) = OPT(i — 1,v) for all nodes v,
then the values will not change on any further iteration either. Is there an analogous early



5.8. NEGATIVE CYCLES IN A GRAPH 159

termination rule for graphs that have negative cycles, so that we can sometimes avoid running
all n iterations?

We can use Statement (5.20) to detect the presence of negative cycles, but to do this
we need to “count to n — 1”7. This problem is analogous to the problem of counting to
infinity discussed in relation to the distance vector protocol. In fact, the two problems have
similar underlying causes: the repeated change in the distance values is caused by using
cycles repeatedly in a single path. One could adapt the path vector solution to solve this
problem, by maintaining paths explicitly and terminating whenever a path has a negative
cycle; but maintaining path vectors can take as much as O(n) extra time and memory.

In the case of Internet routing one resorts to maintaining paths so as to keep the protocol
distributed. However, if we’re thinking about finding negative cycles using a traditional al-
gorithm, then allowing simple global computations will make it possible to solve the problem
without having to maintain complete paths. Here we will discuss a solution to this problem
where each node v maintains the first node f[v] after v on the shortest path to the destina-
tion ¢. To maintain f[v] we must update this value whenever the distance M|v] is updated.
In other words, we add the line

If Mv] > Mw] + ¢y
then Flv] =w

before updating the M|v] value. Note that once the final distance values are computed, we
can now find the shortest path by simply following the selected edges: v to f[v] = vy, to
flv1] = vq, and so forth.

Let P denote the directed “pointer” graph whose nodes are V', and whose edges are
{(v, flv])}. The main observation is the following:

(5.32) If the pointer graph P contains a cycle C, then this cycle must have negative cost.

Proof. Notice that if f[v] = w at any time, then we must have M|[v] > ¢, + M[w]. Indeed,
the left- and right-hand sides are equal when f[v] is set to w; and since M[w]| may decrease,
this equation may turn into an inequality.

Let vy, v, ..., v, be the nodes along the cycle C' in the pointer graph, and assume that
(vg, v1) is the last edge to have been added. Now, consider the values right before this last
update. At this time we have M[v;] > ¢y, + M[vigq] for all i = 1,...,k — 1, and we
also have M{vy] > ¢, + M|v1] since we are about to update M[vy| and change f[vi] to v;.
Adding all these inequalities, the M{[v;] values cancel, and we get 0 > Sl ey, + Copoyt @
negative cycle, as claimed. m

To take advantage of this observation, we would like to determine whether a cycle is
created in the pointer graph P every time we add a new edge (v, w) with f[v] = w. (Consider
Figure 5.14 for an example.) The most natural way to do this is to follow the current path



160 CHAPTER 5. DYNAMIC PROGRAMMING

from w to the terminal ¢ in time proportional to the length of this path. If we encounter v
along this path, then a cycle has been formed, and hence by (5.32) the graph has a negative
cycle. However, if we do this, then we could spend as much as O(n) time following the path
to t and still not find a cycle. Next we discuss a method that works does not require an
O(n) blow-up in the running time.

4 O

Figure 5.14: The pointer graph P with new edge (v, w) being added.

We know that before the new edge (v, w) was added, the pointer graph was a directed
tree. Another way to test whether the addition of (v,w) creates a cycle is to consider all
nodes in the subtree directed towards v. If w is in this subtree then (v, w) forms a cycle;
otherwise it does not. To be able to find all nodes in the subtree directed towards v, we
need to have each node v maintain a list of all other nodes whose selected edges point to
v. Given these pointers we can find the subtree in time proportional to the time size of
the subtree pointing to v, at most O(n) as before. However, here we will be able to make
additional use of the work done. Notice that the current distance value M|z| for all nodes x
in the subtree was derived from node v’s old value. We have just updated v’s distance, and
hence we know that the distance values of all these node will be updated again. We’ll mark
each ofthese nodes x as “inactive”, delete the edge (z, f[z]) from the pointer graph, and
not use x for future updates until its distance value changes. This can save a lot of future
work in updates, but what is the effect on the worst case running time? We can spend as
much as O(n) extra time marking nodes inactive after every update in distances. However,
a node can be marked inactive only if it was active before, so the time spent on marking
nodes inactive is at most as much at the time the algorithm spends updating distances. The
time spent by the algorithm on operations other than marking nodes inactive is O(mn) by
Statement (5.31) , and hence we see that the new implementation of the algorithm still
runs in O(mn) time, using O(n) space. In fact, this new version is in practice the fastest
implementation of the algorithm even for graphs that do not have negative cycles, or even
negative-cost edges.



5.9. EXERCISES

5.9 Exercises

161

1. Suppose you're running a lightweight consulting business — just you, two associates,

and some rented equipment. Your clients are distributed between the East Coast and
the West Coast, and this leads to the following question.

Each month, you can either run your business from an office in New York (NY), or
from an office in San Francisco (SF). In month i, you'll incur an operating cost of N;
if you run the business out of NY; you’ll incur an operating cost of S; if you run the
business out of SF. (It depends on the distribution of client demands for that month.)

However, if you run the business out of one city in month ¢, and then out of the other
city in month ¢ + 1, then you incur a fixed moving cost of M to switch base offices.

Given a sequence of n months, a plan is a sequence of n locations — each one equal to
either NY or SF — such that the i*" location indicates the city in which you will be
based in the i month. The cost of a plan is the sum of the operating costs for each of
the n months, plus a moving cost of M for each time you switch cities. The plan can
begin in either city.

The problem is: Given a value for the moving cost M, and sequences of operating
., N, and Sy, ..
called optimal.)

costs Ny, .. ., S, find a plan of minimum cost. (Such a plan will be

Example. Suppose n =4, M = 10, and the operating costs are given by the following
table.

Month 1 | Month 2 | Month 3 | Month 4
NY 1 3 20 30
SF 50 20 2 4

Then the plan of minimum cost would be the sequence of locations
INY,NY,SF,SF],

with a total cost of 1 +3 4+ 2 + 4 + 10 = 20, where the final term of 10 arises because
you change locations once.

(a) Show that the following algorithm does not correctly solve this problem, by giving
an instance on which it does not return the correct answer.

For 1=1 ton
If NZ < Sz then
Output "NY in Month 2"



162

CHAPTER 5. DYNAMIC PROGRAMMING

Else
Output "SF in Month 7"
End

In your example, say what the correct answer is and also what the above algorithm
finds.

(b) Give an example of an instance in which every optimal plan must move (i.e. change
locations) at least three times.

Provide an explanation, of at most three sentences, saying why your example has this
property.

(c) Give an algorithm that takes values for n, M, and sequences of operating costs
Ni,...,N, and Sy,...,S,, and returns the cost of an optimal plan.

The running time of your algorithm should be polynomial in n. You should prove that
your algorithm works correctly, and include a brief analysis of the running time.

Let G = (V, F) be an undirected graph with n nodes. Recall that a subset of the nodes
is called an independent set if no two of them are joined by an edge. Finding large
independent sets is difficult in general; but here we’ll see that it can be done efficiently
if the graph is “simple” enough.

Call a graph G = (V, E) a path if its nodes can be written as vy, vy, ...,v,, with an
edge between v; and v; if and only if the numbers ¢ and j differ by exactly 1. With
each node v;, we associate a positive integer weight w;.

Consider, for example, the 5-node path drawn in the figure below. The weights are the

numbers drawn next to the nodes.

The goal in this question is to solve the following algorithmic problem:

(*) Find an independent set in a path G whose total weight is as large as
possible.

(a) Give an example to show that the following algorithm does not always find an
independent set of maximum total weight.

The "heaviest-first" greedy algorithm:
Start with S equal to the empty set.
While some node remains in G

Pick a node v; of maximum weight.
Add v; to S.
Delete v; and its neighbors from G.
end while
Return S



5.9. EXERCISES 163

(b) Give an example to show that the following algorithm also does not always find
an independent set of maximum total weight.

Let S; be the set of all v; where i is an odd number.

Let S, be the set of all v; where i is an even number.

/* Note that S; and S; are both independent sets. */

Determine which of S; or S; has greater total weight,
and return this one.

(c) Give an algorithm that takes an n-node path G with weights and returns an
independent set of maximum total weight. The running time should be polynomial in
n, independent of the values of the weights.

3. Let G = (V, E) be a directed graph with nodes vy, ..., v,. We say that G is a line-graph
if it has the following properties:

(i) Each edge goes from a node with a lower index to a node with a higher index. That
is, every directed edge has the form (v;,v;) with ¢ < j.

(ii) Each node except v,, has at least one edge leaving it. That is, for every node v;,
i=1,2,...,n—1, there is at least one edge of the form (v;,v;).

The length of a path is the number of edges in it. The goal in this question is to solve
the following algorithmic problem:

Given a line-graph G, find the length of the longest path that begins at vy and

ends at v,,.

Thus, a correct answer for the line-graph in the figure would be 3: the longest path
from vy to v, uses the three edges (vy, vs),(ve, v4), and (vy, vs).

(a) Show that the following algorithm does not correctly solve this problem, by giving
an example of a line-graph on which it does not return the correct answer.

Set w=v;.

Set L=0

While there is an edge out of the node w
Choose the edge (w,v;)

for which 7 is as small as possible.

Set w = v;
Increase L by 1.

end while

Return L as the length of the longest path.



164

CHAPTER 5. DYNAMIC PROGRAMMING

In your example, say what the correct answer is and also what the above algorithm
finds.

(b) Give an algorithm that takes a line graph G and returns the length of the longest
path that begins at v; and ends at v,. (Again, the length of a path is the number of
edges in the path.)

The running time of your algorithm should be polynomial in n. You should prove that
your algorithm works correctly, and include a brief analysis of the running time.

. Suppose you're managing a consulting team of expert computer hackers, and each week

you have to choose a job for them to undertake. Now, as you can well imagine, the
set of possible jobs is divided into those that are low-stress (e.g. setting up a Web
site for a class of fifth-graders at the local elementary school) and those that are high-
stress (e.g. protecting America’s most valuable secrets, or helping a desperate group of
Cornell students finish a project that has something to do with compilers.) The basic
question, each week, is whether to take on a low-stress job or a high-stress job.

If you select a low-stress job for your team in week 4, then you get a revenue of ¢; > 0
dollars; if you select a high-stress job, you get a revenue of h; > 0 dollars. The catch,
however, is that in order for the team to take on a high-stress job in week 7, it’s required
that they do no job (of either type) in week i — 1; they need a full week of prep time to
get ready for the crushing stress level. On the other hand, it’s okay for them to take
a low-stress job in week i even if they have done a job (of either type) in week ¢ — 1.

So given a sequence of n weeks, a plan is specified by a choice of “low-stress”, “high-
stress”, or “none” for each of the n weeks — with the property that if “high-stress”
is chosen for week i > 1, then “none” has to be chosen for week i — 1. (It’s okay to
choose a high-stress job in week 1.) The value of the plan is determined in the natural
way: for each i, you add ¢; to the value if you choose “low-stress” in week i, and you
add h; to the value if you choose “high-stress” in week i. (You add 0 if you choose

“none” in week 1i.)

The problem is: Given sets of values ¢, /s, ..., ¢, and hy, hs,..., h,, find a plan of
maximum value. (Such a plan will be called optimal.)

Example. Suppose n = 4, and the values of ¢; and h; are given by the following table.
Then the plan of maximum value would be to choose “none” in week 1, a high-stress
job in week 2, and low-stress jobs in weeks 3 and 4. The value of this plan would be
0+ 50+ 10+ 10 = 70.

(a) Show that the following algorithm does not correctly solve this problem, by giving

an instance on which it does not return the correct answer.



5.9. EXERCISES

Week 1 | Week 2 | Week 3 | Week 4
12 10 1 10 10
h 5 50 5 1

For iterations 1=1 to n

If hi+1 >0 + fi-i—l then

Output "Choose no job in week %"

Output "Choose a high-stress job in week ¢+ 1"

Continue with iteration 7 + 2

Else

Output "Choose a low-stress job in week 2"
Continue with iteration ¢+ 1

Endif

End

165

To avoid problems with overflowing array bounds, we define h; = ¢; = 0 when ¢ > n.

In your example, say what the correct answer is and also what the above algorithm

finds.

(b) Give an algorithm that takes values for ¢4, (5, . .

the value of an optimal plan.

U, and hy, ha, ..

., hp, and returns

The running time of your algorithm should be polynomial in n. You should prove that

your algorithm works correctly, and include a brief analysis of the running time.

5. Suppose you are managing the construction of billboards on the Stephen Daedalus

Memorial Highway, a heavily-traveled stretch of road that runs west-east for M miles.

The possible sites for billboards are given by numbers x1, xs, . .

., T, each in the interval

[0, M] (specifying their position along the highway, measured in miles from its western

end). If you place a billboard at location x;, you receive a revenue of r; > 0.

You want to place billboards at a subset of the sites in {z, ..

your total revenue, subject to the following restrictions.

., Zp} SO as to maximize

(i) (The environmental constraint.) You cannot build two billboards within less than

5 miles of one another on the highway.

(ii) (The boundary constraint.) You cannot build a billboard within less than 5 miles

of the western or eastern ends of the highway.

A subset of sites satisfying these two restrictions will be called valid.

Example. Suppose M = 20, n = 4,

{21, 22, w3, 24} = {6, 7,12, 14},



166

CHAPTER 5. DYNAMIC PROGRAMMING

and

{Tla o, T3, T4} = {57 67 5a 1}
Then the optimal solution would be to place billboards at x; and z3, for a total revenue
of 10.
Give an algorithm that takes an instance of this problem as input, and returns the
maximum total revenue that can be obtained from any valid subset of sites.

The running time of the algorithm should be polynomial in n. Include a brief analysis
of the running time of your algorithm, and a proof that it is correct.

. You're trying to run a large computing job, in which you need to simulate a physical

system for as many discrete steps as you can. The lab you're working in has two large
supercomputers (which we’ll call A and B) which are capable of processing this job.
However, you're not one of the high-priority users of these supercomputers, so at any
given point in time, you're only able to use as many spare cycles as these machines
have available.

Here’s the problem you’re faced with. Your job can only run on one of the machines
in any given minute. Over each of the next n minutes you have a “profile” of how
much processing power is available on each machine. In minute ¢, you would be able
to run a; > 0 steps of the simulation if your job is on machine A, and b; > 0 steps of
the simulation if your job is on machine B. You also have the ability to move your job
from one machine to the other; but doing this costs you a minute of time in which no
processing is done on your job.

So given a sequence of n minutes, a plan is specified by a choice of A, B, or “move” for
each minute — with the property that choices A and B cannot appear in consecutive
minutes. E.g. if your job is on machine A in minute ¢, and you want to switch to
machine B, then your choice for minute ¢ + 1 must be move, and then your choice
for minute 7 4+ 2 can be B. The wvalue of a plan is the total number of steps that you
manage to execute over the n minutes: so it’s the sum of a; over all minutes in which

the job is on A, plus the sum of b; over all minutes in which the job is on B.

The problem is: Given values aq, as, ..., a, and by, by, ..., b,, find a plan of maximum
value. (Such a strategy will be called optimal.) Note that your plan can start with
either of the machines A or B in minute 1.

Example. Suppose n = 4, and the values of a; and b; are given by the following table.



5.9. EXERCISES

Minute 1 | Minute 2 | Minute 3 | Minute 4
A 10 1 1 10
B 5 1 20 20

Then the plan of maximum value would be to choose A for minute 1, then move
for minute 2, and then B for minutes 3 and 4. The value of this plan would be
10 + 0 + 20 + 20 = 50.

(a) Show that the following algorithm does not correctly solve this problem, by giving

an instance on which it does not return the correct answer.

In minute 1, choose machine achieving the larger of aj,b;.
Set 1 =2
While 72 <n
What was the choice in minute ¢ — 17
If A:
If bi+1 > a; + a;41 then
Choose move in minute ¢ and B in minute 7+ 1
Proceed to iteration 7 + 2
Else
Choose A in minute i
Proceed to iteration 7+ 1

Endif
If B: behave as above with roles of A and B reversed.
EndWhile

In your example, say what the correct answer is and also what the above algorithm
finds.

(b) Give an algorithm that takes values for ay, as, ..., a, and by, bs, ..., b, and returns

the value of an optimal plan.

The running time of your algorithm should be polynomial in n. You should prove that
your algorithm works correctly, and include a brief analysis of the running time.

7. Suppose you're consulting for a small computation-intensive investment company, and
they have the following type of problem that they want to solve over and over. A
typical instance of the problem is: they’re doing a simulation in which they look at n
consecutive days of a given stock, at some point in the past. Let’s number the days
i =1,2,...,n; for each day 4, they have a price p(i) per share for the stock on that
day. (We'll assume for simplicity that the price was fixed during each day.) Suppose



168

CHAPTER 5. DYNAMIC PROGRAMMING

during this time period, they wanted to buy 1000 shares on some day, and sell all these
shares on some (later) day. They want to know: when should they have bought and
when should they have sold in order to have made as much money as possible? (If
there was no way to make money during the n days, you should report this instead.)

Example: Suppose n =3, p(1) =9, p(2) =1, p(3) = 5. Then you should return “buy
on 2, sell on 37; i.e. buying on day 2 and selling on day 3 means they would have made
$4 per share, the maximum possible for that period.

Clearly, there’s a simple algorithm that takes time O(n?): try all possible pairs of
buy/sell days and see which makes them the most money. Your investment friends
were hoping for something a little better.

Show how to find the correct numbers ¢ and j in time O(n).

Eventually your friends from the previous problem move up to more elaborate simula-
tions, and they’re hoping you can still help them out. As before, they’re looking at n
consecutive days of a given stock, at some point in the past. The days are numbered
i =1,2,...,n; for each day 4, they have a price p(i) per share for the stock on that
day.

For certain (possibly large) values of k, they want to study what they call k-shot
strategies. A k-shot strategy is a collection of m pairs of days (b1, 1), .., (bm, Sm),
where 0 < m < k and

1<b<s1<by<sg-<by <8 < n.

We view these as a set of up to k non-overlapping intervals, during each of which the
investors buy 1000 shares of the stock (on day b;) and then sell it (on day s;). The
return of a given k-shot strategy is simply the profit obtained from the m buy-sell
transactions, namely .
1000 ZP(&') — p(bi).

i=1
The investors want to assess the value of k-shot strategies by running simulations on
their n-day trace of the stock price. Your goal is to design an efficient algorithm
that determines, given the sequence of prices, the k-shot strategy with the maximum
possible return. Since k may be relatively large in these simulations, your running time
should be polynomial in both n and k; it should not contain & in the exponent.

Suppose you're consulting for a company that manufactures PC equipment, and ships
it to distributors all over the country. For each of the next n weeks they have a
projected supply s; of equipment (measured in pounds), which has to be shipped by

an air freight carrier.



5.9. EXERCISES 169

10.

Each week’s supply can be carried by one of two air freight companies, A or B.

e Company A charges a fixed rate r per pound (so it costs r - s; to ship a week’s
supply s;).
e Company B makes contracts for a fixed amount ¢ per week, independent of the

weight. However, contracts with company B must be made in blocks of 4 consec-

utive weeks at a time.

A schedule, for the PC company, is a choice of air freight company (A or B) for each
of the n weeks, with the restriction that company B, whenever it is chosen, must be
chosen for blocks of 4 contiguous weeks at a time. The cost of the schedule is the total
amount paid to A and B, according to the description above.

Give a polynomial-time algorithm that takes a sequence of supply values s, so, ..., Sy,
and returns a schedule of minimum cost.

Example: Suppose r = 1, ¢ = 10, and the sequence of values is
11,9,9,12,12,12,12,9,9, 11.

Then the optimal schedule would be to choose company A for the first three weeks,
then company B for a blocks of 4 consecutive weeks, and then company A for the final
three weeks.

Suppose it’s nearing the end of the semester and you're taking n courses, each with
a final project that still has to be done. Each project will be graded on the following
scale: it will be assigned an integer number on a scale of 1 to g > 1, higher numbers
being better grades. Your goal, of course, is to maximize your average grade on the n
projects.

Now, you have a total of H > n hours in which to work on the n projects cumulatively,
and you want to decide how to divide up this time. For simplicity, assume H is a
positive integer, and you’ll spend an integer number of hours on each project. So as
to figure out how best to divide up your time, you've come up with a set of functions
{fi -1 =1,2,...,n} (rough estimates, of course) for each of your n courses; if you
spend h < H hours on the project for course i, you'll get a grade of f;(h). (You may
assume that the functions f; are non-decreasing: if h < h' then f;(h) < f;(h').)

So the problem is: given these functions { f;}, decide how many hours to spend on each
project (in integer values only) so that your average grade, as computed according
to the f;, is as large as possible. In order to be efficient, the running time of your



170

11.

CHAPTER 5. DYNAMIC PROGRAMMING

algorithm should be polynomial in n, g, and H; none of these quantities should appear

as an exponent in your running time.

A large collection of mobile wireless devices can naturally form a network in which the
devices are the nodes, and two devices x and y are connected by an edge if they are
able to directly communicate with one another (e.g. by a short-range radio link). Such
a network of wireless devices is a highly dynamic object, in which edges can appear
and disappear over time as the devices move around. For instance, an edge (z,y)
might disappear as x and y move far apart from one another and lose the ability to
communicate directly.

In a network that changes over time, it is natural to look for efficient ways of main-
taining a path between certain designated nodes. There are two opposing concerns in
maintaining such a path: we want paths that are short, but we also do not want to
have to change the path frequently as the network structure changes. (IL.e. we'd like a
single path to continue working, if possible, even as the network gains and loses edges.)
Here is a way we might model this problem.

Suppose we have a set of mobile nodes V', and at a particular point in time there is a
set Fy of edges among these nodes. As the nodes move, the set of edges changes from
FEy to Eq, then to Es, then to Fs3, and so on to an edge set E,. For ¢ =0,1,2,...,b,
let G; denote the graph (V, E;). So if we were to watch the structure of the network
on the nodes V' as a “time lapse”, it would look precisely like the sequence of graphs
Go,G1,Ga, ..., Gy_1,G,. We will assume that each of these graphs G; is connected.

Now, consider two particular nodes s,t € V. For an s-t path P in one of the graphs G,
we define the length of P to be simply the number of edges in P, and denote this ¢(P).
Our goal is to produce a sequence of paths Py, Py, ..., P, so that for each i, P; is an s-t
path in G;. We want the paths to be relatively short. We also do not want there to be
too many changes — points at which the identity of the path switches. Formally, we
define changes(Py, P, ..., P,) to be the number of indices i (0 < i < b — 1) for which
P # P

Fix a constant K > 0. We define the cost of the sequence of paths Py, Py, ..., P, to be

b
cost(Po, P, ..., Py) =Y U(P)+ K - changes(Py, Py, ..., B).
i=0
(a) Suppose it is possible to choose a single path P that is an s-t path in each of
the graphs Gy, Gy, ..., Gy. Give a polynomial-time algorithm to find the shortest such
path.

(b) Give a polynomial-time algorithm to find a sequence of paths Py, Py,..., P, of
minimum cost, where P; is an s-t path in G; fort=0,1,...,0.



5.9. EXERCISES 171

12.

13.

14.

Recall the scheduling problem from the text in which we sought to minimize the max-
imum [ateness. There are n jobs, each with a deadline d; and a required processing
time t;, and all jobs are available to be scheduled starting at time s. For a job i to be
done it needs to be assigned a period from s; > s to f; = s; + t;, and different jobs
should be assigned non-overlapping intervals. As usual, an assignment of times in this
way will be called a schedule.

In this problem, we consider the same set-up, but want to optimize a different objective.
In particular, we consider the case in which each job must either be done by its deadline
or not at all. We’ll say that a subset J of the jobs is schedulable if there is a schedule
for the jobs in J so that each of them finishes by its deadline. Your problem is to select
a schedulable subset of maximum possible size, and give a schedule for this subset that
allows each job to finish by its deadline.

(a) Prove that there is an optimal solution J (i.e. a schedulable set of maximum size)
in which the jobs in J are scheduled in increasing order of their deadlines.

(b) Assume that all deadlines d; and required times ¢; are integers. Give an algorithm
to find an optimal solution. Your algorithm should run in time polynomial in the
number of jobs n, and the maximum deadline D = max; d;.

Consider the sequence alignment problem over a four-letter alphabet {z1, 22, 23, 24},
with a cost ¢ for each insertion or deletion, and a cost o, for a substitution of z; by z;
(for each pair i # j). Assume that 0 and each «;; is a positive integer.

Suppose you are given two strings A = ajas - --a,, and B = b1by---b,,, and a proposed
alignment between them. Give an O(mn) algorithm to decide whether this alignment
is the unique minimum-cost alignment between A and B.

Consider the following inventory problem. You are running a store that sells some
large product (let’s assume you sell trucks), and predictions tell you the quantity of
sales to expect over the next n months. Let d; denote the number of sales you expect
in month 7. We’ll assume that all sales happen at the beginning of the month, and
trucks that are not sold are stored until the beginning of the next month. You can
store at most S trucks, and it costs C' to store a single truck for a month. You receive
shipments of trucks by placing orders for them, and there is a fixed ordering fee of K
each time you place an order (regardless of the number of trucks you order). You start
out with no trucks. The problem is to design an algorithm that decides how to place
orders so that you satisfy all the demands {d;}, and minimize the costs. In summary:

e There are two parts to the cost. First, storage: it costs C for every truck on hand
that is not needed that month. Scecond, ordering fees: it costs K for every order
placed.



172

15.

16.

CHAPTER 5. DYNAMIC PROGRAMMING

e In each month you need enough trucks to satisfy the demand d;, but the amount
left over after satisfying the demand for the month should not exceed the inventory
limit S.

Give an algorithm that solves this problem in time that is polynomial in n and S.

You are consulting for an independently operated gas-station, and it faced with the
following situation. They have a large underground tank in which they store gas; the
tank can hold up to L gallons at one time. Ordering gas is quite expensive, so they
want to order relatively rarely. For each order they need to pay a fix price P for
delivery in addition to the cost of the gas ordered. However, it cost ¢ to store a gallon
of gas for an extra day, so ordering too much ahead increases the storage cost. They
are planning to close for winder break, and want their tank to be empty, as they are
afraid that any gas left in the tank would freeze over during break. Luckily, years
of experience gives them accurate projections for how much gas they will need each
day until winter break. Assume that there are n days left till break, and they need g;
gallons of gas for each of day ¢« = 1,...,n. Assume that the tank is empty at the end
of day 0. Give an algorithm to decide which days they should place orders, and how
much to order to minimize their total cost.

The following two observations might help.

e If g1 > 0 then the first order has to arrive the morning of day 1.

e If the next order is due to arrive on day i, then the amount ordered should be
> g5

Through some friends of friends, you end up on a consulting visit to the cutting-edge
biotech firm Clones 'R’ Us. At first you're not sure how your algorithmic background
will be of any help to them, but you soon find yourself called upon to help two identical-
looking software engineers tackle a perplexing problem.

The problem they are currently working on is based on the concatenation of sequences of
genetic material. If X and Y are each strings over a fixed alphabet X, then XY denotes
the string obtained by concatenating them — writing X followed by Y. CRU has
identified a “target sequence” A of genetic material, consisting of m symbols, and they
want to produce a sequence that is as similar to A as possible. For this purpose, they
have a set of (shorter) sequences Bj, B, ..., By, consisting of ni,ns, ..., n; symbols
respectively. They can cheaply produce any sequence consisting of copies of the strings
in {B;} concatenated together (with repetitions allowed).

Thus, we say that a concatenation over {B;} is any sequence of the form B;, B;, - - - B;,,
where each i; € {1,2,...,k}. So By, B1B1B;, and B3ByB; are all concatenations



5.9. EXERCISES 173

17.

18.

19.

over {B;}. The problem is to find a concatenation over {B;} for which the sequence
alignment cost is as small as possible. (For the purpose of computing the sequence
alignment cost, you may assume that you are given a cost ¢ for each insertion or
deletion, and a substitution cost «;; for each pair 7,j € X.)

Give a polynomial-time algorithm for this problem.

Suppose we want to replicate a file over a collection of n servers, labeled Sy, .5s,...,5,.
To place a copy of the file at server S; results in a placement cost of ¢;, for an integer
c; > 0.

Now, if a user requests the file from server S;, and no copy of the file is present at
S;, then the servers S; i1, Siyo, Si13... are searched in order until a copy of the file is
finally found, say at server S;, where j > ¢. This results in an access cost of j — i.
(Note that the lower-indexed servers S;_1,S;_o,... are not consulted in this search.)
The access cost is 0 if S; holds a copy of the file. We will require that a copy of the file
be placed at server S, so that all such searches will terminate, at the latest, at S,,.

We'd like to place copies of the files at the servers so as to minimize the sum of
placement and access costs. Formally, we say that a configuration is a choice, for each
server S; with ¢ = 1,2,...,n — 1, of whether to place a copy of the file at S; or not.
(Recall that a copy is always placed at S,.) The total cost of a configuration is the
sum of all placement costs for servers with a copy of the file, plus the sum of all access
costs associated with all n servers.

Give a polynomial-time algorithm to find a configuration of minimum total cost.

(¥) Let G = (V, E) be a graph with n nodes in which each pair of nodes is joined by
an edge. There is a positive weight w;; on each edge (7,7); and we will assume these
weights satisty the triangle inequality w;, < w;; + wjx. For a subset V' C V, we will
use G[V'] to denote the subgraph (with edge weights) induced on the nodes in V.

We are given a set X C V of k terminals that must be connected by edges. We say
that a Steiner tree on X is a set Z so that X C Z C V, together with a sub-tree T" of
G[Z]. The weight of the Steiner tree is the weight of the tree 7'

Show that there is function f(-) and a polynomial function p(-) so that the problem of
finding a minimum-weight Steiner tree on X can be solved in time O(f(k) - p(n)).

Your friends have been studying the closing prices of tech stocks, looking for interesting
patterns. They’'ve defined something called a rising trend as follows.

They have the closing price for a given stock recorded for n days in succession; let these
prices be denoted P[1], P[2],..., P[n]. A rising trend in these prices is a subsequence
of the prices Pli1], Plia], ..., Plix], for days i; < iy < ... <y, so that



174

20.

CHAPTER 5. DYNAMIC PROGRAMMING

[ il = 1, and
o Pli;] < Plijs] foreach j =1,2,...,k—1.
Thus a rising trend is a subsequence of the days — beginning on the first day and

not necessarily contiguous — so that the price strictly increases over the days in this

subsequence.

They are interested in finding the longest rising trend in a given sequence of prices.

Example. Suppose n = 7, and the sequence of prices is
10,1,2,11, 3,4, 12.

Then the longest rising trend is given by the prices on days 1, 4, and 7. Note that days
2, 3, 5, and 6 consist of increasing prices; but because this subsequence does not begin
on day 1, it does not fit the definition of a rising trend.

(a) Show that the following algorithm does not correctly return the length of the longest
rising trend, by giving an instance on which it fails to return the correct answer.

Define 7 =1.
L=1.
For =2 ton
If P[j] > P[i] then

Set 1 =7.
Add 1 to L.
Endif
Endfor

In your example, give the actual length of the longest rising trend, and say what the
above algorithm returns.

(b) Give an algorithm that takes a sequence of prices P[1], P[2],..., P[n| and returns
the length of the longest rising trend.

The running time of your algorithm should be polynomial in the length of the input.
You should prove that your algorithm works correctly, and include a brief analysis of
the running time.

Consider the Bellman-Ford minimum-cost path algorithm from the text, assuming
that the graph has no negative cost cycles. This algorithm is both fairly slow and also
memory-intensive. In many applications of dynamic programming, the large mem-

ory requirements can become a bigger problem than the running time. The goal of



5.9. EXERCISES 175

this problem is to decrease the memory requirement. The pseudo-code SHORTEST-
PATH(G, s,t) in the text maintains an array M|0...n — 1; V] of size n?, where n = |V/|
is the number of nodes on the graph.

Notice that the values of M[i,v] are computed only using M[i — 1, w] for some nodes
w € V. This suggests he following idea: can we decrease the memory needs of the
algorithm to O(n) by maintaining only two columns of the M matrix at any time?
Thus we will “collapse” the array M to an 2 x n array B: as the algorithm iterates
through values of i, B[0,v]| will hold the “previous” column’s value M[i — 1,v], and
BJ[1,v] will hold the “current” column’s value M[i, v].

Space-Efficient-Shortest-Path(G, s,1)
n = number of nodes in G
Array B[0...1,V]

For v € V in any order

B[0,v] = 00
Endfor
B[0,s] =0
For i1=1,...,n—1
For v € V in any order
M = BJ0,v]
M' = min  (B[0,w] + cyy)
weV:(ww)EE
B[1,v] = min(M, M)
Endfor
For v € V in any order
B[0,v] = B[1, ]
Endfor
Endfor
Return Bl[l,t]

It is easy to verify that when this algorithm completes, the array entry B[1,v] holds
the value of OPT(n — 1,v), the minimum-cost of a path from s to v using at most
n — 1 edges, for all v € V. Moreover, it uses O(n?) time and only O(n) space. You do
not need to prove these facts.

The problem is: where is the shortest path? The usual way to find the path involves
tracing back through the M[i, v] values, using the whole matrix M, and we no longer
have that. The goal of this problem is to show that if the graph has no negative cycles,
then there is enough information saved in the last column of the matrix M, to recover
the shortest path in O(n?) time.

Assume G has no negative or even zero length cycles. Give an algorithm FIND-
PATH(¢, G, B) that uses only the array B (and the graph G) to find the the minimum-



176

21.

22.

CHAPTER 5. DYNAMIC PROGRAMMING

cost path from s to t in O(n?) time.

The problem of searching for cycles in graphs arises naturally in financial trading
applications. Consider a firm trades shares in n different companies. For each pair
¢ # j they maintain a trade ratio r;; meaning that one share of ¢ trades for 7;; shares
of j. Here we allow the rate r to be fractional, i.e., 7;; = % means that you can trade
3 shares of 7 to get a 2 shares of j.

A trading cycle for a sequence of shares i1,1s,...,4; consists of successively trading
shares in company i; for shares in company iy, then shares in company i, for shares
13, and so on, finally trading shares in i; back to shares in company ¢;. After such a
sequence of trades, one ends up with shares in the same company i; that one starts
with. Trading around a cycle is usually a bad idea, as you tend to end up with fewer
shares than what you started with. But occasionally, for short periods of time, there
are opportunities to increase shares. We will call such a cycle an opportunity cycle, if
trading along the cycle increases the number of shares. This happens exactly if the
product of the ratios along the cycle is above 1. In analyzing the state of the market,
a firm engaged in trading would like to know if there are any opportunity cycles.

Give a polynomial time algorithm that finds such an opportunity cycle, if one exists.
Hint: a useful construction not covered in lecture is the augmented graph used in the
statement (4.4.7).

As we all know, there are many sunny days in Ithaca, NY; but this year, as it happens,
the spring ROTC picnic at Cornell has fallen on rainy day. The ranking officer decides
to postpone the picnic, and must notify everyone by phone. Here is the mechanism
she uses to do this.

Each ROTC person on campus except the ranking officer reports to a unique superior
officer. Thus, the reporting hierarchy can be described by a tree T', rooted at the
ranking officer, in which each other node v has as a parent node u equal to his or her
superior officer. Conversely, we will call v a direct subordinate of u. See Figure 1, in
which A is the ranking officer, B and D are the direct subordinates of A, and C is the
direct subordinate of B.

To notify everyone of the postponement, the ranking officer first calls each of her direct
subordinates, one at a time. As soon as each subordinate gets the phone call, he or she
must notify each of his or her direct subordinates one at a time. The process continues
this way, until everyone has been notified. Note that each person in this process can
only call direct subordinates on the phone; for example, in Figure 1, A would not be
allowed to call C.

Now, we can picture this process as being divided into rounds: In one round, each



5.9. EXERCISES 177

person who has already learned of the postponement can call one of his or her direct
subordinates on the phone. The number of rounds it takes for everyone to be notified
depends on the sequence in which each person calls their direct subordinates. For
example, in Figure 1, it will take only two rounds if A starts by calling B, but it will
take three rounds if A starts by calling D.

Give an efficient algorithm that determines the minimum number of rounds needed
for everyone to be notified, and outputs a sequence of phone calls that achieves this

N\
5

minimum number of rounds.

C

Figure 5.15: A hierarchy with four people. The fastest broadcast scheme is for A to call B
in the first round. In the second round, A calls D and B calls C. If A were to call D first,
then C could not learn the news until the third round.

23. In a word processor, the goal of “pretty-printing” is to take text with a ragged right
margin — like this:

Call me Ishmael.

Some years ago,

never mind how long precisely,

having little or no money in my purse,

and nothing particular to interest me on shore,
I thought I would sail about a little

and see the watery part of the world.
— and turn it into text whose right margin is as “even” as possible — like this:

Call me Ishmael. Some years ago, never
mind how long precisely, having little
or no money in my purse, and nothing
particular to interest me on shore, I
thought I would sail about a little

and see the watery part of the world.

To make this precise enough for us to start thinking about how to write a pretty-printer
for text, we need to figure out what it means for the right margins to be “even.” So



178

24.

CHAPTER 5. DYNAMIC PROGRAMMING

suppose our text consists of a sequence of words, W = {wi,ws,...,w,}, where w;
consists of ¢; characters. We have a maximum line length of L. We will assume we
have a fixed-width font, and ignore issues of punctuation or hyphenation.

A formatting of W consists of a partition of the words in W into lines. In the words
assigned to a single line, there should be a space after each word but the last; and so
if w;, wjt1,...,wy are assigned to one line, then we should have

+Ck§L

k—1
i=j

We will call an assignment of words to a line walid if it satisfies this inequality. The
difference between the left-hand side and the right-hand side will be called the slack of
the line — it’s the number of spaces left at the right margin.

Give an efficient to find a partition of a set of words W into valid lines, so that the
sum of the squares of the slacks of all lines (including the last line) is minimized.

You're consulting for a group of people, who would prefer not be mentioned here by
name, whose jobs consist of monitoring and analyzing electronic signals coming from
ships in coastal Atlantic waters. They want a fast algorithm for a basic primitive
that arises frequently: “untangling” a superposition of two known signals. Specifically,
they’re picturing a situation in which each of two ships is emitting a short sequence of
0’s and 1’s over and over, and they want to make sure that the signal they’re hearing
is simply an interleaving of these two emissions, with nothing extra added in.

This describes the whole problem; we can make it a little more explicit as follows. Given
a string = consisting of 0’s and 1’s, we write 2* to denote k copies of z concatenated
together. We say that a string 2 is a repetition of z if it is a prefix of 2* for some
number k. So 2/ = 10110110110 is a prefix of z = 101.

We say that a string s is an interleaving of x and y if its symbols can be partitioned
into two (not necessarily contiguous) subsequences s’ and s”, so that s’ is a repetition
of x and s” is a repetition of y. (So each symbol in s must belong to exactly one of
s" or §”.) For example, if x = 101 and y = 00, then s = 100010101 is an interleaving
of x and y, since characters 1,2,5,7,8,9 form 101101 — a repetition of x — and the
remaining characters 3,4,6 form 000 — a repetition of y.

In terms of our application, x and y are the repeating sequences from the two ships,
and s is the signal we're listening to: we want to make sure it “unravels” into simple
repetitions of z and y. Give an efficient algorithm that takes strings s, z, and y, and
decides if s is an interleaving of x and y.



Chapter 6

Network Flow

In this chapter, we focus on a rich set of algorithmic problems that grow, in a sense, out of
one of the original problems we formulated at the beginning of the course: bipartite matching.
Recall the set-up of the bipartite matching problem. A bipartite graph G = (V, E) is an
undirected graph whose node set can be partitioned as V' = X UY, with the property that
every edge e € F has one end in X and the other end in Y. We often draw bipartite graphs
as in the figure below, with the nodes in X in a column on the left, the nodes in Y in a
column on the right, and each edge crossing from the left column to the right column.

X1 Y1
X2 Y2
X3 Y3
X 4 Y4

Now, we've already seen the notion of a matching at several points in the course: we've
used the term to describe collections of pairs over a set, with the property that no element
of the set appears in more than one pair. (Think of men (X) matched to women (Y') in the
stable matching problem, or characters in a sequence alignment problem.) In the case of a
graph, the edges constitute pairs of nodes, and we consequently say that a matching in a
graph G = (V, E) is a set of edges M C E with the property that each node appears in at
most one edge of M. M is a perfect matching if every node appears in ezxactly one edge of
M.

179



180 CHAPTER 6. NETWORK FLOW

Matchings in bipartite graphs can model situations in which objects are being assigned to
other objects. Many such situations were mentioned earlier in the course when we introduced
graphs, and bipartite graphs. One natural example arises when the nodes in X represent
jobs, the nodes in Y represent machines, and an edge (x;,y;) indicates that machine y; is
capable of processing job z;. A perfect matching is then a way of assigning each job to a
machine that can process it, with the property that each machine is assigned exactly one
job. Bipartite graphs can represent many other relations that arise between two distinct
sets of objects, such as the relation between customers and stores; or houses and nearby fire
stations; and so forth.

One of the oldest problems in combinatorial algorithms is that of determining the size of
the largest matching in a bipartite graph G. (As a special case, note that G has a perfect
matching if and only if | X | = |Y| and it has a matching of size | X|.) This problem turns out
to be solvable by an algorithm that runs in polynomial time, but the development of this
algorithm needs ideas fundamentally different from the techniques that we’ve seen so far.

Rather than developing the algorithm directly, we begin by formulating a general class
of problems — network flow problems — that includes bipartite matching as a special case.
We then develop a polynomial-time algorithm for a general problem in this class — the
maximum flow problem — and show how this provides an efficient algorithm for maximum
bipartite matching as well.

6.1 The Maximum Flow Problem

One often uses graphs to model transportation networks — networks whose edges carry
some sort of traffic, and whose nodes act as “switches” passing traffic between different
edges. Consider, for example, a highway system in which the edges are highways and the
nodes are interchanges; or a computer network, in which the edges are links that can carry
packets, and the nodes are switches; or a fluid network, in which edges are pipes that carry
water, and the nodes are junctures where pipes are plugged together. Network models of this
type have several ingredients: capacities on the edges, indicating how much they can carry;
source nodes in the graph, which generate traffic; sink (or destination) nodes in the graph,
which can “absorb” traffic as it arrives; and finally, the traffic itself, which is transmitted
across the edges.

We’ll be considering graphs of this form, and refer to the traffic as flow — an abstract
entity that is generated at source nodes, transmitted across edges, and absorbed at sink
nodes. Formally, we'll say that a flow network is a directed graph G = (V, E) with the
following features.

e Associated with each edge e is a capacity, which is a non-negative number that we
denote c,.



6.1. THE MAXIMUM FLOW PROBLEM 181

e There is a single source node s € V.
e There is a single sink node t € V.

Nodes other than s and ¢ will be called internal nodes.

We will make two assumptions about the flow networks we deal with — first, that no
edge enters the source s and no edge leaves the sink t; and second, that that all capacity
values are integers. These assumptions make things cleaner to think about, and while they
eliminate a few pathologies, they preserve essentially all the issues we want to think about.

Figure 6.1 gives a picture of a flow network with 4 nodes and 5 edges, and capacity values
given next to each edge.

u

v

Figure 6.1: A flow network.

Next we define what it means for our network to carry traffic, or low. We say that an
s-t flow is a function f that maps each edge e to a non-negative real number, f: E — R™T;
the value f(e) intuitively represents the amount of flow carried by edge e. A flow f must
satisfy the following two properties.

(i) (Capacity conditions.) For each e € E, 0 < f(e) < ce.

(ii) (Conservation conditions.) For each node v other than s and ¢, we have

> fley="> flo.

e into v e out of v

Here Y f(e) sums the flow value f(e) over all edges entering node v, while Y f(e)
e into v e out of v
is the sum of flow values over all edges leaving node v.

Thus, the flow on an edge cannot exceed the capacity of the edge. For every node other
than the source and the sink, the amount of flow entering must equal the amount of flow



182 CHAPTER 6. NETWORK FLOW

leaving. The source has no entering edges (by our assumption), but it is allowed to have
flow going out; in other words, it can generate flow. Symmetrically, the sink is allowed to
have flow coming in, even though it has no edges leaving it. The value of a flow f, denoted
v(f), is defined to be the amount of flow generated at the source:

v(if)= > flo.

e out of s

To make the notation a little more compact, we define f*"*(v) = > f(e) and

e out of v

f™(v) = > f(e). We can extend this to sets of vertices; if S C V, we define f°"(S) =

e into v
> f(e)and f™(S) = > f(e). In this terminology, the conservation condition for

e out of S e into S
nodes v # s,t becomes fi'(v) = f°"(v); and we can write v(f) = fou(s).

Given a flow network, a natural goal is to arrange the traffic so as to make as efficient use
of the available capacity as possible. Thus, the basic algorithmic problem we will consider
is the following: given a flow network, find a flow of maximum possible value.

As we think about designing algorithms for this problem, it’s useful to consider how the
structure of the flow network places upper bounds on the maximum value of an s-t flow. Here
is a basic “obstacle” to the existence of large flows. Suppose we divide the nodes of the graph
into two sets, A and B, so that s € A and t € B. Then, intuitively, any quantum of flow that
goes from s to t must cross from A into B at some point, and thereby use up some of the
edge capacity from A to B. This suggests that each such “cut” of the graph puts a bound
on the maximum possible flow value. The maximum flow algorithm that we develop here
will be intertwined with a proof that the maximum flow value equals the minimum capacity
of any such division, called the minimum cut. As a bonus, our algorithm will also compute
the minimum cut. We will see that the problem of finding cuts of minimum capacity in a
flow network turns out to be at least as valuable, from the point of view of applications, as
that of finding a maximum flow.

6.2 Computing Maximum Flows

Suppose we wanted to find a maximum flow in a network; how should we go about doing
this? It takes some testing out to decide that an approach such as dynamic programming
doesn’t seem to work — at least, there is no algorithm known for the maximum flow problem
that could really be viewed as naturally belonging to the dynamic programming paradigm.
In the absence of other ideas, we could go back and think about simple greedy approaches,
to see where they break down.

Suppose we start with zero flow: f(e) = 0 for all e. Clearly this respects the capacity
and conservation conditions; the problem is that its value is 0. We now try to increase the



6.2. COMPUTING MAXIMUM FLOWS 183

value of f by “pushing” flow along a path from s to ¢, up to the limits imposed by the
edge capacities. Thus, in the figure above, we might choose the path consisting of the edges
{(s,u), (u,v), (v,t)} and increase the flow on each of these edges to 20, and f(e) = 0 for the
other two. In this way, we still respect the capacity conditions — since we only set the flow
as high as the edge capacities would allow — and the conservation conditions — since when
we increase flow on an edge entering an internal node, we also increase it on an edge leaving
the node. Now the value of our flow is 20, and we can ask: is this the maximum possible
for the graph in the figure? If we think about it, we see that the answer is “no,” since it is
possible to construct a flow of value 30. The problem is that we’re now stuck — there is
no s-t path on which we can directly push flow without exceeding some capacity — and yet
we do not have a maximum flow. What we need is a more general way of pushing flow from
s to t, so that in a situation such as this, we have a way to increase the value of the current
flow.

Essentially, we’d like to perform the following operation. We push 10 units of flow along
(s,v); this now results in too much flow coming into v. So we “undo” 10 units of flow on
(u, v); this restores the conservation condition at v, but results in too little flow leaving u. So,
finally, we push 10 units of flow along (u,t), restoring the conservation condition at u. We
now have a valid flow, and its value is 30. See Figure 6.2 where the dark edges are carrying
flow before the operation, and the dashed edges form the new kind of augmentation.

v

Figure 6.2: Augmenting flow using the edge (u,v) backwards.

This is a more general way of pushing flow: we can push forward on edges with leftover
capacity, and we can push backward on edges that are already carrying flow, to divert it in
a different direction. We now define the residual graph, which provides a systematic way to
search for forward-backward operations such as this.

Given a flow network GG, and a flow f on GG, we define the residual graph G of G with
respect to f as follows.

e The node set of Gy is the same as that of G.



184 CHAPTER 6. NETWORK FLOW

e For each edge e = (u,v) of G on which f(e) < ¢, there are ¢, — f(e) “leftover” units of
capacity on which we could try pushing flow forwards. So we include the edge e = (u, v)
in G, with a capacity of c¢. — f(e). We will call edges included this way forward edges.

e For each edge e = (u,v) of G on which f(e) > 0, there are f(e) units of flow that we
can “undo” if we want to, by pushing flow backward. So we include the edge ¢’ = (v, u)
in Gy, with a capacity of f(e). Note that e’ has the same ends as e, but its direction
is reversed; we will call edges included this way backward edges.

This completes the definition of the residual graph G;. Note that each edge e in G can give
rise to one or two edges in Gy: if 0 < f(e) < ¢, it results in both a forward edge and a
backward edge being included in Gy. Thus, G has at most twice as many edges as G. We
will sometimes refer to the capacity of an edge in the residual graph as a residual capacity, to
help distinguish it from the capacity of the corresponding edge in the original flow network
G.

Now we want to make precise the way in which we “push” flow from s to ¢ in Gy. Let
P be a simple s-t path in Gy — i.e. P does not visit any node more than once. We define
bottleneck(P) to be the minimum residual capacity of any edge on P. We now define the
following operation augment(f, P), which yields a new flow f’in G.

augment(f, P)
Let b =Dbottleneck(P).
For each edge e€ P
If e is a forward edge then
increase f(e) in G by b.
Else (e is a backward edge)
decrease f(e) in G by b.
Endif
Endfor
Return(f)

It was purely to be able to perform this operation that we defined the residual graph; to
reflect the importance of augment, one often refers to any s-t path in the residual graph as
an augmenting path.

The result of augment(f, P) is a new flow f’ in G, obtained by increasing and decreasing
the flow values on edges of P. Let us first verify that f’ is indeed a flow.

(6.1) f"isa flowinG.

Proof. We must verify the capacity and conservation conditions.
Since [ differs from f only on edges of P, so we need check the capacity conditions only
on these edges. Thus, let e be an edge of P. Informally, the capacity condition continues to



6.2. COMPUTING MAXIMUM FLOWS 185

hold because if e is a forward edge, we specifically avoided increasing the flow on e above c;
and if e is a backward edge, we specifically avoided decreasing the flow on e below 0. More
concretely, note that bottleneck(P) is no larger than the residual capacity of e. If e is a
forward edge, then its residual capacity is ¢, — f(e); thus we have

0 < f(e) < f'(e) = f(e) + bottleneck(P) < f(e) + (c. — f(€)) = ce,

so the capacity condition holds. If e is a backward edge, then its residual capacity is f(e),

so we have
ce > f(e) > f'(e) = f(e) — bottleneck(P) > f(e) — f(e) =0,

and again the capacity condition holds.

We need to check the conservation condition at each internal node that lies on the path
P. Let v be such a node; we can verify that the change in the amount of flow entering v is
the same as the change in the amount of flow exiting v; since f satisfied the conservation
condition at v, so must f’. Technically there are four cases to check, depending on whether
the edge of P that enters v is a forward or backward edge, and whether the edge of P that
exits v is a forward or backward edge. However, each of these cases is easily worked out,
and we leave them to the reader. m

This augmentation operation captures the type of forward and backward pushing of flow
that we discussed earlier. Let’s now consider the following algorithm to compute an s-t flow
in G.

Max-Flow (G, s,t,c)
Initially f(e) =0 for all e in G.

While there is an s-t path in the residual graph Gy
Let P be a simple s-t path in Gy

f' = augment(f, P)

Update f to be f’

Update the residual graph Gy to be Gp
Endwhile
Return f

We'll call this the Ford-Fulkerson algorithm (or, briefly, the F-F algorithm), since it was
developed by Ford and Fulkerson in 1956. The F-F algorithm is really quite simple. What is
not at all clear is whether its central While loop terminates, and whether the flow returned
is a maximum flow. The answers to both of these questions turn out to be a little subtle.
First, consider some properties that the algorithm maintains by induction on the number
of iterations of the While loop, relying on our assumption that all capacities are integers.

(6.2) At every intermediate stage of the F-F algorithm, the flow values {f(e)} and the
residual capacities in Gy are integers.



186 CHAPTER 6. NETWORK FLOW

Proof. The statement is clearly true before any iterations of the While loop. Now suppose
it is true after j iterations. Then since all residual capacities in Gy are integers, the value
bottleneck(P) for the augmenting path found in iteration j+ 1 will be an integer. Thus the
flow f’ will have integer values, and hence so will the capacities of the new residual graph. m

We can use this property to prove that the F-F algorithm terminates. As at previous
points in the course, we will look for a measure of progress that will imply termination.
First, we show that the flow value strictly increases when we apply an augmentation.

(6.3) Let f be a flow in G, and let P be a simple s-t path in Gy. Then v(f') =
v(f) + bottleneck(P); and since bottleneck(P) > 0, we have v(f') > v(f).

Proof. The first edge e of P must be an edge out of s in the residual graph G; and since
the path is simple, it does not visit s again. Since G has no edges entering s, the edge e
must be a forward edge. We increase the flow on this edge by bottleneck(P), and we do
not change the flow on any other edge incident to s. Therefore the value of f’ exceeds the
value of f by bottleneck(P). m

We need one more observation to prove termination: we need to be able to bound the
maximum possible flow value. Here’s one upper bound: even if all the edges out of s could
be completely saturated with flow, the value of the flow would be Z ce. Let C' denote

e out of s
this sum. Thus we have v(f) < C for all s-t flows f. Using statement (6.3), we can now

prove termination.

(6.4) Suppose, as above, that all capacities in the flow network G are integers. Then the
F-F algorithm terminates in at most C' iterations of the While loop.

Proof. Note that C' is the value of the cut where A = {s} and B = V — {s} has all other
nodes. By the capacity condition, we know that no flow in G can have a value greater than
C'. (C may be a huge overestimate of the maximum value of a flow in G, but it’s handy for
us as a finite, simply stated bound.)

Now, by (6.3), the value of the flow maintained by the F-F algorithm increases in each
iteration; so by (6.2), it increases by at least 1 in each iteration. Since it starts with the
value 0, and cannot go higher than C', the While loop in the F-F algorithm can run for at
most C iterations. m

Next, we consider the running time of the F-F algorithm. Let n denote the number of
nodes in GG, m denote the number of edges in G. We will assume that m > n — 1; this
assumption is true, for example, if there are paths in G from s to every other node.

(6.5) Suppose, as above, that all capacities in the flow network G are integers. Then the
F-F algorithm can be implemented to run in O(mC') time.



6.3. CUTS IN A FLOW NETWORK 187

Proof. 'We know from (6.4) that the algorithm terminates in at most C iterations of the
While loop. We therefore consider the amount of work involved in one iteration, when the
current flow is f.

The residual graph G has at most 2m edges, since each edge of G gives rise to at most
two edges in the residual graph. We will maintain it using two linked lists for each node v,
one containing the edges entering v, and one containing the edges exiting v. To find an s-t
path in Gy, we can use breadth-first search or depth-first search, which run in O(m + n)
time; by our assumption that m > n — 1, O(m + n) is the same as O(m). The procedure
augment (f, P) takes time O(n), as the path P has at most n — 1 edges. Given the new flow
f’, we can build the new residual graph in O(m) time: For each edge e of G, we construct
the correct forward and backwards edges in Gy. m

A somewhat more efficient version of the algorithm would maintain the linked lists of
edges in the residual graph G as part of the augment procedure that changes the flow f via

augmentation.

6.3 Cuts in a Flow Network

Our next goal is to show that the flow that is returned by the F-F algorithm has the maximum
possible value of any flow in G. To make progress towards this goal, we return to an issue
that we raised in Section 6.1 — the way in which the structure of the flow network places
upper bounds on the maximum value of an s-t flow. We have already seen one upper bound:
the value v(f), of any s-t-flow f, is at most C' = Z Ce. Sometimes this bound is useful,

e out of s
but sometimes it is very weak. We now use the notion of a cut to develop a much more

general means of placing upper bounds on the maximum flow value.

Consider dividing the nodes of the graph into two sets, A and B, so that s € Aandt € B.
As in our discussion at the end of Section 6.1, any such division places an upper bound on
the maximum possible flow value, since all the flow must cross from A to B somewhere.
Formally, we say that an s-t cut is a partition (A, B) of the vertex set V', so that s € A and
t € B. The capacity of a cut (A, B), which we will denote ¢(A, B), is simply the sum of the
capacities of all edges out of A: ¢(A, B) = Z Ce.

e out of A
Cuts turn out to provide very natural upper bounds on the values of flows, as expressed

by our intuition above. We make this precise via a sequence of facts.
(6.6) Let f be any s-t flow, and (A, B) any s-t cut. Then v(f) = fo"(A) — fn(A).

This statement is actually much stronger than a simple upper bound: it says that by watching
the amount of flow f sends across a cut, we can exactly measure the flow value: it is the



188 CHAPTER 6. NETWORK FLOW

total amount that leaves A, minus the amount that “swirls back” into A. This makes sense
intuitively, although the proof requires a little manipulation of sums.

Proof of (6.6). We know that v(f) = f°%(s). By assumption we have the f(s) = 0, as
the source s has no entering edges, so we can write v(f) = f°"(s) — f™(s). Since every node
v in A other than s is internal, we know that f°"(v) — f™(v) = 0 for all such nodes. Thus,

v(f) = ") — f(v),
vEA
since the only term in this sum that is non-zero is the one in which v is set to s.
Let’s try to rewrite the sum on the right as follows. If an edge e has both ends in A, then

“_m

f(e) appears once in the sum with a “+” and once with a , and hence these two terms

cancel out. If e has only its tail in A, then f(e) appears just once in the sum, with a “4”. If

“_»

e has only its head in A, then f(e) also appears just once in the sum, with a . Finally, if

e has neither end in A, then f(e) doesn’t appear in the sum at all. In view of this, we have

M) =)= >0 fle)= Y fle)=F(A) - f(A).

vEA e out of A e into A

Putting together these two equations, we have the statement of (6.6). m

If A= {s} then foU(A) = fou(s), and f"(A) = 0 as there are no edges entering the
source by assumption. So the statement for this set A = {s} is exactly the definition of the
flow value v(f).

Note that if (A, B) is a cut, then the edges into B are precisely the edges out of A.
Similarly the edges out of B are precisely the edges into A. Thus we have fou(A) = fi*(B)
and f(A) = fou(B), just by comparing the definitions for these two expressions. So we
can rephrase (6.7) in the following way.

(6.7) Let f be any s-t flow, and (A, B) any s-t cut. Then v(f) = f™(B) — fo"(B).

If we set A=V — {t} and B = {t} in (6.7) , we have v(f) = f(B) — fo"(B) =
[ (t)—fou(t). By our assumption the sink ¢ has no leaving edges, so we have that f°"(¢) = 0.
This says that we could have originally defined the wvalue of a flow equally well in terms of
the sink ¢: it is the amount of flow arriving at the sink.

A very useful consequence of (6.6) is the following upper bound.

(6.8) Let f be any s-t flow, and (A, B) any s-t cut. Then v(f) < c(A, B).
Proof.

v(f) = fA) = (A
fout(A)

IN



6.4. MAX-FLOW EQUALS MIN-CUT 189

= > flo

e out of A

< > e

e out of A

= ¢(A, B).

Here, the first line is simply (6.6) ; we pass from the first to the second since f"(A) > 0,
and we pass from the third to the fourth by applying the capacity conditions to each term
of the sum. m

In a sense, (6.8) looks weaker than (6.6), since it is only an inequality rather than an
equality. However, it will be extremely useful for us, since its right-hand-side is independent
of any particular flow f. What (6.8) says is that the value of every flow is upper-bounded by
the capacity of every cut. In other words, if we exhibit any s-t cut in G of some value c¢*, we
know immediately by (6.8) that there cannot be an s-t flow in G of value greater than c*.
Conversely, if we exhibit any s-t flow in G of some value v*, we know immediately by (6.8)
that there cannot be an s-t cut in G of value less than v*.

6.4 Max-Flow Equals Min-Cut

Let f denote the flow that is returned by the F-F algorithm. We want to show that f has
the maximum possible value of any flow in G, and we do this by the method discussed at
the end of the previous section: we exhibit an s-t cut (A*, B*) for which v(f) = c¢(A*, B*).
This immediately establishes that f has the maximum value of any flow, and that (A*, B*)
has the minimum capacity of any s-t cut.

The F-F algorithm terminates when the flow f has no s-t path in the residual graph Gj.

This turns out to be the only property needed for proving its maximality.

(6.9) If f is an s-t-flow such that there is no s-t path in the residual graph G ¢, then there
is an s-t cut (A*, B*) in G for which v(f) = ¢(A*, B*). Consequently, f has the mazimum
value of any flow in G.

Proof. The statement claims the existence of a cut satisfying a certain desirable property;
thus, we must now identify such a cut. To this end, let A* denote the set of all nodes v in G
for which there is an s-v path in Gy. Let B* denote the set of all other nodes: B* =V — A*.

First, we establish that (A*, B*) is indeed an s-t cut. It is clearly a partition of V. s € A*
since there is always a path from s to s. Moreover, t € A* by the assumption that there is
no s-t path in the residual graph; hence t € B* as desired.

Next, suppose that e = (u,v) is an edge in G for which u € A* and v € B*. We claim
that f(e) = c.. For if not, e would be a forward edge in the residual graph G. Since u € A%,



190 CHAPTER 6. NETWORK FLOW

there is an s-u path in Gy; appending e to this path, we would obtain an s-v path in Gy,
contradicting our assumption that v € B*.

Now suppose that ¢ = (v/,v’) is an edge in G for which v’ € B* and v' € A*. We claim
that f(e’) = 0. For if not, ¢’ would give rise to a backward edge ¢” = (v, «’) in the residual
graph Gy. Since v' € A*, there is an s-v’ path in G; appending e” to this path, we would
obtain an s-u’ path in G, contradicting our assumption that v’ € B*.

So all edges out of A* are completely saturated with flow, while all edges into A* are
completely unused. We can now use (6.6) to reach the desired conclusion:

v(f) = TA) =T
= > flo= > fle)
e out of A* e into A*

= Z ce — 0

e out of A*

= (A", B).

Note how, in retrospect, we can see why the two types of residual edges — forward and
backward — are crucial in analyzing the two terms in the expression from (6.6), which we
use to establish that the flow f, obtained by the F-F algorithm, is a maximum flow.

As a bonus, we have obtained the following amazing fact through the analysis of the
algorithm.

(6.10) In every flow network, there is a flow f* and a cut (A*, B*) so that v(f*) =
c(A*, BY).

The point is that f* in (6.10) must be a maximum s-t-flow; for if there were a flow
f' of greater value, the value of f’ would exceed the capacity of (A*, B*), and this would
contradict (6.8) . Similarly, it follows that (A*, B*) in (6.10) is a minimum cut — no
other cut can have smaller capacity — for if there were a cut (A’, B’) of smaller capacity,
it would be less than the value of f*, and this again would contradict (6.8). Due to these
implications, (6.10) is often called the Maz-Flow Min-Cut Theorem, and phrased as follows.

(6.11) In every flow network, the maximum value of an s-t flow is equal to the minimum
capacity of an s-t.

We also observe that our algorithm can easily be extended to compute a minimum s-t-cut
(A*, B*), as follows.

(6.12) Given a flow f of mazimum value, we can compute an s-t cut of minimum capacity
in O(m) time.



6.4. MAX-FLOW EQUALS MIN-CUT 191

Proof. We simply follow the construction in the proof of (6.9). We construct the residual
graph G5, and perform breadth-first search or depth-first search to determine the set A* of
all nodes that s can reach. We then define B* =V — A*, and return the cut (A*, B*). m

Note that there can be many minimum-capacity cuts in a graph G; the procedure in the
proof (6.5) is simply finding a particular one of these cuts, starting from a maximum flow

f.

Integer-Valued Flows. Among the many corollaries emerging from our analysis of the
F-F algorithm, here is another extremely important one. By (6.2), we maintain an integer-
valued flow at all times, and by (6.9), we conclude with a maximum flow. Thus we have

(6.13) If all capacities in the flow network are integers, then there is a mazimum flow f
for which every flow value f(e) is an integer.

Note that (6.13) does not claim that every maximum flow is integer-valued; only that
some maximum flow has this property. Curiously, although (6.13) makes no reference to
the F-F algorithm, our algorithmic approach here provides what is probably the easiest way
to prove it.

Real numbers as capacities? Finally, before moving on, we can ask how crucial our
assumption of integer capacities was. (Ignoring (6.13) and (6.5) , which clearly needed
it.) First, we notice that allowing capacities to be equal to rational numbers does not make
the situation any more general, since we always determine the least common multiple of all
capacities, and multiply them all by this value to obtain an equivalent problem with integer
capacities.

But what if we have real numbers as capacities? Where in the the proof did we rely on the
capacities being integers? In fact, we relied on it quite crucially: we used (6.2) to establish,
in (6.4), that the value of the flow increased by at least 1 in every step. With real numbers
as capacities, we should be concerned that the value of our flow keeps increasing, but in
increments that become arbitrarily smaller and smaller; and hence we have no guarantee
that the number of iterations of the loop is finite. And this turns out to be an extremely
real worry, for the following reason: With pathological choices for the augmenting path, the
F-F algorithm with real-valued capacities can run forever.

However, one can still prove that the Max-Flow Min-Cut Theorem (6.10) is true even if
the capacities may be real numbers. Note that (6.9) assumed only that the flow f has no
s-t-path in its residual graph G, in order to conclude that there is an s-t-cut of equal value.
Clearly, for any flow f of maximum value, the residual graph has no s-t-path — otherwise
there would be a way to increase the value of the flow. So one can prove (6.10) in the case



192 CHAPTER 6. NETWORK FLOW

of real-valued capacities by simply establishing that for every flow network, there exists a
maximum flow.

Capacities in any real application are integers or rational numbers. However, the prob-
lem of pathological choices for the augmenting paths can manifest itself even with integer
capacities: it can make the F-F algorithm take a gigantic number of iterations. In the next
section, we discuss how to select augmenting paths so as to avoid the potential bad behavior
of the algorithm.

6.5 Choosing Good Augmenting Paths

In the previous section, we saw that any way of choosing an augmenting path increases the
value of the flow, and this led to an O(C) bound on the number of augmentations, where
C = Z ce. When (' is not very large, this can be a reasonable bound; however, in

e_out of s
general it is very weak.

To get a sense for how bad this bound can be, consider the example graph in the beginning
of this chapter; but this time assume the capacities are as follows: the edges (s,v), (s,u),
(v,t) and (u, t) have capacity 100, and the edge (u, v) has capacity 1. It is easy to see that the
maximum flow has value 200, and has f(e) = 100 for the edges (s,v), (s,u), (v,t) and (u,t)
and value 0 on the edge (u,v). This flow can be obtained by a sequence of 2 augmentations,
using the paths of nodes s, u,t and path s,v,t. But consider how bad the F-F algorithm can
be with pathological choices for the augmenting paths. Suppose we start with augmenting
path P; of nodes s,u,v,t in this order. This path has bottleneck(P;) = 1. After this
augmentation we have f(e) = 1 on the edge e = (u,v), so the reverse edge is in the residual
graph. For the next augmenting path we choose the path P, of the nodes s,v,u,t in this
order. In this second augmentation we get bottleneck(P,) = 1 as well. After this second
augmentation we have f(e) = 0 for the edge e = (u,v), so the edge is again in the residual
graph. Suppose we alternate between choosing P; and P, for augmentation. In this case
each augmentation will have 1 as the bottleneck capacity, and it will take 200 augmentations
to get the desired flow of value 200. This is exactly the bound we proved in (6.4).

The goal of this section is to show that with a better choice of paths we can improve
this bound significantly. A large amount of work has been devoted to finding good ways
of choosing augmenting paths in the maximum flow problem, so as terminate in as few
iterations as possible. We focus here on one of the most natural approaches. Recall that
augmentation increases the value of the maximum flow by the bottleneck capacity of the
selected path; so if we choose paths with large bottleneck capacity, we will be making a lot
of progress. A natural idea is to select the path that has the largest bottleneck capacity.
Selecting such a path at each iteration can slow down the iterations by quite a bit. We will
avoid this slowdown by not worrying about selecting the path that has exactly the largest



6.5. CHOOSING GOOD AUGMENTING PATHS 193

bottleneck capacity. Instead, we will maintain a so-called scaling parameter A, and we will
look for paths that have bottleneck capacity at least A.

Let Gf(A) be the subset of the residual graph consisting only of edges with residual
capacity at least A. We will work with values of A that are powers of 2. The algorithm is
as follows.

Scaling Max-Flow(G,c)
Initially f(e) =0 for all e in G.
Initially set A to be the largest power of 2
that is no larger than the maximum capacity out of s:

A< max c..
e out of s
While A>1
While there is an s-t path in the graph G(A)

Let P be a simple s-t path in G;(A)
f' = augment(f, P)
Update f to be f’
Endwhile
A=A/2
Endwhile
Return f

First observe that the new Scaling Max-Flow algorithm is really just an implementation
of the original Ford-Fulkerson algorithm. The new loops, the value A, and the restricted
residual graph G;(A) is only used to guide the selection of residual path — with the goal
of using edges with large residual capacity for as long as possible. Hence, all the properties
that we proved about the original Max-Flow algorithm are also true for this new version: the
flow remains integer-valued throughout the algorithm, and hence all residual capacities are
integer-valued.

(6.14) If the capacities are integer-valued, then throughout the Scaling Max-Flow al-
gorithm the flow and the residual capacities remain integer-valued. This implies that when
A =1, G¢(A) is the same as Gy, hence when the algorithm terminates the flow f is of
maximum value.

Next we consider the running time. We call an iteration of the outside While loop —
with a fixed value of A — the A-scaling phase. It is easy to give an upper bound on the
number of different A-scaling phases, in terms of the value C' = Z c. that we also used

e out of s
in the previous section. The initial value of A is at most C', it drops by factors of 2, and it

never gets below 1. Thus,

(6.15) The number of iterations of the outside While loop is at most [log, C'].



194 CHAPTER 6. NETWORK FLOW

The harder part is to bound the number of augmentations done in each scaling phase.
The idea here is that we are using paths that augment the flow by a lot, and so there should
be relatively few augmentations. During the A-scaling phase we only use edges with residual
capacity at least A. Using (6.3), we have

(6.16) During the A-scaling phase, each augmentation increases the flow value by at
least A.

The key insight is that at the end of the A-scaling phase, the flow f cannot be not too far

from the maximum possible value.

(6.17) Let f be the flow at the end of the A-scaling phase. There is an s-t cut (A*, B¥)
in G for which c(A*, B*) < v(f) + mA, where m is the number of edges in the graph G.
Consequently, the mazimum flow in the network has value at most v(f) +mA.

Proof. This proof is analogous to our proof of (6.9), which established that the flow returned
by the original Max-Flow algorithm is of maximum value.

As in that proof, we must identify the cut promised in the first statement above. Let A*
denote the set of all nodes v in G for which there is an s-v path in G;(A). Let B* denote
the set of all other nodes: B* =V — A*. We can see that (A*, B*) is indeed an s-t cut as
otherwise the phase would not have ended.

Now consider an edge e = (u,v) in G for which v € A* and v € B*. We claim that
ce < f(e)+ A, for if not, e would be a forward edge in the graph G ¢(A). Since u € A*, there
is an s-u path in G¢(A); appending e to this path, we would obtain an s-v path in G¢(A),
contradicting our assumption that v € B*. Similarly, we get that for any edge ¢’ = (v/, ') in
G for which v’ € B* and v' € A*, f(e’) < A. For if not, ¢’ would give rise to a backward edge
e” = (v',u') in the graph G;(A). Since v' € A*, there is an s-v’ path in G¢(A); appending
e¢” to this path, we would obtain an s-u’ path in G¢(A), contradicting our assumption that
u' € B*.

So all edges e out of A* are almost saturated — they satisfy ¢, < f(e) + A — and all
edges into A* are almost empty — they satisfy f(e) < A. We can now use (6.6) to reach
the desired conclusion:

v(f) = fley— > f(e

e out of A* e into A*

> Z (Ce - A) - Z A
e out of A* e into A*

= X - > A= > A
e out of A* e out of A* e into A*

> (A%, B*) — mA.



6.5. CHOOSING GOOD AUGMENTING PATHS 195

Here the first inequality follows from our bounds on the flow values of edges across the cut,
and the second inequality follows from the simple fact that the graph only contains m edges
total.

The maximum flow value is bounded by the capacity of any cut. We use the cut (A*, B*)
to obtain the bound claimed in the second statement. m

(6.18) The number of augmentations in a scaling phase is at most 2m.

Proof. The statement is clearly true in the first scaling phase — we can use each of the edges
out of s only for at most one augmentation in that phase. Now consider a later scaling phase
A, and let fy be the flow at the end of the previous scaling phase. In that phase we used
A" = 2A as our parameter. By (6.17) the maximum flow is at most v(f)+mA’ = v(f)+2mA.
In the A-scaling phase, each augmentation increases the flow by at least A, and hence there
can be at most 2m augmentations. m

An augmentation takes O(m) time, including the time required to set up the graph
and find the appropriate path. We have at most [log, C'| scaling phases, and at most 2m
augmentations in each scaling phase. Thus we have the following result.

(6.19) The Scaling Max-Flow algorithm in a graph with m edges and integer capacities
finds a mazimum flow in at most 2m/[log, C'| augmentations. It can be implemented to run
in at most O(m?log, C) time.

When C' is large, this time bound is much better than the O(mC') bound that applied
to an arbitrary implementation of the F-F algorithm. Consider that in our example at the
beginning of this section, we had capacities of size 100; but we could just as well have used

2100.

capacities of size ; in this case, the generic F-F algorithm could take time proportional

2190 "while the scaling algorithm will take time proportional to log,(2'%°) = 100. One way

to
to view this distinction is as follows: the generic F-F algorithm requires time proportional to
the magnitude of the capacities, while the scaling algorithm only requires time proportional
to the number of bits needed to specify the capacities in the input to the problem. As a
result, the scaling algorithm is running in time polynomial in the size of the input — i.e. the
number of edges and the numerical representation of the capacities — and so it meets our
traditional goal of achieving a polynomial-time algorithm. Bad implementations of the F-F
algorithm, which require time Q(m(C'), do not meet this standard of polynomiality.

Could we ask for something qualitatively better than what the scaling algorithm guar-
antees? Here is one thing we could hope for: our example graph had 4 nodes and 5 edges;
so it would be nice to run in time polynomial in the numbers 4 and 5, completely indepen-
dently of the values of the capacities (except for having to do arithmetic operations using
these numbers). Such an algorithm, which is polynomial in |V| and |E| independent of the



196 CHAPTER 6. NETWORK FLOW

numerical values assigned to the edges, is called a strongly polynomial algorithm. In fact,
the first polynomial algorithms for the maximum flow problem, discovered independently by
Dinitz and by Edmonds and Karp, were also strongly polynomial; and had running times
of O(mn?) and O(m?n) respectively. Both algorithms were based on the F-F algorithm
and used in each iteration the augmenting paths with fewest edges. There has since been
a huge amount of work devoted to improving the running times of maximum flow algo-
rithms; there are currently algorithms that achieve running times of O(mnlogn), O(n?),
and O(min(n?3m'/?)mlognlog C), where the last bound assumes that all capacities are
integral and at most C'.

6.6 The Preflow-Push Maximum Flow Algorithm

From the very beginning, our discussion of the maximum flow problem has been centered
around the idea of an augmenting path in the residual graph — but in fact, there are some
very powerful techniques for maximum flow that are not explicitly based on augmenting
paths. In this section we study one such technique, the Preflow-Push algorithm.

Algorithms based on augmenting paths maintain a flow f, and use the augment procedure
to increase the value of the flow. By way of contrast, the Preflow-Push algorithm will, in
essence, increase the flow on an edge-by-edge basis. Changing the flow on a single edge is
will typically violate the conservation condition, and so the algorithm will have to maintain
something less well-behaved than a flow — something that does not obey conservation — as
it operates.

We say that an s-t preflow (preflow, for short) is a function f that maps each edge e to
a non-negative real number, f: £ — R™. A preflow f must satisfy the capacity conditions:

(i) For each e € FE, 0 < f(e) < c..

In place of the conservation conditions, we require only inequalities: each node other than s
must have at least as much flow entering as leaving;:

(ii) For each node v other than the source s, we have

Y. fle)= > fle)

e into v e out of v

We will call the difference
ep(v)= > fle)— > fle)
e into v e out of v

the excess of preflow at node v. Notice, that a preflow where all nodes other than s and ¢
have zero excess is a flow, and the value of the flow is exactly e;(¢). We can still define the



6.6. THE PREFLOW-PUSH MAXIMUM FLOW ALGORITHM 197

concept of a residual graph G for a preflow f, just as we did for a flow. The algorithm will
“push” flow along edges of the residual graph (using both forward and backward edges).

The Preflow-Push algorithm will maintain a preflow and work on converting the preflow
into an flow. There is a nice physical intuition behind the algorithm. We will also assign
each node v a label h(v) that we will think of as the height of that node, and will push flow
from nodes with higher label to those with lower labels, following the intuition that fluid
flows downhill. To make this precise, a labeling is a function h : V' — Z>( from the nodes to
the non-negative integers. We will also refer to the labels as heights of the nodes. We will
say that a labeling h and a s-t-preflow f are compatible, if

(i) (Source and sink conditions.) h(t) = 0 and h(s) = n,
(i) (Steepness conditions.) For all edges (v, w) € Ey in the residual graph h(v) < h(w)+1.

Intuitively, the height difference n between the source and the sink is meant to ensure that
the flow starts high enough to flow from s towards the sink ¢, while the steepness condition
will help by making the descent of the flow gradual enough to make it to the sink.

The key property of a compatible labeling preflow and labeling is that there can be no
s-t path in the residual graph.

(6.20) If s-t-preflow f is compatible with a labeling h, than there is no s-t-path in the
residual graph G.

Proof. We prove the statement by contradiction. Let P be a simple s-t-path in the residual
graph GG. Assume that the nodes along P are s,vq,...,v; = t. By definition of a labeling
compatible with preflow f we have that h(s) = n. The edge (s,v;) is in the residual graph,
hence h(vy) > h(s) —1 =n — 1. Using induction i and using the steepness condition for the
edge (v;_1,v;), we get that for all nodes v; in path P the height is at least h(v;) > n — .
Notice that the last node of the path is vy = ¢, hence we get that h(t) > n — k. However,
h(t) = 0 by definition; and k£ < n as the path P is simple. This contradiction proves the

claim. =

Recall from (6.9) that if there is no s-¢ path in the residual graph Gy of a flow f than
the flow has maximum value. This implies the following corollary.

(6.21) If s-t-flow f is compatible with a labeling h, than f is a flow of maximum value.

Note that (6.20) applies to preflows, while (6.21) is more restrictive in that it applies
only to flows. Thus Preflow-Push algorithm will maintain a preflow f and a labeling h
compatible with f, and it will work on modifying f and h so as to move f toward being a
flow. Once f actually becomes a flow, we can invoke (6.21) to conclude that it is maximum.
In light of this, we can view the Preflow-Push algorithm as being in a way orthogonal to



198 CHAPTER 6. NETWORK FLOW

the Ford-Fulkerson algorithm. The Ford-Fulkerson algorithm maintains a feasible flow while
changing it gradually towards optimality. The Preflow-Push algorithm, on the other hand,
maintains a condition that would imply the optimality of a preflow f, if it were to be a
feasible flow, and the algorithm gradually transforms the preflow f into a flow.

To start the algorithm we will need to define an initial preflow f and labeling h that are
compatible. We will use h(v) = 0 for all v # s, and h(s) = n, as our initial labeling. To
make a preflow f compatible with this labeling, we need to make sure that no edges leaving
s are in the residual graph (as these edges do not satisfy the steepness condition). To this
end we define the initial preflow as f(e) = ¢, for all edges e = (s, v) leaving the source, and
define f(e) = 0 for all other edges.

(6.22) The initial preflow f and labeling h are compatible.

Next we will discuss the steps the algorithm makes towards turning the preflow f into a
feasible flow, while keeping it compatible with some labeling h. Consider any node v that
has excess — i.e., ef(v) > 0. If there is any edge e in the residual graph Gy that leaves v
and goes to a node w at a lower height (note that h(w) is at most 1 less than h(v) due to
the steepness condition), then we can modify f by pushing some of the excess flow from v
to w. Will will call this a push operation.

push(f, h,v,w)
Applicable if ef(v) >0, h(w) < h(v) and (v,w) € Ef.
If e= (v,w) is a forward edge then
let 6 = min(es(v),c. — f(e)) and
increase f(e) by J.
If e = (v,w) is a backwards edge then
let 0 = min(es(v), f(e)) and
decrease f(e) by 0.
Return(f,h)

If we cannot push the excess of v along any edge leaving v then we will need to raise v’s
height. We will call this a relabel operation.

relabel(f, h,v)
Applicable if ef(v) >0, and
for all edges (v,w) € E; we have h(w) > h(v).
Increase h(v) by 1.
Return(f,h)

So in summary the Preflow-Push algorithm is as follows.

Preflow-Push(G, s, t, c)



6.6. THE PREFLOW-PUSH MAXIMUM FLOW ALGORITHM 199

Initially h(v) =0 for all v # s and h(s) =n and
f(e) =c. for all e= (s,v) and f(e) =0 for all other edges.
While there is a node v #t with excess es(v) >0
Let v be a node with excess
If there is w such that push(f, h,v,w) can be applied then
push(f, h,v,w)
Else
relabel(f, h,v)
Endwhile
Return(f)

As usual this algorithm is somewhat under-specified. For an implementation of the
algorithm we will have to specify which node with excess to choose, and how to efficiently
select an edge on which to push. However, it is clear that each iteration of this algorithm
can be implemented in polynomial time. (We'll discuss later how to implement it reasonably
efficiently.). Further, it is not hard to see that the preflow f and the labeling h are compatible
throughout the algorithm. If the algorithm terminates — something that is far from obvious
based on its description — then there are no non-sinks with positive excess, and hence the
preflow f is in fact a flow. It then follows from (6.21) that f would be a maximum flow at
termination.

We summarize these observations as follows.
(6.23) Throughout the Preflow-Push algorithm:
(i) the labels are non-negative integers;
(ii) f is a preflow, and if the capacities are integral then the preflow f is integral; and
(iii) the preflow f and labeling h are compatible.
If the algorithm returns a preflow f, then f is a flow of maximum value.

Proof. By (6.22) the initial preflow f and labeling h are compatible. We will show using
induction on the number of push and relabel operations that f and h satisfy the properties
of the statement. The push operation modifies the preflow f, but the bounds on § guarantee
that the the f returned satisfies the capacity constraints, and the all excesses remain non-
negative, so f is a preflow. To see that preflow f and the labeling h are compatible, note
that push(f,h,v,w) can add one edge to the residual graph, the reverse edge (v, w), and
this edge does satisfy the steepness condition. The relabel operation increases the label of
v, and hence increases the steepness of all edges leaving v. However, it only applies when no
edge leaving v in the residual graph is going downwards, and hence the preflow f and the
labeling h are compatible after relabeling.



200 CHAPTER 6. NETWORK FLOW

The algorithm terminates if no node other than s or ¢ has excess. In this case, f is a flow
by definition; and since the preflow f and the labeling A remain compatible throughout the
algorithm, (6.21) implies that f is a flow of maximum value. =

Next, we will consider the number of push and relabel operations. First, we will prove
a limit on the relabel operations, and this will help prove a limit on the maximum number
of push operations possible. We only consider a node v for either push or relabel when
v has excess. The only source of flow in the network is the source s, hence intuitively the
excess at v must have originated at s. The following consequence of this fact will be key to
the analysis.

(6.24) Let f be a preflow. If the node v has excess, then there is a path in Gy from v to
the source s.

Proof. Let A denote all the nodes w such that there is a path from w to s in the residual
graph Gy, and let B =V —A. We need to show that all nodes with excess are in A.

Notice that s € A. Further, no edges e = (x,y) leaving A can have positive flow, as an
edge with f(e) > 0 would give rise to a reverse edge (y, z) in the residual graph, and then y
would have been in A. Now consider the sum of excesses in the set B, and recall that each
node in B has non-negative excess, as s € B.

0< Y es(0) = S () = /" (v)

vEB vEB

Now let’s rewrite the sum on the right as follows. If an edge e has both ends in B, then

43

f(e) appears once in the sum with a “+” and once with a “—” and hence these two terms
cancel out. If e has only its head in B, then e leaves A and we know that all edges leaving
A have f(e) = 0. If e has only its tail in B, then f(e) appears just once in the sum, with a
“—7. So we get

0< Y eplv) = —f(B).

veEB

Since flows are non-negative, we see that the sum of the excesses in B is zero; since individual
excess in B is non-negative, they must therefore all be 0. m

Now we are ready to prove that the labels do not change too much. The algorithm never
changes the label of s (as the source never has positive excess). Each other node v starts
with h(v) = 0, and its label increases by 1 every time it changes. So we simply need to give
a limit on how high a label can get. Recall that n denotes the number of nodes in V.

(6.25) Throughout the algorithm all nodes have h(v) < 2n — 1.



6.6. THE PREFLOW-PUSH MAXIMUM FLOW ALGORITHM 201

Proof. The initial labels h(t) = 0 and h(s) = n do not change during the algorithm.
Consider some other node v # s,t. The algorithm changes v’s label only when applying the
relabel operation, so let f and h be the preflow and labeling returned by a relabel(f,h,v)
operation. By Statement (6.24) there is a path P in the residual graph G from v to s. Let
| P| denote the number of edges in P, and note that |P| < n — 1. The steepness condition
implies that heights of the nodes can decrease by at most 1 along each edge in P, and hence
h(v) — h(s) < |P|, which proves the statement. =

Labels are monotone increasing throughout the algorithm, so this statement immediately
implies a limit on the number of relabeling operations.

(6.26) Throughout the algorithm each node is relabeled at most 2n — 1 times, and the
total number of relabeling operation is less than 2n>.

Next we will bound the number of push operations. We will distinguish two kinds of push
operations. A push(f,h,v,w) is saturating if either e = (v, w) is a forward edge in E; and
d =c. — f(e), or (v,w) is a backwards edge with e = (w,v) and 6 = f(e). Le., the push is
saturating if after the push the edge (v, w) is no longer in the residual graph. All other push
operations will be referred to as non-saturating.

(6.27) Throughout the algorithm the number of saturating push operations is at most
2nm.

Proof. Consider an edge (v, w) in the residual graph. After a saturating push(f, h,v,w) we
have that h(v) = h(w)+ 1, and the edge (v, w) is no longer in the residual graph G . Before
we can push again along this edge, first we have to push from w to v to make the edge (v, w)
appear in the residual graph. However, in order to push from w to v, we first need for w’s
label to increase by at least 2 (so that w is above v). The label of w can increase by 2 at
most n — 1 times, so a saturating push from v to w can occur at most n times. Each edge
e € E can give rise to two edges in the residual graph, so overall we can have at most 2nm
saturating pushes. m

The hardest part of the analysis is proving a bound on the number of non-saturating
pushes, and this also will be the bottleneck for the theoretical bound on the running time.

(6.28) Throughout the algorithm the number of non-saturating push operations is at
most 2n*m.

Proof. For this proof we will use a so-called potential function method. For a preflow f and
a compatible labeling h, we define

O(f;h) = > h(v)

vief(v)>0



202 CHAPTER 6. NETWORK FLOW

to be the sum of the heights of all nodes with positive excess. (P is often called a potential
since it resembles the “potential energy” of all nodes with positive excess.)

In the initial preflow and labeling all nodes with positive excess are at height 0, so
®(f,h) = 0. ®(f,h) remains non-negative throughout the algorithm. A non-saturating
push(f, h,v,w) decreases ®(f, h) by at least 1, as after the push the node v will have no
excess, and w, the only node that gets new excess from the operation, is at a height one less
than v. However, each saturating push and each relabel operation can increase ®(f,h). A
relabel operation increases ®(f, h) by exactly 1. There are at most 2n? relabel operations,
so the total increase in ®( f, h) due to relabel operations is 2n?. A saturating push(f, h, v, w)
operation does not change labels, but can increase ®(f, k) since the node w may suddenly
acquire positive excess after the push. This would increase ®(f, h) by the height of w, which
is at most 2n — 1. There are at most 2nm saturating push operations, so the total increase
in ®(f, h) due to push operations is at most 2mn(2n—1). So between the two causes ®(f, h)
can increase by at most 4mn? during the algorithm.

But since ® remains non-negative throughout, and it decreases by at least one on each
non-saturating push, it follows that there can be at most 4mn? non-saturating push opera-
tions. m

There has been a lot of work devoted to choosing node selection rules for this algorithm
to improve the worst case running time. Next we show that if one always selects the node
with positive excess at the maximum height, then there will be at most O(n?) non-saturating
push operations.

(6.29) If at each step we choose the node with excess at maximum height than the number
of non-saturating push operations through the algorithm is at most 2n>.

Proof. The algorithm selects a node with excess at maximum height. Consider this height
H = max,.. +(0)>0 h(v) as the algorithm proceeds. This maximum height H can only increase
due to relabeling (as flow is always pushed to nodes at less height), and so the total increase
in H throughout the algorithm is at most 2n? by (6.25) . H starts out 0 and remains
non-negative, so the number of times H changes is at most 4n?.

Now consider the behavior of the algorithm over a phase of time in which H remains
constant. We claim that each node can have at most one non-saturating push during this
phase. Indeed, during this phase, flow is being pushed from nodes at height H to nodes at
height H — 1; and after a non-saturating push from v, it must receive flow from a node at
height H 4 1 before we can push from it again.

Since there are at most n non-saturating push operations between each change to H, and
H changes at most 4n? times, the total number of non-saturating push operations is at most
4n3. m



6.6. THE PREFLOW-PUSH MAXIMUM FLOW ALGORITHM 203

As a follow-up to (6.29), it is interesting to note that experimentally the computational
bottleneck of the method is the number of relabeling operations, and better experimental
running time is obtained by variants that work on increasing labels faster than one-by-one.
This is a point that we pursue further in some of the exercises.

Finally, we need to briefly discuss how to implement this algorithm efficiently. Maintain-
ing a few simple data structures will allow us to effectively implement the operations of the
algorithm in constant time each, and overall implement the algorithm in time O(mn) plus
the number of non-saturating push operations. Hence the above generic algorithm will run
in O(mn?) time, while the version that always selects the node at maximum height will run
in O(n?) time.

We can maintain all nodes with excess on a simple list and so we will be able to select
a node with excess in constant time. One has to be a bit more careful to be able to select
a node with maximum height H in constant time. In order to do this we will maintain a
linked list of all nodes with excess at every possible height. Note that whenever a node v gets
relabeled, or continues to have positive excess after a push, it remains a node with maximum
height H. Thus, we only have to select a new node after a push when the current node v
no longer has positive excess. If node v was at height H, then the new node at maximum
height will also be at height H or, if no node at height H has excess, then the maximum
height will be H — 1 — since the previous push out of v pushed flow to a node at height
H -1

Now assume we have selected a node v, and we need to select an edge (v, w) on which to
apply push(f, h,v,w) (or relabel(f, h,v) if no such w exists). To be able to select an edge
quickly we will use the adjacency list representation of the graph. More precisely, we will
maintain, for each node v, all possible edges leaving v in the residual graph (both forwards
and backwards edges) in a linked list, and with each edge we keep its capacity and flow value.
Note that this way we have two copies of each edge in our data structure: a forwards and a
backwards copy. These two copies will each have pointers to one another, so that updates
done at one copy can be carried over to the other one in O(1) time. We will select edges
leaving a node v for push operations in the order they appear on node v’s list. To facilitate
this selection we will maintain a pointer current(v) for each node v to the last edge on the
list that has been considered for a push operation. So, if node v no longer has excess after
a non-saturating push out of node v, the pointer current(v) will stay at this edge, and we
will use the same edge for the next push operation out of v. After a saturating push out of
node v, we advance current(v) to the next edge on the list.

The key observation is that after advancing the pointer current(v) from an edge (v, w),
we will not want to apply push to this edge again until relabel v.

(6.30) After the current(v) pointer is advanced from an edge (v,w) we cannot apply
push to this edge till v gets relabeled.



204 CHAPTER 6. NETWORK FLOW

Proof. At the moment current(v) is advanced from the edge (v, w) there is some reason
push cannot be applied to this edge. Either h(w) > h(v), or the edge is not in the residual
graph. In the first case, we clearly need to relabel v before applying a push on this edge.
In the later case, one needs to apply push to the reverse edge (w,v) to make (v, w) re-enter
the residual graph. However, when we apply push to edge (w,v) then w is above v, and so
v needs to be relabeled before one can push flow from v to w again. =

Since edges do not have to be considered again for push before relabeling, we get the
following.

(6.31) When the current(v) pointer reaches the end of the edge list for v, the relabel
operation can be applied to node v.

After relabeling node v we reset current(v) to the first edge on the list, and start considering
edges again in the order they appear on v’s list.

(6.32) The running time of the Preflow-Push algorithm, implemented using the above
data structures is O(mn) plus O(1) for each non-saturating push operation. In particular,
the generic Preflow-Push algorithm runs in O(n*m) time, while the version when we always
select the node at mazimum height runs in O(n?®) time.

Proof. The initial flow and relabeling is set up on O(m) time. Both push and relabel
operations can be implemented in O(1) time, once the operation has been selected. Consider
a node v. We know that v can be relabeled at most 2n times throughout the algorithm.
We will consider the total time the algorithm spends on finding the right edge to push flow
on out of node v between two times that node v gets relabeled. If node v has d, out-going
edges, then by (6.31) we spend O(d,) time on advancing the current(v) pointer between
consecutive relabelings of v. Thus, the total time spent on advancing the current pointers
throughout the algorithm is O(X,¢y nd,) = O(mn), as claimed. m

6.7 Applications: Disjoint Paths and Bipartite Match-
ings

Next we develop two simple applications of maximum flow and minimum cuts in graphs.
Much before the work of Ford and Fulkerson, Menger in 1927 studied the closely related
disjoint paths problem. A set of paths is edge-disjoint if their edge sets are disjoint, i.e., no
two paths share an edge, though multiple paths may go through some of the same nodes.
Given a graph G = (V, E) with two distinguished nodes s,t € V, the edge-disjoint paths
problem is to find the maximum number of edge-disjoint s-t paths in G. This problem can
be solved naturally using flows. Let the capacity of each edge e = (v,w) be 1. We claim



6.7. APPLICATIONS: DISJOINT PATHS AND BIPARTITE MATCHINGS 205

that the maximum flow has value k if and only if there are k£ edge-disjoint paths in G from
s to t.

(6.33) There are k edge-disjoint paths in G from s to t if and only if the value of the

mazximum value of an s-t-flow in G is at least k.

Proof. First suppose there are k edge-disjoint paths. We can make each of these paths carry
one unit of flow: we set the flow as f(v,w) = 1 for all edges on the paths, and f(v,w) =10
on all other edges, to define a feasible flow of value k.

Conversely, consider a flow in the network G of value k. By (6.43), we know that there
is a feasible flow with integer flow values. Since all edges have a capacity bound of 1, and
the flow is integer-valued, each edge that carries flow has exactly one unit of flow on it.

Consider an edge (s, ) that carries one unit of flow. It follows by conservation that there
is some edge (u,v) carries one unit of flow. If we continue in this way, we construct a path
P from s to t, so that each edge on this path carries one unit of low. We can apply this
construction to each edge of the form (s, u) carrying one unit of flow; in this way, we produce
k paths from s to t, each consisting of edges that carry one unit of low. We can make these
k paths are edge-disjoint: if there are multiple edges carrying flow into a node v, than, by
conservation, there are at least as many edge carrying flow out of v, so each path entering v
can use a different edge to leave the node. m

For this flow problem, we discover that C' = Z ce < |V| = n, as there are at most

e out of s

|V| edges out of s, each of which has capacity 1. Thus, by using the O(m(C') bound in (6.5)
we get an integer maximum flow in O(mn) time. To obtain the edge-disjoint paths, we
decompose the flow into paths as was done in the proof of (6.33). It is not hard to find such
a decomposition also in O(mn) time. The number of edges in the paths is at most m, so we
get an O(mn) running time by adding each new edge to the current path in O(n) time.

(6.34) The F-F algorithm can be used to find a mazimum set of edge-disjoint s-t paths
in directed graph G in O(mn) time.

It’s interesting that if we were to use the “better” bound of O(m?log, C) that we de-
veloped in the previous section, we’'d get the inferior running time of O(m?logn) for this
problem. There is nothing contradictory in this — the O(m?log, C) bound was designed to
be good for instances in which C' is very large relative to m and n; whereas in the bipartite
matching problem, C' = n.

The Max-Flow Min-Cut Theorem (6.11) can be used to give the following characteri-
zation of the maximum number of edge-disjoint paths. This characterization was originally
discovered by Menger in 1927. We say that a set F' C FE of edges disconnects t from s if after
removing the edges F' from the graph G no s-t paths remain in the graph.



206 CHAPTER 6. NETWORK FLOW

(6.35) In every directed graph with nodes s and t, the mazimum number of edge-disjoint
s-t paths is equal to the minimum number of edges whose removal disconnects t from s.

Proof. If the removal of a set F' C E of edges disconnects ¢ from s, then all s-t-paths must
use at least one edge from F', and hence the number of edge-disjoint s-t paths is at most | F|.

To prove the other direction we will use the Max-Flow Min-Cut Theorem (6.11). By
(6.33) the maximum number of edge-disjoint paths is the value v of the maximum s-¢ flow.
Now (6.11) states that there is an s-t-cut (A, B) with capacity v. Let F be the set of edges
that go from A to B. Each edge has capacity 1, so |F'| = v, and by the definition of an s-t
cut removing these v edges from G disconnects t from s. m

The Bipartite Matching Problem

One of our original goals in developing the maximum flow problem was to be able to solve the
bipartite matching problem, and we now show how to do this. Recall that a bipartite graph
G = (V, E) is an undirected graph whose node set can be partitioned as V' = X UY, with
the property that every edge e € E has one end in X and the other end in Y. A matching
M in G is a subset of the edges M C FE such that each node appears in at most one edge in
M. The maximum matching problem is that of finding a matching in M of largest possible
size.

Note that the graph defining a matching problem is undirected, while flow networks are
directed. Yet, the idea of using the maximum flow algorithm to find a maximum matching
will be quite simple. Beginning with the graph G in a bipartite matching problem, we
construct a flow network G’ as follows. First, we direct all edges in G from X to Y. We
then add a node s, and an edge (s,z) from s to each node in X. We add a node ¢, and an
edge (y,t) from each node in Y to t. Finally, we give each edge in G a capacity of 1.

We can now show that integer-valued flows in G’ encode matchings in G in a fairly trans-
parent fashion. First, suppose there is a matching in G consisting of k edges (4, ¥i, ), - - -, (Ziy, Ui, )-



6.7. APPLICATIONS: DISJOINT PATHS AND BIPARTITE MATCHINGS 207

Then consider the flow f that sends one unit along each path of the form s, x;;, y;;, ¢ — that
is, f(e) = 1 for each edge on one of these paths. One can verify easily that the capacity and
conservation conditions are indeed met, and that f is an s-t flow of value k.

Conversely, suppose there is a flow f’ in G’ of value k. By the integrality theorem for
maximum flows (6.13), we know there is an integer-valued flow f of value k — and since all
capacities are 1, this means that f(e) is equal to either 0 or 1 for each edge e. Now, consider
the set M’ of edges of the form (z,y) on which the flow value is 1.

Here are three simple facts about the set M’

e M’ contains k edges.

To see this, consider the cut (A, B) in G’ with A = {s} U X. The value of the flow is the
total flow leaving A, minus the total flow entering A. The first of these terms is simply
the cardinality of M’, since these are the edges leaving A that carry flow, and each carries
exactly one unit of flow. The second of these terms is 0, since there are no edges entering A.
Thus, M’ contains k edges.

e Each node in X is the tail of at most one edge in M’.

To see this, suppose x € X were the tail of at least two edges in M’. Since our flow is
integer-valued, this means that at least two units of flow leave from x. By conservation of
flow, at least two units of flow would have to come into x — but this is not possible, since
only a single edge of capacity 1 enters x. Thus x is the tail of at most one edge in M’. By
the same reasoning, we can show

e Fach node in Y is the head of at most one edge in M’.

Combining these facts, we see that if we view M’ as a set of edges in the original bipartite
graph G, we get a matching of size k. In summary, we have proved the following fact.

(6.36) The size of the mazximum matching in G is equal to the value of the maximum
flow in G'; and the edges in such a matching in G are the edges that carry flow from X to
Y in G'.

Note the crucial way in which the integrality theorem (6.13) figured in this construction
— we needed to know there is a maximum flow in G’ that takes only the values 0 and 1.

Now let’s consider how quickly we can compute a maximum matching in G. Let n =
| X| = |Y], and let m be the number of edges of G. We'll tacitly assume that m > n — since
we may as well assume that there is at least one edge incident to each node in the original
problem. The time to compute a maximum matching is dominated by the time to compute
an integer-valued maximum flow in G’, since converting this to a matching in G is simple.
For this flow problem, we have that C' = Z ce = | X| = n, as s has an edge of capacity

e out of s

1 to each node of X. Thus, by using the O(m(C') bound in (6.5), we get the following.



208 CHAPTER 6. NETWORK FLOW

(6.37) The F-F algorithm can be used to find a maximum matching in a bipartite graph
in O(mn) time.

It is worthwhile to consider what the augmenting paths mean in the network G’. Consider
the matching M consisting of edges (x1,41), (z2,y2) and (z4,y4) in the bipartite graph at
the beginning of this chapter. Let f be the corresponding flow in G’. This matching is not
maximum, so f is not a maximum s-t flow, and hence there is an augmenting path in the
residual graph G’;. There is only one edge in G leaving node s: the edge (s, x3). Similarly
the only edge entering ¢ in G is edge (ys,t). The augmenting path in the residual graph
Gs goes through the nodes s, x3, Yo, T2, Y1, 1, Y3, t in this order. Note that the edges (z2, y2)
and (x1,y;) are used backwards, and all other edges were used forwards. The effect of this
augmentation is to take the edges used backwards out of the matching, and replace them
with the edges going forwards. Because the augmenting path goes from s to t, there is one
more forward edge than backward edge; thus, the size of the matching increases by one.

Before we conclude this section, we consider the structure of perfect matchings in bipartite
graphs. Algorithmically, we’ve seen how to find perfect matchings: we use the algorithm
above to find a maximum matching, and then check if this matching is perfect.

But let’s ask a slightly less algorithmic question. Not all bipartite graphs have perfect
matchings. What does a bipartite graph without a perfect matching look like? Is there an
easy way to see that a bipartite graph does not have a perfect matching — or at least an easy
way to convince someone the graph has no perfect matching, after we run the algorithm?
More concretely, it would be nice if the algorithm, upon concluding that there is no perfect
matching, could produce a short “certificate” of this fact. The certificate could allow someone
to be quickly convinced that there is no perfect matching, without having to pore over a
trace of the entire execution of the algorithm.

What might such a certificate look like? For example, if there are nodes 1, x5 € X that
have only one incident edge each, and the other end of each edge is the same node y, then
clearly the graph has no perfect matching: both x; and x5 would need to get matched to the
same node y. More generally, consider a subset of nodes A C X, and let I'(A) C Y denote
the set of all nodes that are adjacent to nodes in A. If the graph has a perfect matching,
then each node is A has to be matched to a different node in I'(A), so I'(A) has to be at
least as large as A. This gives us the following fact.

(6.38) If a bipartite graph G = (V, E) with two sides X and Y has a perfect matching,
then for all A C X we must have |I'(A)| > |Al.

This statement suggests a type of certificate that a graph does not have a perfect match-
ing: a set A C X such that |[['(A)] < |A|. But is the converse of (6.38) also true? Is is
the case that whenever there is no perfect matching, there is a set A like this that proves



6.7. APPLICATIONS: DISJOINT PATHS AND BIPARTITE MATCHINGS 209

it? The answer turns out to be yes, provided we add the obvious condition that | X| = |Y|
(without which there could certainly not be a perfect matching). This statement is known
in the literature as Hall’s theorem, though versions of it were discovered independently by
a number of different people — perhaps first by Konig — in the early part of this century.
The proof of the statement also provides a way to find such a subset A in polynomial time.

(6.39) Assume that the bipartite graph G = (V, E) has two sides X and Y such that
| X| = |Y|. Then the graph G either has a perfect matching, or there is a subset A C X such
that |[T'(A)| < |A|. A perfect matching or an appropriate subset A can be found in O(mn)
time.

Proof. We will use the same graph G’ as in the proof of the (6.36) . Assume that |X| =
Y| = n. By (6.36) the graph G has a maximum matching if and only if the value of the
maximum flow in G’ is n.

We need to show that if the value of the maximum flow is less than n, then there is a
subset A as claimed in the statement. By the Max-Flow Min-Cut theorem (6.10) , if the
maximum flow value is less than n, then there is a cut (A’, B") with capacity less than n in
G'. We claim that the set A = X N A’ has the claimed property. This will prove both parts
of the statement, as we've seen in (6.5) that a minimum cut (A’, B’) can also be found by
running the F-F algorithm.

First we claim that one can modify the minimum cut so as to ensure that I'(A) C A’. To
do this, consider a node y € I'(A)) that belongs to B’. We claim that by moving y from B’
to A’ we do not increase the capacity of the cut. For what happens when we move y from B’
to A’? The edge (y,t) now crosses the cut, increasing the capacity by one. But previously
there was at least one edge (z,y) with x € A, since y € I'(A); all these edges used to cross
the cut, and don’t anymore. Thus, overall, the capacity of the cut cannot increase. (Note
that we don’t have to be concerned about nodes x € X that are not in A. The two ends of
the edge (x,y) will be on different sides of th